1
|
Coluzzi C, Guillemet M, Mazzamurro F, Touchon M, Godfroid M, Achaz G, Glaser P, Rocha EPC. Chance Favors the Prepared Genomes: Horizontal Transfer Shapes the Emergence of Antibiotic Resistance Mutations in Core Genes. Mol Biol Evol 2023; 40:msad217. [PMID: 37788575 PMCID: PMC10575684 DOI: 10.1093/molbev/msad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Martin Guillemet
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Touchon
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Maxime Godfroid
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Achaz
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Glaser
- Institut Pasteur, Université de Paris Cité, CNRS, UMR6047, Unité EERA, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
2
|
Tanaka E, Wajima T, Nakaminami H, Uchiya KI. Alternative quinolone-resistance pathway caused by simultaneous horizontal gene transfer in Haemophilus influenzae. J Antimicrob Chemother 2022; 77:3270-3274. [PMID: 36124853 DOI: 10.1093/jac/dkac312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Quinolone-resistant bacteria are known to emerge via the accumulation of mutations in a stepwise manner. Recent studies reported the emergence of quinolone low-susceptible Haemophilus influenzae ST422 isolates harbouring two relevant mutations, although ST422 isolates harbouring one mutation were never identified. OBJECTIVES To investigate if GyrA and ParC from quinolone low-susceptible isolates can be transferred horizontally and simultaneously to susceptible isolates. METHODS Genomic DNA was extracted from an H. influenzae isolate harbouring amino acid substitutions in both gyrA and parC and mixed with clinical isolates. The emergence of resistant isolates was compared, and WGS analysis was performed. RESULTS By adding the genomic DNA harbouring both mutated gyrA and parC, resistant bacteria exhibiting recombination at gyrA only or both gyrA and parC loci were obtained on nalidixic acid and pipemidic acid plates, and the frequency was found to increase with the amount of DNA. Recombination events in gyrA only and in both gyrA and parC occurred with at least 1 and 1-100 ng of DNA, respectively. The genome sequence of a representative strain showed recombination events throughout the genome. The MIC of quinolone for the resulting strains was found to be similar to that of the donor. Although the recombination efficacy was different among the various strains, all strains used in this study obtained multiple genes simultaneously. CONCLUSIONS These findings indicate that H. influenzae can simultaneously obtain more than two mutated genes. This mechanism of horizontal transfer could be an alternative pathway for attaining quinolone resistance.
Collapse
Affiliation(s)
- Emi Tanaka
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.,Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Takeaki Wajima
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Hidemasa Nakaminami
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Kei-Ichi Uchiya
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| |
Collapse
|
3
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
4
|
Revitt‐Mills SA, Wright EK, Vereker M, O'Flaherty C, McPherson F, Dawson C, van Oijen AM, Robinson A. Defects in DNA double-strand break repair resensitize antibiotic-resistant Escherichia coli to multiple bactericidal antibiotics. Microbiologyopen 2022; 11:e1316. [PMID: 36314749 PMCID: PMC9500592 DOI: 10.1002/mbo3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.
Collapse
Affiliation(s)
- Sarah A. Revitt‐Mills
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Elizabeth K. Wright
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Madaline Vereker
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Callum O'Flaherty
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Fairley McPherson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Catherine Dawson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Antoine M. van Oijen
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Andrew Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
5
|
Seo K, Do KH, Lee WK. Molecular characteristics of fluoroquinolone-resistant Escherichia coli isolated from suckling piglets with colibacillosis. BMC Microbiol 2022; 22:216. [PMID: 36109712 PMCID: PMC9476276 DOI: 10.1186/s12866-022-02632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objectives
Colibacillosis is a frequent enteric disease in the pig industry that causes significant economic losses. The objective of this study was to investigate the molecular characteristics of fluoroquinolone (FQ)-resistant E. coli isolates from suckling piglets with colibacillosis.
Results
A total of 43 FQ-resistant E. coli isolates were tested in this study and all isolates showed multi-drug resistance (MDR) and mutations in quinolone resistance determining regions (gyrA or parC). Especially, FQ-resistant E. coli isolates with double mutations in both gyrA and parC were shown a high FQs minimum inhibitory concentration (≥ 64 mg/L for ciprofloxacin, ≥ 128 mg/L for enrofloxacin, and ≥ 256 mg/L for norfloxacin). Among 43 FQ-resistant E. coli isolates, 12 (27.9%) were showed plasmid-mediated quinolone resistance (PMQR) positive E. coli. Prevalence of PMQR gene, aac(6’)-Ib-cr, qnrS, and qepA, were identified in 7, 3, and 2 E. coli isolates, respectively. We identified the following in PMQR-positive E. coli isolates: the tetracycline resistance genes tetD (12 isolates, 100.0%), tetE (12 isolates, 100.0%), tetA (11 isolates, 91.7%), and tetB (1 isolate, 8.3%); β-lactamases–encoding blaCMY-2 (10 isolates, 83.3%), blaTEM-1 (7 isolates, 58.3%), blaOXA-1 (7 isolates, 58.3%), blaSHV-1 (3 isolates, 16.7%), and blaAAC-2 (1 isolate, 8.3%); and the chloramphenicol resistance genes (10 isolates, 83.3%); the sulfonamide resistance genes sul1 (9 isolates, 75.0%) and sul2 (10 isolates, 83.3%); the aminoglycoside modifying enzyme gene aac(3)-II (2 isolates, 16.7%). The F4 (7 isolates, 58.3%), LT:STb:EAST1 (5 isolates, 41.7%), and paa (3 isolates, 25.0%) were most common fimbrial antigen, combinations of toxin genes, and non-fimbrial adhesins genes, respectively. All PMQR-positive E. coli carried class I integrons but only 4 isolates carried the gene cassette. The most prevalent plasmid replicon was FIB (9 isolates, 75.0%), followed by FIC, HI1, and N (7 isolates, 58.3%), respectively.
Conclusions
Because FQ-resistant E. coli can serve as a reservoir of FQ resistant genetic determinants that can be transferred to pathogenic bacteria in humans or pigs, this represents a public health hazard.
Collapse
|
6
|
Kondo T, Sakamoto K, Morinaga Y, Miyata Y, Yanagihara K, Sakai H. Escherichia coli ST131 isolated from urological patients can acquire plasmid-mediated extended spectrum β-lactamase from other bacteria with high frequency. Int J Urol 2022; 29:587-594. [PMID: 35288997 DOI: 10.1111/iju.14845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the prevalence of the clonal group Escherichia coli ST131 in urologic patients, and to clarify the mechanisms underlying the high prevalence of the antimicrobial resistant genes in ST131. METHODS We used 65 Escherichia coli strains collected from the Department of Urology, Nagasaki University Hospital, between January 2018 and December 2018. All of them underwent multilocus sequence typing and were analyzed for genes associated with quinolone resistance and extended-spectrum β-lactamases. To compare ST131 and non-ST131 strains, bacterial conjugation experiments and intestinal colonization evaluations were performed. RESULTS ST131 was the most dominant among all the strains, along with levofloxacin resistant strains, and extended-spectrum β-lactamases positive strains (32%, 63%, and 73%, respectively). 12 out of 15 extended-spectrum β-lactamases-producing Escherichia coli strains harbored CTX-M-9. In particular, all extended-spectrum β-lactamases-producing ST131 strains possessed CTX-M-9. The proportions of ST131 strains with or without quinolone resistance-determining region mutations were significantly higher and lower, respectively, than that of non-ST131 strains (P = 0.0002 and P < 0.0001, respectively). When Klebsiella pneumoniae was used as a donor, three ST131 strains acquired extended-spectrum β-lactamases a total of 16 times (six, four, and six times each), which was significantly more than that in one of the non-ST131 strains (two times). The amount of bacteria was significantly lower in the ST131 strains than in the non-ST131 strains administered to mice. Both the ST131 and non-ST131 strains increased again after the administration of vancomycin, even after the colony was not detected. CONCLUSIONS These results support the mechanisms underlying the prevalence of ST131 strains in hospitals, particularly in urologic patients.
Collapse
Affiliation(s)
- Tsubasa Kondo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kei Sakamoto
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Quinolone resistance is transferred horizontally via uptake signal sequence recognition in Haemophilus influenzae. Antimicrob Agents Chemother 2021; 66:e0196721. [PMID: 34930025 DOI: 10.1128/aac.01967-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of Haemophilus influenzae strains with low susceptibility to quinolones has been reported worldwide. However, the emergence and dissemination mechanisms remain unclear. In this study, a total of 14 quinolone-low-susceptible H. influenzae isolates were investigated phylogenetically and in vitro resistance transfer assay in order to elucidate the emergence and dissemination mechanisms. The phylogenetic analysis based on gyrA sequences showed that strains with the same sequence type determined by multilocus sequence typing were classified into different clusters, suggesting that H. influenzae quinolone resistance emerges not only by point mutation, but also by the horizontal transfer of mutated gyrA. Moreover, the in vitro resistance transfer assay confirmed the horizontal transfer of quinolone resistance and indicated an active role of extracellular DNA in the resistance transfer. Interestingly, the horizontal transfer of parC only occurred in those cells that harbored a GyrA with amino acid substitutions, suggesting a possible mechanism of quinolone resistance in clinical settings. Moreover, the uptake signal and uptake-signal-like sequences located downstream of the quinolone resistant-determining regions of gyrA and parC, respectively, contributed to the horizontal transfer of resistance in H. influenzae. Our study demonstrates that the quinolone resistance of H. influenzae could emerge due to the horizontal transfer of gyrA and parC via recognition of an uptake signal sequence or uptake-signal-like sequence. Since the presence of quinolone-low-susceptible H. influenzae with amino acid substitutions in GyrA have been increasing in recent years, it is necessary to focus our attention to the acquisition of further drug resistance in these isolates.
Collapse
|
8
|
Molecular characterization of fluoroquinolone-resistant Escherichia coli from broiler breeder farms. Poult Sci 2021; 100:101250. [PMID: 34182220 PMCID: PMC8250447 DOI: 10.1016/j.psj.2021.101250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Fluoroquinolones (FQs) have been used effectively antimicrobial agents of choice for treatment of various infections caused by E. coli and FQs-resistance of E. coli from broiler breeders has been implicated in its vertical transmission to their offspring. The objective of this study investigated the phenotypic and genotypic characteristics of FQ-resistant E. coli isolates from broiler breeder farms in Korea. A total of 106 FQ-resistant E. coli isolates were tested in this study and all isolates had mutations in quinolone resistance determining regions; all (100%) had mutations in gyrA, 89 (84.0%) had mutations in parE, 8 (7.5%) isolates showed the mutations with parC and parE, and none had mutations in gyrB. The predominant mutation type was double mutation in gyrA (S83L and D87N), and all FQ-resistant E. coli isolates that had mutations in parC or parE also had double mutations in gyrA. Especially, FQ-resistant E. coli isolates which possessed double mutations in gyrA in combination with double mutations in parC or single mutations in both parC and parE were shown high levels of minimum inhibitory concentrations rage. Of the 23 plasmid-mediated quinolone resistance (PMQR)-positive E. coli isolates, qnrS was detected in 10 (9.4%) isolates, and followed by qnrA (7 isolates, 6.6%), qnrB (4 isolates, 3.8%), and aac(6′)-Ib-cr (2 isolates, 1.9%). Sixteen (69.6%) of the 23 PMQR-positive E. coli isolates harbored class 1 integrons with four different gene cassette arrangements and total of 9 plasmid replicon types were also identified in 23 PMQR-positive E. coli isolates. This is the first study to investigate the prevalence and characteristics of FQ-resistant and PMQR-positive E. coli isolated from the broiler breeder in Korea; it supports that constant monitoring and studies at the broiler breeder level are required to prevent the pyramidal transmission of FQ-resistant E. coli.
Collapse
|
9
|
Chang MX, Zhang JF, Sun YH, Li RS, Lin XL, Yang L, Webber MA, Jiang HX. Contribution of Different Mechanisms to Ciprofloxacin Resistance in Salmonella spp. Front Microbiol 2021; 12:663731. [PMID: 34025618 PMCID: PMC8137344 DOI: 10.3389/fmicb.2021.663731] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Development of fluoroquinolone resistance can involve several mechanisms that include chromosomal mutations in genes (gyrAB and parCE) encoding the target bacterial topoisomerase enzymes, increased expression of the AcrAB-TolC efflux system, and acquisition of transmissible quinolone-resistance genes. In this study, 176 Salmonella isolates from animals with a broad range of ciprofloxacin MICs were collected to analyze the contribution of these different mechanisms to different phenotypes. All isolates were classified according to their ciprofloxacin susceptibility pattern into five groups as follows: highly resistant (HR), resistant (R), intermediate (I), reduced susceptibility (RS), and susceptible (S). We found that the ParC T57S substitution was common in strains exhibiting lowest MICs of ciprofloxacin while increased MICs depended on the type of GyrA mutation. The ParC T57S substitution appeared to incur little cost to bacterial fitness on its own. The presence of PMQR genes represented an route for resistance development in the absence of target-site mutations. Switching of the plasmid-mediated quinolone resistance (PMQR) gene location from a plasmid to the chromosome was observed and resulted in decreased ciprofloxacin susceptibility; this also correlated with increased fitness and a stable resistance phenotype. The overexpression of AcrAB-TolC played an important role in isolates with small decreases in susceptibility and expression was upregulated by MarA more often than by RamA. This study increases our understanding of the relative importance of several resistance mechanisms in the development of fluoroquinolone resistance in Salmonella from the food chain.
Collapse
Affiliation(s)
- Man-Xia Chang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jin-Fei Zhang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yin-Huan Sun
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong-Sheng Li
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ling Lin
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Yang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hong-Xia Jiang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Skarżyńska M, Zaja C M, Bomba A, Bocian Ł, Kozdruń W, Polak M, Wia Cek J, Wasyl D. Antimicrobial Resistance Glides in the Sky-Free-Living Birds as a Reservoir of Resistant Escherichia coli With Zoonotic Potential. Front Microbiol 2021; 12:656223. [PMID: 33897669 PMCID: PMC8062882 DOI: 10.3389/fmicb.2021.656223] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global health concerns; therefore, the identification of AMR reservoirs and vectors is essential. Attention should be paid to the recognition of potential hazards associated with wildlife as this field still seems to be incompletely explored. In this context, the role of free-living birds as AMR carriers is noteworthy. Therefore, we applied methods used in AMR monitoring, supplemented by colistin resistance screening, to investigate the AMR status of Escherichia coli from free-living birds coming from natural habitats and rescue centers. Whole-genome sequencing (WGS) of strains enabled to determine resistance mechanisms and investigate their epidemiological relationships and virulence potential. As far as we know, this study is one of the few that applied WGS of that number (n = 71) of strains coming from a wild avian reservoir. The primary concerns arising from our study relate to resistance and its determinants toward antimicrobial classes of the highest priority for the treatment of critical infections in people, e.g., cephalosporins, quinolones, polymyxins, and aminoglycosides, as well as fosfomycin. Among the numerous determinants, bla CTX-M-15, bla CMY-2, bla SHV-12, bla TEM-1B, qnrS1, qnrB19, mcr-1, fosA7, aac(3)-IIa, ant(3")-Ia, and aph(6)-Id and chromosomal gyrA, parC, and parE mutations were identified. Fifty-two sequence types (STs) noted among 71 E. coli included the global lineages ST131, ST10, and ST224 as well as the three novel STs 11104, 11105, and 11194. Numerous virulence factors were noted with the prevailing terC, gad, ompT, iss, traT, lpfA, and sitA. Single E. coli was Shiga toxin-producing. Our study shows that the clonal spread of E. coli lineages of public and animal health relevance is a serious avian-associated hazard.
Collapse
Affiliation(s)
- Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
| | - Magdalena Zaja C
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Łukasz Bocian
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, Puławy, Poland
| | - Wojciech Kozdruń
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Marcin Polak
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jarosław Wia Cek
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland.,Department of Omics Analyses, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
11
|
Kirk R, Ratcliffe A, Noonan G, Uosis-Martin M, Lyth D, Bardell-Cox O, Massam J, Schofield P, Hindley S, Jones DR, Maclean J, Smith A, Savage V, Mohmed S, Charrier C, Salisbury AM, Moyo E, Metzger R, Chalam-Judge N, Cheung J, Stokes NR, Best S, Craighead M, Armer R, Huxley A. Rational design, synthesis and testing of novel tricyclic topoisomerase inhibitors for the treatment of bacterial infections part 1. RSC Med Chem 2020; 11:1366-1378. [PMID: 34095844 DOI: 10.1039/d0md00174k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
The alarming reduction in drug effectiveness against bacterial infections has created an urgent need for the development of new antibacterial agents that circumvent bacterial resistance mechanisms. We report here a series of DNA gyrase and topoisomerase IV inhibitors that demonstrate potent activity against a range of Gram-positive and selected Gram-negative organisms, including clinically-relevant and drug-resistant strains. In part 1, we present a detailed structure activity relationship (SAR) analysis that led to the discovery of our previously disclosed compound, REDX05931, which has a minimum inhibitory concentration (MIC) of 0.06 μg mL-1 against fluoroquinolone-resistant Staphylococcus aureus. Although in vitro hERG and CYP inhibition precluded further development, it validates a rational design approach to address this urgent unmet medical need and provides a scaffold for further optimisation, which is presented in part 2.
Collapse
Affiliation(s)
- R Kirk
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Ratcliffe
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - G Noonan
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - M Uosis-Martin
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - D Lyth
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - O Bardell-Cox
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Massam
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - P Schofield
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Hindley
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - D R Jones
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Maclean
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Smith
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - V Savage
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Mohmed
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - C Charrier
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A-M Salisbury
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - E Moyo
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - R Metzger
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - N Chalam-Judge
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Cheung
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - N R Stokes
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Best
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - M Craighead
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - R Armer
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Huxley
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| |
Collapse
|
12
|
Whole-Genome Sequence of Fluoroquinolone-Resistant Escherichia coli HUE1, Isolated in Hokkaido, Japan. Microbiol Resour Announc 2020; 9:9/46/e01135-20. [PMID: 33184163 PMCID: PMC7661002 DOI: 10.1128/mra.01135-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence of Escherichia coli strain HUE1, isolated from the urinary catheter of a female patient, showing fluoroquinolone resistance without quinolone resistance-determining region mutations. To facilitate the exploration of the molecular characteristics of HUE1, the whole genome was sequenced using long- and short-read platforms. We report the complete genome sequence of Escherichia coli strain HUE1, isolated from the urinary catheter of a female patient, showing fluoroquinolone resistance without quinolone resistance-determining region mutations. To facilitate the exploration of the molecular characteristics of HUE1, the whole genome was sequenced using long- and short-read platforms.
Collapse
|
13
|
Hall CL, Harrison MA, Pond MJ, Chow C, Harding-Esch EM, Sadiq ST. Genotypic determinants of fluoroquinolone and macrolide resistance in Neisseria gonorrhoeae. Sex Health 2020; 16:479-487. [PMID: 31366421 DOI: 10.1071/sh18225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
Abstract
Background High rates of antimicrobial resistance (AMR) in Neisseria gonorrhoeae hinder effective treatment, but molecular AMR diagnostics may help address the challenge. This study aimed to appraise the literature for resistance-associated genotypic markers linked to fluoroquinolones and macrolides, to identify and review their use in diagnostics. METHODS Medline and EMBASE databases were searched and data pooled to evaluate associations between genotype and phenotypic resistance. The minimum inhibitory concentration (MIC) cut-offs were ≤ 0.06 mg L-1 for non-resistance to ciprofloxacin and ≤ 0.5 mg L-1 for non-resistance to azithromycin. RESULTS Diagnostic accuracy estimates were limited by data availability and reporting. It was found that: 1) S91 and D95 mutations in the GyrA protein independently predicted ciprofloxacin resistance and, used together, gave 98.6% (95% confidence interval (CI) 98.0-99.0%) sensitivity and 91.4% (95%CI 88.6-93.7%) specificity; 2) the number of 23S rRNA gene alleles with C2611T or A2059G mutations was highly correlated with azithromycin resistance, with mutation in any allele giving a sensitivity and specificity of 66.1% (95%CI 62.1-70.0%) and 98.9% (95%CI 97.5-99.5%) respectively. Estimated negative (NPV) and positive predictive values (PPV) for a 23S rRNA diagnostic were 98.6% (95%CI 96.8-99.4%) and 71.5% (95%CI 68.0-74.8%) respectively; 3) mutation at amino acid position G45 in the MtrR protein independently predicted azithromycin resistance; however, when combined with 23S rRNA, did not improve the PPV or NPV. CONCLUSIONS Viable candidates for markers of resistance detection for incorporation into diagnostics were demonstrated. Such tests may enhance antibiotic stewardship and treatment options.
Collapse
Affiliation(s)
- Catherine L Hall
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Mark A Harrison
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Marcus J Pond
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Christine Chow
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Emma M Harding-Esch
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK; and National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - S Tariq Sadiq
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK; and National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK; and St George's University Hospitals NHS Foundation Trust, Blackshaw Road, Tooting, London SW17 0QT, UK; and Corresponding author.
| |
Collapse
|
14
|
F Plasmids Are the Major Carriers of Antibiotic Resistance Genes in Human-Associated Commensal Escherichia coli. mSphere 2020; 5:5/4/e00709-20. [PMID: 32759337 PMCID: PMC7407071 DOI: 10.1128/msphere.00709-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rising antibiotic resistance in human-associated bacterial pathogens is a serious threat to our ability to treat many infectious diseases. It is critical to understand how acquired resistance genes move in and through bacteria associated with humans, particularly for species such as Escherichia coli that are very common in the human gut but can also be dangerous pathogens. This work combined two distinct DNA sequencing approaches to allow us to explore the genomes of E. coli from college students to show that the antibiotic resistance genes these bacteria have acquired are usually carried on a specific type of plasmid that is naturally transferrable to other E. coli, and likely to other related bacteria. The evolution and propagation of antibiotic resistance by bacterial pathogens are significant threats to global public health. Contemporary DNA sequencing tools were applied here to gain insight into carriage of antibiotic resistance genes in Escherichia coli, a ubiquitous commensal bacterium in the gut microbiome in humans and many animals, and a common pathogen. Draft genome sequences generated for a collection of 101 E. coli strains isolated from healthy undergraduate students showed that horizontally acquired antibiotic resistance genes accounted for most resistance phenotypes, the primary exception being resistance to quinolones due to chromosomal mutations. A subset of 29 diverse isolates carrying acquired resistance genes and 21 control isolates lacking such genes were further subjected to long-read DNA sequencing to enable complete or nearly complete genome assembly. Acquired resistance genes primarily resided on F plasmids (101/153 [67%]), with smaller numbers on chromosomes (30/153 [20%]), IncI complex plasmids (15/153 [10%]), and small mobilizable plasmids (5/153 [3%]). Nearly all resistance genes were found in the context of known transposable elements. Very few structurally conserved plasmids with antibiotic resistance genes were identified, with the exception of an ∼90-kb F plasmid in sequence type 1193 (ST1193) isolates that appears to serve as a platform for resistance genes and may have virulence-related functions as well. Carriage of antibiotic resistance genes on transposable elements and mobile plasmids in commensal E. coli renders the resistome highly dynamic. IMPORTANCE Rising antibiotic resistance in human-associated bacterial pathogens is a serious threat to our ability to treat many infectious diseases. It is critical to understand how acquired resistance genes move in and through bacteria associated with humans, particularly for species such as Escherichia coli that are very common in the human gut but can also be dangerous pathogens. This work combined two distinct DNA sequencing approaches to allow us to explore the genomes of E. coli from college students to show that the antibiotic resistance genes these bacteria have acquired are usually carried on a specific type of plasmid that is naturally transferrable to other E. coli, and likely to other related bacteria.
Collapse
|
15
|
Bird-livestock interactions associated with increased cattle fecal shedding of ciprofloxacin-resistant Escherichia coli within feedlots in the United States. Sci Rep 2020; 10:10174. [PMID: 32576851 PMCID: PMC7311412 DOI: 10.1038/s41598-020-66782-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/22/2020] [Indexed: 11/08/2022] Open
Abstract
This research study was conducted to determine if bird depredation in feedlots is associated with the prevalence of ciprofloxacin-resistant Escherichia coli in cattle and to determine if removal of invasive bird species could be an effective management strategy to help reduce ciprofloxacin-resistant E. coli in cattle within the United States. European starlings (Sturnus vulgaris) were collected from feedlots within multiple geographic regions within the United States and European starlings within all regions tested positive for ciprofloxacin-resistant E. coli, but prevalence differed by region. Total number of birds on feedlots were positively associated with increased cattle fecal shedding of ciprofloxacin-resistant E. coli. Targeted control of invasive European starlings reduced bird numbers on feedlots by 70.4%, but decreasing populations of European starlings was not associated with corresponding reductions in bovine fecal prevalence of ciprofloxacin-resistant E. coli. These data provide evidence for the role of wild bird depredation in feedlots contributing to fecal shedding of ciprofloxacin-resistant E. coli, but a single month of European starling control in feedlots was not sufficient to impact the fecal carriage of this organism in cattle.
Collapse
|
16
|
Garoff L, Pietsch F, Huseby DL, Lilja T, Brandis G, Hughes D. Population Bottlenecks Strongly Influence the Evolutionary Trajectory to Fluoroquinolone Resistance in Escherichia coli. Mol Biol Evol 2020; 37:1637-1646. [PMID: 32031639 PMCID: PMC7253196 DOI: 10.1093/molbev/msaa032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Experimental evolution is a powerful tool to study genetic trajectories to antibiotic resistance under selection. A confounding factor is that outcomes may be heavily influenced by the choice of experimental parameters. For practical purposes (minimizing culture volumes), most experimental evolution studies with bacteria use transmission bottleneck sizes of 5 × 106 cfu. We currently have a poor understanding of how the choice of transmission bottleneck size affects the accumulation of deleterious versus high-fitness mutations when resistance requires multiple mutations, and how this relates outcome to clinical resistance. We addressed this using experimental evolution of resistance to ciprofloxacin in Escherichia coli. Populations were passaged with three different transmission bottlenecks, including single cell (to maximize genetic drift) and bottlenecks spanning the reciprocal of the frequency of drug target mutations (108 and 1010). The 1010 bottlenecks selected overwhelmingly mutations in drug target genes, and the resulting genotypes corresponded closely to those found in resistant clinical isolates. In contrast, both the 108 and single-cell bottlenecks selected mutations in three different gene classes: 1) drug targets, 2) efflux pump repressors, and 3) transcription-translation genes, including many mutations with low fitness. Accordingly, bottlenecks smaller than the average nucleotide substitution rate significantly altered the experimental outcome away from genotypes observed in resistant clinical isolates. These data could be applied in designing experimental evolution studies to increase their predictive power and to explore the interplay between different environmental conditions, where transmission bottlenecks might vary, and resulting evolutionary trajectories.
Collapse
Affiliation(s)
- Linnéa Garoff
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Franziska Pietsch
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tua Lilja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Esmaeel NE, Gerges MA, Hosny TA, Ali AR, Gebriel MG. Detection of Chromosomal and Plasmid-Mediated Quinolone Resistance Among Escherichia coli Isolated from Urinary Tract Infection Cases; Zagazig University Hospitals, Egypt. Infect Drug Resist 2020; 13:413-421. [PMID: 32104013 PMCID: PMC7023874 DOI: 10.2147/idr.s240013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/11/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Resistance to fluoroquinolones (FQ) in uropathogenic Escherichia coli (UPEC) has emerged as a growing problem. Chromosomal mutations and plasmid-mediated quinolone resistance (PMQR) determinants have been implicated. Data concerning the prevalence of these determinants in UPEC in our hospital are quite limited. Purpose To investigate the occurrence and genetic determinants of FQ resistance in UPEC isolated from urinary tract infection (UTI) cases in Zagazig University Hospitals. Patients and Methods Following their isolation, the identification and susceptibility of UPEC isolates were performed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometer (MALDI-TOF MS). FQ resistance was detected by the disc diffusion method. Ciprofloxacin minimal inhibitory concentration (MIC) was determined using E-test. Chromosomal mutations in the gyrA gene were detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and for detection of PMQR, a couple of multiplex PCR reactions were used. Results Among a total of 192 UPEC isolates, 46.9% (n=90) were FQ resistant. More than half of the isolates (57.8%) exhibited high-level ciprofloxacin resistance (MIC > 32 µg/mL). Mutations in gyrA were detected in 76.7% of isolates, with 34.4% having mutations at more than one site. PMQR determinants were detected in 80.1% of UPEC isolates, with aac(6ʹ)-Ib-cr gene being the most frequent found in 61.1% of isolates. Conclusion There is a high prevalence of both gyrA mutations and PMQR determinants among UPEC isolates in our hospital which contribute to high-level ciprofloxacin resistance, a finding that may require the revision of the antibiotics used for empirical treatment of UTI.
Collapse
Affiliation(s)
- Noura E Esmaeel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian A Gerges
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thoraya A Hosny
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed R Ali
- Urology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manar G Gebriel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Azam MA, Thathan J, Jupudi S. Pharmacophore modeling, atom based 3D-QSAR, molecular docking and molecular dynamics studies on Escherichia coli ParE inhibitors. Comput Biol Chem 2019; 84:107197. [PMID: 31901788 DOI: 10.1016/j.compbiolchem.2019.107197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
ATP dependent ParE enzyme is as an attractive target for the development of antibacterial agents. Atom based 3D-QSAR model AADHR.187 was developed based on the thirty eight Escherichia coli ParE inhibitors. The generated model showed statistically significant coefficient of determinations for the training (R2 = 0.985) and test (R2 = 0.86) sets. The cross-validated correlation coefficient (q2) was 0.976. The utility of the generated model was validated by the enrichment study. The model was also validated with structurally diverse external test set of ten compounds. Contour plot analysis of the generated model unveiled the chemical features necessary for the E. coli ParE enzyme inhibition. Extra-precision docking result revealed that hydrogen bonding and ionic interactions play a major role in ParE protein-ligand binding. Binding free energy was computed for the data set inhibitors to validate the binding affinity. A 30-ns molecular dynamics simulation showed high stability and effective binding of inhibitor 34 within the active site of ParE enzyme. Using the best fitted model AADHR.187, pharmacophore-based high-throughput virtual screening was performed to identify virtual hits. Based on the above studies three new molecules are proposed as E. coli ParE inhibitors with high binding affinity and favourable ADME properties.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1).
| | - Janarthanan Thathan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1)
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1)
| |
Collapse
|
19
|
Kotb DN, Mahdy WK, Mahmoud MS, Khairy RMM. Impact of co-existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. BMC Infect Dis 2019; 19:979. [PMID: 31752702 PMCID: PMC6868749 DOI: 10.1186/s12879-019-4606-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluoroquinolones are commonly recommended as treatment for urinary tract infections (UTIs). The development of resistance to these agents, particularly in gram-negative microorganisms complicates treatment of infections caused by these organisms. This study aimed to investigate antimicrobial resistance of different Enterobacteriaceae species isolated from hospital- acquired and community-acquired UTIs against fluoroquinolones and correlate its levels with the existing genetic mechanisms of resistance. METHODS A total of 440 Enterobacteriaceae isolates recovered from UTIs were tested for antimicrobial susceptibility. Plasmid-mediated quinolone resistance (PMQR) genes and mutations in the quinolone resistance-determining regions (QRDRs) of gyrA and parC genes were examined in quinolone-resistant strains. RESULTS About (32.5%) of isolates were resistant to quinolones and (20.5%) were resistant to fluoroquinolones. All isolates with high and intermediate resistance phenotypes harbored one or more PMQR genes. QnrB was the most frequent gene (62.9%) of resistant isolates. Co-carriage of 2 PMQR genes was detected in isolates (46.9%) with high resistance to ciprofloxacin (CIP) (MICs > 128 μg/mL), while co-carriage of 3 PMQR genes was detected in (6.3%) of resistant isolates (MICs > 512 μg/mL). Carriage of one gene only was detected in intermediate resistance isolates (MICs of CIP = 1.5-2 μg/mL). Neither qnrA nor qnrC genes were detected. The mutation at code 83 of gyrA was the most frequent followed by Ser80-Ile in parC gene, while Asp-87 Asn mutation of gyrA gene was the least, where it was detected only in high resistant E. coli isolates (MIC ≥128 μg/mL). A double mutation in gyrA (Lys154Arg and Ser171Ala) was observed in high FQs resistant isolates (MIC of CIP < 128 μg/mL). CONCLUSION FQs resistance is caused by interact between PMQR genes and mutations in both gyrA and parC genes while a mutation in one gene only can explain quinolone resistance. Accumulation of PMQR genes and QRDR mutations confers high resistance to FQs.
Collapse
Affiliation(s)
- Dalia Nabil Kotb
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Wafaa Khairy Mahdy
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Mahmoud Shokry Mahmoud
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Rasha M M Khairy
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| |
Collapse
|
20
|
The mutational landscape of quinolone resistance in Escherichia coli. PLoS One 2019; 14:e0224650. [PMID: 31689338 PMCID: PMC6830822 DOI: 10.1371/journal.pone.0224650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/19/2019] [Indexed: 11/19/2022] Open
Abstract
The evolution of antibiotic resistance is influenced by a variety of factors, including the availability of resistance mutations, and the pleiotropic effects of such mutations. Here, we isolate and characterize chromosomal quinolone resistance mutations in E. coli, in order to gain a systematic understanding of the rate and consequences of resistance to this important class of drugs. We isolated over fifty spontaneous resistance mutants on nalidixic acid, ciprofloxacin, and levofloxacin. This set of mutants includes known resistance mutations in gyrA, gyrB, and marR, as well as two novel gyrB mutations. We find that, for most mutations, resistance tends to be higher to nalidixic acid than relative to the other two drugs. Resistance mutations had deleterious impacts on one or more growth parameters, suggesting that quinolone resistance mutations are generally costly. Our findings suggest that the prevalence of specific gyrA alleles amongst clinical isolates are driven by high levels of resistance, at no more cost than other resistance alleles.
Collapse
|
21
|
DEHBANIPOUR R, KHANAHMAD H, SEDIGHI M, BIALVAEI AZAHEDI, FAGHRI J. High prevalence of fluoroquinolone-resistant Escherichia coli strains isolated from urine clinical samples. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2019; 60:E25-E30. [PMID: 31041407 PMCID: PMC6477561 DOI: 10.15167/2421-4248/jpmh2019.60.1.884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022]
Abstract
Background Fluoroquinolone resistant Escherichia coli isolates have become an important challenge in healthcare settings in Iran. In this study, we have determined Fluoroquinolone resistant E. coli isolates (from both outpatients and inpatients) and evaluated mutations of gyrA and parC within the quinolone resistance-determining regions (QRDR) of these clinical isolates. Materials and methods Clinical isolates were recovered from the urine sample of patients with urinary tract infections admitted at Alzahra hospital, Iran, between September and February 2013. We assessed antimicrobial susceptibility of all isolates and determined mutations in QRDR of gyrA and parC genes from 13 fluoroquinolone-resistant isolates by DNA sequencing. Results A total of 135 E. coli strains were obtained from 135 patients (91 outpatients and 44 inpatients). The resistance rate of fluoroquinolones (Ciprofloxacin, Norfloxacin and Ofloxacin) among our strains was 45.2%. Two E. coli isolates were shown just a single mutation, but other isolates possessed 2-5 mutations in gyrA and parC genes. Mutations in the QRDR regions of gyrA were at positions Ser83 and Asp87 and parC at positions Ser80, Glu84, Gly78. Conclusions Ciprofloxacin is the most common antimicrobial agent used for treating urinary tract infections (UTIs) in healthcare settings in Iran. Accumulation of different substitutions in the QRDR regions of gyrA and parC confers high-level resistance of fluoroquinolones in clinical isolates.
Collapse
Affiliation(s)
- R. DEHBANIPOUR
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H. KHANAHMAD
- Department of Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M. SEDIGHI
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. ZAHEDI BIALVAEI
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - J. FAGHRI
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Jamshid Faghri, Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran - Tel/Fax +983137922421 - E-mail:
| |
Collapse
|
22
|
Changing paradigm of antibiotic resistance amongst Escherichia coli isolates in Indian pediatric population. PLoS One 2019; 14:e0213850. [PMID: 30995225 PMCID: PMC6469777 DOI: 10.1371/journal.pone.0213850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance happens when microorganisms mutates in manners that render the drugs like antibacterial, antiviral, antiparasitic and antifungal, ineffective. The normal mutation process is encouraged by the improper use of antibiotics. Mutations leading to quinolone resistance occur in a highly conserved region of the quinolone resistance-determining region (QRDR) of DNA gyrAse and topoisomerase IV gene. We analyzed antibiotic resistant genes and single nucleotide polymorphism (SNP) in gyrA and parC genes in QRDR in 120 E. coli isolates (both diarrheagenic and non-pathogenic) recovered from fresh stool samples collected from children aged less than 5 years from Delhi, India. Antibiotic susceptibility testing was performed according to standard clinical and laboratory standards institute (CLSI) guidelines. Phylogenetic analysis showed the clonal diversity and phylogenetic relationships among the E. coli isolates. The SNP analysis depicted mutations in gyrA and parC genes in QRDR. The sul1 gene, responsible for sulfonamide resistance, was present in almost half (47.5%) of the isolates across the diseased and healthy samples. The presence of antibiotic resistance genes in E. coli isolates from healthy children indicate the development, dissemination and carriage of antibiotic resistance in their gut. Our observations suggest the implementation of active surveillance and stewardship programs to promote appropriate antibiotic use and minimizing further danger.
Collapse
|
23
|
Cadena M, Froenicke L, Britton M, Settles ML, Durbin-Johnson B, Kumimoto E, Gallardo RA, Ferreiro A, Chylkova T, Zhou H, Pitesky M. Transcriptome Analysis of Salmonella Heidelberg after Exposure to Cetylpyridinium Chloride, Acidified Calcium Hypochlorite, and Peroxyacetic Acid. J Food Prot 2019; 82:109-119. [PMID: 30702951 DOI: 10.4315/0362-028x.jfp-18-235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The application of RNA sequencing in commercial poultry could facilitate a novel approach toward food safety with respect to identifying conditions in food production that mitigate transcription of genes associated with virulence and survivability. In this study, we evaluated the effects of disinfectant exposure on the transcriptomes of two field isolates of Salmonella Heidelberg (SH) isolated from a commercial broiler processing plant in 1992 and 2014. The isolates were each exposed separately to the following disinfectants commonly used in poultry processing: cetylpyridinium chloride (CPC), acidified calcium hypochlorite (aCH), and peroxyacetic acid (PAA). Exposure times were 8 s with CPC to simulate a poultry processing dipping station or 90 min with aCH and PAA to simulate the chiller tank in a poultry processing plant at 4°C. Based on comparison with a publicly available annotated SH reference genome with 5,088 genes, 90 genes were identified as associated with virulence, pathogenicity, and resistance (VPR). Of these 90 VPR genes, 9 (10.0%), 28 (31.1%), and 1 (1.1%) gene were upregulated in SH 2014 and 21 (23.3%), 26 (28.9%), and 2 (2.2%) genes were upregulated in SH 2014 challenged with CPC, aCH, and PAA, respectively. This information and previously reported MICs for the three disinfectants with both SH isolates allow researchers to make more accurate recommendations regarding control methods of SH and public health considerations related to SH in food production facilities where SH has been isolated. For example, the MICs revealed that aCH is ineffective for SH inhibition at regulatory levels allowed for poultry processing and that aCH was ineffective for inhibiting SH growth and caused an upregulation of VPR genes.
Collapse
Affiliation(s)
- Myrna Cadena
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.,2 Cooperative Extension, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Lutz Froenicke
- 3 Genome Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Monica Britton
- 3 Genome Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Matthew L Settles
- 3 Genome Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Blythe Durbin-Johnson
- 4 Department of Public Health Sciences, School of Medicine, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Emily Kumimoto
- 3 Genome Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Rodrigo A Gallardo
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Aura Ferreiro
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.,2 Cooperative Extension, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Tereza Chylkova
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.,2 Cooperative Extension, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Huaijun Zhou
- 5 Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Maurice Pitesky
- 1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA.,2 Cooperative Extension, University of California, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
24
|
Jian MJ, Cheng YH, Perng CL, Shang HS. Molecular typing and profiling of topoisomerase mutations causing resistance to ciprofloxacin and levofloxacin in Elizabethkingia species. PeerJ 2018; 6:e5608. [PMID: 30225179 PMCID: PMC6139017 DOI: 10.7717/peerj.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/19/2018] [Indexed: 12/02/2022] Open
Abstract
Objectives Several Elizabethkingia species often exhibit extensive antibiotic resistance, causing infections associated with severe morbidity and high mortality rates worldwide. In this study, we determined fluoroquinolone susceptibility profiles of clinical Elizabethkingia spp. isolates and investigated the resistance mechanisms. Methods In 2017–2018, 131 Elizabethkingia spp. isolates were recovered from specimens collected at tertiary care centers in northern Taiwan. Initial species identification using the Vitek MS system and subsequent verification by 16S rRNA sequencing confirmed the presence of Elizabethkingia anophelis (n = 111), E. miricola (n = 11), and E. meningoseptica (n = 9). Fluoroquinolone susceptibility was determined using the microbroth dilution method, and fluoroquinolone resistance genes were analyzed by sequencing. Results Among Elizabethkingia spp. isolates, 91% and 77% were resistant to ciprofloxacin and levofloxacin, respectively. The most prevalent alterations were two single mutations in GyrA, Ser83Ile, and Ser83Arg, detected in 76% of the isolates exhibiting fluoroquinolone MIC between 8 and 128 μg/ml. Another GyrA single mutation, Asp87Asn, was identified in two quinolone-resistant E. miricola strains. None of the isolates had alterations in GyrB, ParC, or ParE. We developed a high-resolution melting assay for rapid identification of the prevalent gyrA gene mutations. The genetic relationship between the isolates was evaluated by random amplified polymorphic DNA PCR that yielded diverse pulsotypes, indicating the absence of any temporal or spatial overlap among the patients during hospitalization. Conclusion Our analysis of fluoroquinolone-resistant Elizabethkingia spp. isolates provides information for further research on the variations of the resistance mechanism and potential clinical guidance for infection management.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cherng-Lih Perng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Sheng Shang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
25
|
A Survey of gyrA Target-Site Mutation and qnr Genes among Clinical Isolates of Escherichia coli in the North of Iran. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.67293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Guiral E, Pons MJ, Vubil D, Marí-Almirall M, Sigaúque B, Soto SM, Alonso PL, Ruiz J, Vila J, Mandomando I. Epidemiology and molecular characterization of multidrug-resistant Escherichia coli isolates harboring blaCTX-M group 1 extended-spectrum β-lactamases causing bacteremia and urinary tract infection in Manhiça, Mozambique. Infect Drug Resist 2018; 11:927-936. [PMID: 30013375 PMCID: PMC6037150 DOI: 10.2147/idr.s153601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The emergence and spread of extended-spectrum β-lactamases (ESBLs), especially CTX-M, is an important public health problem with serious implications for low-income countries where second-line treatment is often unavailable. Knowledge of the local prevalence of ESBL is critical to define appropriate empirical therapeutic strategies for multidrug-resistant (MDR) organisms. This study aimed to assess and characterize the presence of ESBL and especially CTX-M-producing Escherichia coli MDR isolates from patients with urinary tract infections (UTIs) and bacteremia in a rural hospital in Mozambique. Materials and methods One hundred and fifty-one E. coli isolates from bacteremia and UTI in children were screened for CTX-M, TEM, SHV and OXA β-lactamases by polymerase chain reaction and sequencing. Isolates carrying CTX-M group 1 β-lactamases were further studied. The resistance to other antibiotic families was determined by phenotypic and genotypic methods, the location of the blaCTX-M gene and the epidemiology of the isolates were studied, and extensive plasmid characterization was performed. Results Approximately 11% (17/151) of E. coli isolates causing bacteremia and UTI were ESBL producers. CTX-M-15 was the most frequently detected ESBL, accounting for 75% of the total isolates characterized. The blaCTX-M gene is located in different plasmids belonging to different incompatibility groups and can be found in non-epidemiologically related isolates, indicating the high capacity of this resistance determinant to spread widely. Conclusion Our data suggest the presence of a co-selection of third-generation cephalosporin-resistant determinants in the study area despite limited access to these antibiotics. This highlights the importance of continuous surveillance of antimicrobial resistance of both genetic elements of resistance and resistant isolates in order to monitor the emergence and trends of ESBL-producing isolates to promote adequate therapeutic strategies for the management of MDR bacterial infections.
Collapse
Affiliation(s)
- Elisabet Guiral
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Maria Jesús Pons
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique,
| | - Marta Marí-Almirall
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Betuel Sigaúque
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique, .,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique,
| | - Sara Maria Soto
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Pedro Luís Alonso
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique,
| | - Joaquim Ruiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Microbiology Department, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique, .,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique,
| |
Collapse
|
27
|
Affiliation(s)
- Zachary C. Conley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Truston J. Bodine
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew Chou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Lynn Zechiedrich
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
The following study is investigating the different GyrB mutations associated withEscherichia coliclinical isolates. The study interrogates part of the ATPase binding site (a.a 132-199) as it covers most of the naturally occurring mutations in GyrB. The following results were obtained: for Arg-136 two isolates had mutations, the first is isolate-1 (Ala-136), and the second is isolate-5 (Cys-136). Gly-164 had no changes for all tested isolates. For Thr-165 only isolate-3 had a change to Ser-165. Accuracy of sequence translation was checked by sequencing both CFT073 and MG1655. The current study presents novel mutations in the GyrB24 subdomain of the gyrase enzyme. These new mutations showed normal enzyme activity (no reduction in ATPase functions) indicating that they might be a result of GyrB interaction with ATP analog molecules rather than antibacterial agents such as coumarins. Furthermore, our findings are supporting the idea that mutations in the GyrB24 would require synchronization with the efflux pumps to maintain antibiotic resistance against coumarins.
Collapse
|
29
|
Zhang CZ, Chang MX, Yang L, Liu YY, Chen PX, Jiang HX. Upregulation of AcrEF in Quinolone Resistance Development inEscherichia coliWhen AcrAB-TolC Function Is Impaired. Microb Drug Resist 2018; 24:18-23. [DOI: 10.1089/mdr.2016.0207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chuan-Zhen Zhang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Man-Xia Chang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Yan-Yan Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Pin-Xian Chen
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Hong-Xia Jiang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| |
Collapse
|
30
|
Younas M, Siddiqui F, Noreen Z, Bokhari SS, Gomez-Duarte OG, Wren BW, Bokhari H. Characterization of enteropathogenic Escherichia coli of clinical origin from the pediatric population in Pakistan. Trans R Soc Trop Med Hyg 2017; 110:414-20. [PMID: 27496516 DOI: 10.1093/trstmh/trw047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/13/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Enteropathogenic Escherichia coli (EPEC) is one of the leading causes of watery diarrhea among children. METHODS In this study EPEC isolates from the pediatric population of Pakistan (2010-2012) were subjected to phylotyping, antibiotic susceptibility, extended-spectrum beta-lactamase (ESBL) profiling and evaluation of one representative strain from each panel of phylotypesin Galleria mellonella, infection model. RESULTS A total of 46/225 (20.4%) stool samples were positive for EPEC. Isolates mainly belong to D phylogroup (18, 39%) followed by nontypeable (10, 22%), B1 (9, 20%), B2 (8, 17%) and A (1, 2%). High resistance was observed for ampicillin (42, 91%), erythromycin (41, 89%), cefaclor (37, 80%), trimethoprim/sulfamethoxazole (36, 78%), tetracycline (36, 78%). Among nalidixic acid resistant isolates 13 (28%) showed presence of single nucleotide polymorphism (SNP) in parC (C330-T330) whereas 1 (2%) isolate showed gyrB (A660-T660) SNP. Furthermore, 27 (59%) isolates were ESBL producers. Representative isolates of phlyotypes A and B2 showed enhance killing of G. mellonella compared to ones belonging to phylotypes B1 and D. CONCLUSIONS Non-typeable EPEC strains were frequently observed. ESBL production in ESBL producers was found to be plasmid mediated. No significant association of antibiotic resistance profile with specific phylogroup of EPEC was found, however G. mellonella infection model differentiated representative phylotypes.
Collapse
Affiliation(s)
- Mahwish Younas
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, 44000, Islamabad, Pakistan
| | - Fariha Siddiqui
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, 44000, Islamabad, Pakistan
| | - Zobia Noreen
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, 44000, Islamabad, Pakistan
| | | | - Oscar G Gomez-Duarte
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Habib Bokhari
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, 44000, Islamabad, Pakistan
| |
Collapse
|
31
|
Rebbah N, Messai Y, Châtre P, Haenni M, Madec JY, Bakour R. Diversity of CTX-M Extended-Spectrum β-Lactamases in Escherichia coli Isolates from Retail Raw Ground Beef: First Report of CTX-M-24 and CTX-M-32 in Algeria. Microb Drug Resist 2017; 24:896-908. [PMID: 29227186 DOI: 10.1089/mdr.2017.0171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate the prevalence and molecular features of extended-spectrum cephalosporin resistance in Escherichia coli isolates contaminating ground beef at retail in Algeria. Of 371 ground beef samples, 27.5% were found to contain cefotaxime-resistant E. coli isolates distributed into A (24.5%), B1 (60.8%), and D (14.7%) phylogroups. A rate of 88.2% of isolates had a multidrug-resistance phenotype. All strains were producers of CTX-M type extended-spectrum β-lactamases (ESBLs): CTX-M-1, CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-24, or CTX-M-32. Conjugation assays allowed the transfer of blaCTX-M-1 in association with IncI1 plasmids, blaCTX-M-15 with IncI1 and IncK+B/O plasmids, blaCTX-M-3 with IncK plasmids, and blaCTX-M-14 with IncF1B or IncK plasmids. Sequence analysis of gyrA and parC genes showed mutations in 98.6% of ciprofloxacin-resistant isolates. The patterns "GyrA: S83L+D87N, ParC: S80I" (46.5%) and "ParC: S80I" (42.3%) were predominant. qnrS1, qnrB, and aac(6')-Ib-cr were detected in 18.7% of isolates. The tet genes, tetA, tetB, and tetA+tetB, were present in 95.7% of tetracycline-resistant isolates. The sul genes (sul1, sul2, sul3, sul1+sul2, sul2+sul3, and sul1+sul3) and the dfr gene clusters (dfrA1, dfrA5, dfrA7, dfrA8, dfrA12, dfrA5+dfrA12, dfrA1+dfrA5, dfrA7+dfrA12, dfrA5+dfrA7, and dfrA1+dfrA5+dfrA7) were found in 96.4% and 85.5% of sulfamethoxazole/trimethoprim-resistant isolates, respectively. Classes 1 and 2 integrons were detected in 67.6% and 9.8% of isolates, respectively. This study highlighted the significant presence of resistance genes, in particular those of CTXM ESBLs, in the beef meat, with the risk of their transmission to humans through food chain.
Collapse
Affiliation(s)
- Nesrine Rebbah
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| | - Yamina Messai
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| | - Pierre Châtre
- 2 Unité Antibiorésistance et Virulence Bactériennes, Université Lyon-ANSES Site de Lyon , Lyon, France
| | - Marisa Haenni
- 2 Unité Antibiorésistance et Virulence Bactériennes, Université Lyon-ANSES Site de Lyon , Lyon, France
| | - Jean Yves Madec
- 2 Unité Antibiorésistance et Virulence Bactériennes, Université Lyon-ANSES Site de Lyon , Lyon, France
| | - Rabah Bakour
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| |
Collapse
|
32
|
Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 2017; 72:3016-3024. [PMID: 28962020 PMCID: PMC5890708 DOI: 10.1093/jac/dkx270] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/12/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To determine whether the spectrum of mutations in marR in ciprofloxacin-resistant clinical isolates of Escherichia coli shows evidence of selection bias, either to reduce fitness costs, or to increase drug resistance. MarR is a repressor protein that regulates, via MarA, expression of the Mar regulon, including the multidrug efflux pump AcrAB-TolC. METHODS Isogenic strains carrying 36 different marR alleles identified in resistant clinical isolates, or selected for resistance in vitro, were constructed. Drug susceptibility and relative fitness in growth competition assays were measured for all strains. The expression level of marA, and of various efflux pump components, as a function of specific mutations in marR, was measured by qPCR. RESULTS The spectrum of genetic alterations in marR in clinical isolates is strongly biased against inactivating mutations. In general, the alleles found in clinical isolates conferred a lower level of resistance and imposed a lower growth fitness cost than mutations selected in vitro. The level of expression of MarA correlated well with the MIC of ciprofloxacin. This supports the functional connection between mutations in marR and reduced susceptibility to ciprofloxacin. CONCLUSIONS Mutations in marR selected in ciprofloxacin-resistant clinical isolates are strongly biased against inactivating mutations. Selection favours mutant alleles that have the lowest fitness costs, even though these cause only modest reductions in drug susceptibility. This suggests that selection for high relative fitness is more important than selection for increased resistance in determining which alleles of marR will be selected in resistant clinical isolates.
Collapse
Affiliation(s)
- Lisa Praski Alzrigat
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center Box 582, Husargatan 3, S-75123 Uppsala, Sweden
| |
Collapse
|
33
|
Huseby DL, Pietsch F, Brandis G, Garoff L, Tegehall A, Hughes D. Mutation Supply and Relative Fitness Shape the Genotypes of Ciprofloxacin-Resistant Escherichia coli. Mol Biol Evol 2017; 34:1029-1039. [PMID: 28087782 PMCID: PMC5400412 DOI: 10.1093/molbev/msx052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ciprofloxacin is an important antibacterial drug targeting Type II topoisomerases, highly active against Gram-negatives including Escherichia coli. The evolution of resistance to ciprofloxacin in E. coli always requires multiple genetic changes, usually including mutations affecting two different drug target genes, gyrA and parC. Resistant mutants selected in vitro or in vivo can have many different mutations in target genes and efflux regulator genes that contribute to resistance. Among resistant clinical isolates the genotype, gyrA S83L D87N, parC S80I is significantly overrepresented suggesting that it has a selective advantage. However, the evolutionary or functional significance of this high frequency resistance genotype is not fully understood. By combining experimental data and mathematical modeling, we addressed the reasons for the predominance of this specific genotype. The experimental data were used to model trajectories of mutational resistance evolution under different conditions of drug exposure and population bottlenecks. We identified the order in which specific mutations are selected in the clinical genotype, showed that the high frequency genotype could be selected over a range of drug selective pressures, and was strongly influenced by the relative fitness of alternative mutations and factors affecting mutation supply. Our data map for the first time the fitness landscape that constrains the evolutionary trajectories taken during the development of clinical resistance to ciprofloxacin and explain the predominance of the most frequently selected genotype. This study provides strong support for the use of in vitro competition assays as a tool to trace evolutionary trajectories, not only in the antibiotic resistance field.
Collapse
Affiliation(s)
- Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Franziska Pietsch
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Linnéa Garoff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Angelica Tegehall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Chantziaras I, Smet A, Haesebrouck F, Boyen F, Dewulf J. Studying the effect of administration route and treatment dose on the selection of enrofloxacin resistance in commensal Escherichia coli in broilers. J Antimicrob Chemother 2017; 72:1991-2001. [DOI: 10.1093/jac/dkx104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
|
35
|
Plasmidic qnr Genes Confer Clinical Resistance to Ciprofloxacin under Urinary Tract Physiological Conditions. Antimicrob Agents Chemother 2017; 61:AAC.02615-16. [PMID: 28096153 DOI: 10.1128/aac.02615-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli variants expressing plasmid-mediated qnr genes are usually susceptible to fluoroquinolones by standard susceptibility testing. Here we show that, under specific urinary tract physiological conditions, susceptible laboratory and clinical strains harboring qnr determinants become fully resistant to ciprofloxacin (CIP). Therefore, physiological conditions, mainly urine pH values, should be considered when performing susceptibility testing of CIP activity against E. coli in treating urinary tract infection (UTI) and for selecting appropriate antibiotics for UTI treatment.
Collapse
|
36
|
Rise in Haemophilus influenzae With Reduced Quinolone Susceptibility and Development of a Simple Screening Method. Pediatr Infect Dis J 2017; 36:263-266. [PMID: 27870809 DOI: 10.1097/inf.0000000000001415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND β-Lactamase-nonproducing ampicillin-resistant Haemophilus influenzae are prevalent in Japan. Resistance has increased as a consequence of the expanded use of antimicrobial agents, raising concerns about the rise of multidrug (macrolide and fluoroquinolone)-resistant H. influenzae. METHODS In this study, we investigated susceptibility to fluoroquinolones in H. influenzae clinical isolates from 2013 to 2014 and identified the amino acid substitutions in quinolone resistance-determining regions of gyrA and parC. RESULTS All isolates (n = 145) were susceptible to fluoroquinolones; however, some showed reduced susceptibility. The minimum inhibitory concentration of levofloxacin for these strains was 0.063-0.5 µg/mL, and the strains harbored the amino acid substitution S84L in GyrA. Such strains have seen a significant increase. Importantly, all mutants from 2014 were isolated from pediatric patients. In addition, we developed a simple polymerase chain reaction-based screening method for detecting isolates with reduced fluoroquinolone susceptibility. CONCLUSIONS The mutation in GyrA is important as a first step in the development of fluoroquinolone resistance. Hence, detection of reduced susceptible strains may influence the choice of antimicrobial treatment.
Collapse
|
37
|
The role of parC, parE, and qnrB Genes in Ciprofloxacin-Resistant Escherichia coli Isolates from Urinary Tract Infections. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2017. [DOI: 10.5812/pedinfect.41504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
[STUDY OF NEW ORAL QUINOLONES (LEVOFLOXACIN AND SITAFLOXACIN) AS PROPHYLACTIC ANTIMICROBIAL AGENTS IN TRANSRECTAL PROSTATE NEEDLE BIOPSY]. Nihon Hinyokika Gakkai Zasshi 2017; 108:123-127. [PMID: 30033974 DOI: 10.5980/jpnjurol.108.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
(Objective) A single prophylactic dose of new quinolones is recommended to prevent infection associated with transrectal prostate needle biopsy (TRPB), except in high-risk patients, and a single dose of levofloxacin (LVFX) 500 mg is often administered. We examined single administrations of LVFX and sitafloxacin (STFX), in relation to the frequency of febrile infection. (Patients and methods) The subjects were 411 patients deemed to be suitable candidates for TRPB and ranging in age from 52 to 84 years (median, 75 years). Their PSA values ranged from 3.89 to 2,450 ng/mL (median, 6.92 ng/mL). They were randomly assigned to receive LVFX (group A, 204 patients) or STFX (group B, 207 patients), and the two groups were compared for the incidence of infection with a temperature of 38°C or more within 48 hours after TRPB. (Results) Febrile infection was observed in 8 (3.92%) of the 204 patients in group A and 1 (0.48%) of the 207 patients in group B. Of the 9 patients with febrile infection, 8 had acute prostatitis. There was a significant difference in the incidences of febrile infection between the two groups (p = 0.041; odds ratio, 8.41; 95% confidence interval, 1.04-67.85). The pathogenic bacteria in the 9 patients were Escherichia coli in 7 (Extended-spectrum beta-lactamase [ESBL]-producing bacteria in 3, LVFX-resistant bacteria in 2), Klebsiella pneumoniae in one, and Enterococcus faecalis in one. (Discussion) Measures against quinolone-resistant bacteria, ESBL-producing bacteria, and gram-positive bacteria should be considered for the prevention of infections associated with TRPB. Based on our present observations, STFX is considered to have more favorable effects than LVFX.
Collapse
|
39
|
Del Rio-Avila C, Rosario C, Arroyo-Escalante S, Carrillo-Casas EM, Díaz-Aparicio E, Suarez-Güemes F, Silva-Sanchez J, Xicohtencatl-Cortes J, Maravilla P, Hernández-Castro R. Characterisation of quinolone-resistant Escherichia coli of 1997 and 2005 isolates from poultry in Mexico. Br Poult Sci 2016; 57:494-500. [DOI: 10.1080/00071668.2016.1187716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- C. Del Rio-Avila
- División de Estudios de Posgrado, Posgrado en Ciencias de la Salud y Producción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacan, México
| | - C. Rosario
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacan, México
| | - S. Arroyo-Escalante
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Tlalpan, México
| | - E. M. Carrillo-Casas
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Tlalpan, México
| | - E. Díaz-Aparicio
- Departamento de Enfermedades en Pequeños Rumiantes, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa, México
| | - F. Suarez-Güemes
- Departamento de Microbiología e Inmunología, Universidad Nacional Autónoma de México, Coyoacan, México
| | - J. Silva-Sanchez
- Departamento de Diagnóstico Epidemiológico, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - J. Xicohtencatl-Cortes
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México, Cuauhtémoc, México
| | - P. Maravilla
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Tlalpan, México
| | - R. Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Tlalpan, México
| |
Collapse
|
40
|
Gopal M, Elumalai S, Arumugam S, Durairajpandian V, Kannan MA, Selvam E, Seetharaman S. GyrA ser83 and ParC trp106 Mutations in Salmonella enterica Serovar Typhi Isolated from Typhoid Fever Patients in Tertiary Care Hospital. J Clin Diagn Res 2016; 10:DC14-8. [PMID: 27630841 DOI: 10.7860/jcdr/2016/17677.8153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/01/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Typhoid fever is endemic in India and other developing countries, causing major public health problems with high morbidity and mortality. The resistance of Salmonella enterica serovar Typhi (S. Typhi) towards commonly prescribed antimicrobials is increasing in developing countries. However, there have been several reports of the therapeutic failure of fluoroquinolones in patients with Salmonella infection. Resistance to quinolones/ fluoroquinolones commonly arises due to target site mutation. AIM The present study was planned to analyze mutation in Quinolone Resistance Determining Region (QRDR) of quinolone resistant Salmonella isolates. MATERIALS AND METHODS A total of 133 S. Typhi isolates (blood (n = 131), stool (n=1) and bone marrow aspirate (n=1)) from tertiary care hospitals in Chennai and Puducherry, were included in this study. Minimum Inhibitory Concentrations (MIC) were carried out according to the Clinical Laboratory Standard Institute (CLSI)guidelines 2014. Mutations in gyrA and parC genes were analyzed by PCR-RFLP (Restriction Fragment Length Polymorphism) method followed by DNA sequencing. RESULTS Of the 133 S. Typhi, 99.2% were resistant to nalidixic acid and 21% were resistant to ciprofloxacin by MIC method. 94% of isolates showed Ser 83 mutation in gyrA and 21.8% of isolates showed Trp106-Gly mutation in parC. CONCLUSION Mutations in gyrA and parC genes are highly prevalent among Salmonella species. Irrational use of fluoroquinolones may increase the accumulation of mutations in the DNA gyrase and topoisomerase encoding genes, which lead to the emergence of high level fluoroquinolone-resistant Salmonella strains in future.
Collapse
Affiliation(s)
- Muthu Gopal
- Scientist-C, Model Rural Health Research Unit, National Institute of Epidemiology (ICMR), Primary Health Centre , Nadukallur, Tirunelveli, Tamil Nadu, India
| | - Sathishkumar Elumalai
- Research Scholar, Department of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras , Taramani, Chennai, India
| | - Suresh Arumugam
- Scientist-C, Centre for Drug Discovery and Development, Sathyabama University , Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, India
| | - Vishnuprabu Durairajpandian
- Scientist, National Hub for Healthcare Instrumentation Development, Centre for Biotechnology, Anna University , Chennai, India
| | - Munirajan Arasambattu Kannan
- Professor, Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras , Taramani, Chennai, India
| | - Esthermary Selvam
- Specialist Cum Head of Department of Microbiology, ESIC Hospital , K.K.Nagar, Chennai, Tamil Nadu, India
| | - Srivani Seetharaman
- Assistant Professor, Department of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras , Taramani, Chennai, India
| |
Collapse
|
41
|
Paul-Satyaseela M, Murali S, Thirunavukkarasu B, Naraharirao MH, Jambulingam M. Characterization of Antibiotic Resistance Profiles of Ocular Enterobacteriaceae Isolates. Eur J Microbiol Immunol (Bp) 2016; 6:40-8. [PMID: 27141313 PMCID: PMC4838984 DOI: 10.1556/1886.2015.00047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
Emergence of extended-spectrum β-lactamase (ESBL) and fluoroquinolone resistance among ocular Enterobacteriaceae is increasing in higher frequency. Therefore, studies are being carried out to understand their multidrug resistance pattern. A total of 101 Enterobacteriaceae isolates recovered from various ocular diseases in a tertiary eye care center at Chennai, India during the period of January 2011 to June 2014 were studied. Forty one randomly chosen isolates were subjected to antibiotic susceptibility by minimum inhibitory concentration (MIC) and genotypic analysis. Of them, 16 were ESBL producers, one was carbapenemase producer and four were resistant to ertapenem which could be due to porin loss associated with AmpC production, and 17 were resistant to fluoroquinolones. Sixteen isolates harbored ESBL genes in which 14 had more than one gene and none of them were positive for blaNDM-1 gene. QNR genes were detected in 18 isolates. ESBL producers were predominantly isolated from conjunctiva. A high degree of ESBL production and fluoroquinolone resistance is seen among the genus Klebsiella sp. Hence, monitoring the rate of ESBL prevalence plays a vital role in the administration of appropriate intravitreal antibiotics to save the vision and also to reduce the development of drug resistance in ocular pathogens.
Collapse
Affiliation(s)
- Maneesh Paul-Satyaseela
- Orchid Chemicals and Pharmaceuticals Ltd., 476/14, OMR, Chennai, India; Samrud Foundation for Health and Research, Bengaluru 560 001, India; St. Martha's Hospital, 5, Nrupatunga Road, Bengaluru 560 001, India
| | - Sowmiya Murali
- L&T Microbiology Research Center, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation, Chennai, India; Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | | | - Madhavan Hajib Naraharirao
- L&T Microbiology Research Center, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation , Chennai, India
| | - Malathi Jambulingam
- L&T Microbiology Research Center, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation , Chennai, India
| |
Collapse
|
42
|
Fàbrega A, Ballesté-Delpierre C, Vila J. Differential impact of ramRA mutations on both ramA transcription and decreased antimicrobial susceptibility in Salmonella Typhimurium. J Antimicrob Chemother 2015; 71:617-24. [PMID: 26679248 DOI: 10.1093/jac/dkv410] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/03/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES This study was focused on analysing the heterogeneity of mutations occurring in the regulators of efflux-mediated MDR in Salmonella Typhimurium. Moreover, the impact of such mutations on impairing the transcription of ramA, acrB, tolC and acrF was also assessed as was the impact on the resistance or decreased susceptibility phenotype. METHODS Strains were selected in vitro under increasing ciprofloxacin concentrations. Etest and broth microdilution tests were used to determine the MICs of several unrelated compounds. Screening of mutations in the quinolone target genes and MDR regulators was performed. RT-PCR analysis was used to detect the levels of expression of acrB, tolC, ompF, acrF, emrB, acrR, ramA, soxS and marA. RESULTS All mutant strains showed increased MICs of most of the antimicrobials tested, with the exception of kanamycin. Mutations in the quinolone target genes did not occur in all the mutants, which all harboured mutations in the ramRA regulatory region. All the mutants overexpressed ramA, tolC and acrB (only tested in 60-wt derivatives), whereas differential results were seen for the remaining genes. CONCLUSIONS Mutations in the ramRA region related to resistance and/or decreased susceptibility to antimicrobials predominate in Salmonella. There is heterogeneity in the types of mutations, with deletions affecting RamR-binding sites having a greater impact on ramA expression and the MDR phenotype.
Collapse
Affiliation(s)
- Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Itoh K, Kuramoto Y, Amano H, Kazamori D, Yazaki A. Discovery of WQ-3810: Design, synthesis, and evaluation of 7-(3-alkylaminoazetidin-1-yl)fluoro-quinolones as orally active antibacterial agents. Eur J Med Chem 2015; 103:354-60. [DOI: 10.1016/j.ejmech.2015.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
44
|
Varela AR, Macedo GN, Nunes OC, Manaia CM. Genetic characterization of fluoroquinolone resistant Escherichia coli from urban streams and municipal and hospital effluents. FEMS Microbiol Ecol 2015; 91:fiv015. [PMID: 25764463 DOI: 10.1093/femsec/fiv015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli with reduced susceptibility to ciprofloxacin, isolated from urban streams, wastewater treatment plants and hospital effluent between 2004 and 2012, were compared based on multilocus sequence typing (MLST), quinolone and beta-lactam resistance determinants and plasmid replicon type. Isolates from the different types of water and isolation dates clustered together, suggesting the persistence and capacity to propagate across distinct aquatic environments. The most prevalent MLST groups were ST10 complex and ST131. Almost all isolates (98%) carried mutations in the chromosomal genes gyrA and/or parC, and 10% possessed the genes qepA, aac(6('))-Ib-cr and/or qnrS1. Over 80% of the isolates were resistant to three or more classes of antibiotics (MDR ≥ 3). The most prevalent beta-lactamase encoding gene was blaTEM, followed by blaCTX-M-15, co-existing with plasmid mediated quinolone resistance. The plasmid replicon types of the group IncF were the most prevalent and distributed by different MLST groups. The genes aac(6('))-Ib-cr and/or qnrS1 could be transferred by conjugation in combination with the genes blaTEM,blaSHV-12 or blaOXA-1 and the plasmid replicon types I1-Iγ, K, HI2 and/or B/O. The potential of multidrug resistant E. coli with reduced susceptibility to ciprofloxacin, harboring mobile genetic elements and with ability to conjugate and transfer resistance genes, to spread and persist across different aquatic environments was demonstrated.
Collapse
Affiliation(s)
- Ana Rita Varela
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Gonçalo N Macedo
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| |
Collapse
|
45
|
Zayed AAF, Essam TM, Hashem AGM, El-Tayeb OM. 'Supermutators' found amongst highly levofloxacin-resistant E. coli isolates: a rapid protocol for the detection of mutation sites. Emerg Microbes Infect 2015; 4:e4. [PMID: 26038761 PMCID: PMC4317672 DOI: 10.1038/emi.2015.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 11/09/2022]
Abstract
Fluoroquinolone resistance is gradually acquired through several mechanisms. In particular, chromosomal mutations in the genes encoding topoisomerases II and IV and increased expression of the multidrug efflux pump AcrAB-TolC are the most common mechanisms. In this study, multiplex polymerase chain reaction (PCR) protocols were designed for high-throughput sequencing of the quinolone resistance determining regions of topoisomerases genes (gyrA, parC and parE) and/or the expression regulation systems of multidrug efflux pump AcrAB (acrRAB, marRAB and soxSR). These protocols were applied to sequence samples from five subpopulations of 103 clinical Escherichia coli isolates. These subpopulations were classified according to their levofloxacin susceptibility pattern as follows: highly resistant (HR), resistant (R), intermediate (I), reduced susceptibility (RS) and susceptible (S). All HR isolates had mutations in the six genes surveyed, with two ‘supermutator' isolates harboring 13 mutations in these six genes. Strong associations were observed between mutations in acrR and HR isolates, parE and R/HR isolates and parC and I/R/HR isolates, whereas surprisingly, gyrA mutations were common in RS/I/R/HR isolates. Further investigation revealed that strong associations were limited to the triple mutations gyrA-S83L/D87N/R237H and HR isolates and the double mutations S83L/D87N and I/R/HR isolates, whereas the single mutation S83L was common in RS/I/R/HR isolates. Interestingly, two novel mutations (gyrA-R237H and acrR-V29G) were located and found to strongly associate with HR isolates. To the best of our knowledge, the gyrA-R237H and acrR-V29G mutations have never been reported and require further investigation to determine their exact role in resistance or ‘fitness' as defined by their ability to compensate for the organismal cost of gaining resistance.
Collapse
Affiliation(s)
- Ahmed Abdel-Fattah Zayed
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ahram Canadian University , 6th of October City 12566, Egypt
| | - Tamer Mohamed Essam
- Department of Microbiology and Immunology and Biotechnology Centre, Faculty of Pharmacy, Cairo University , Cairo 11562, Egypt
| | - Abdel-Gawad Mohamed Hashem
- Department of Microbiology and Immunology and Biotechnology Centre, Faculty of Pharmacy, Cairo University , Cairo 11562, Egypt
| | - Ossama Mohamed El-Tayeb
- Department of Microbiology and Immunology and Biotechnology Centre, Faculty of Pharmacy, Cairo University , Cairo 11562, Egypt
| |
Collapse
|
46
|
Goto K, Kawamura K, Arakawa Y. Contribution of QnrA, a Plasmid-Mediated Quinolone Resistance Peptide, to Survival of Escherichia coli Exposed to a Lethal Ciprofloxacin Concentration. Jpn J Infect Dis 2015; 68:196-202. [DOI: 10.7883/yoken.jjid.2014.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Goto
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine
| | - Kumiko Kawamura
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine
| |
Collapse
|
47
|
Organic or Antibiotic-Free Labeling Does Not Impact the Recovery of Enteric Pathogens and Antimicrobial-ResistantEscherichia colifrom Fresh Retail Chicken. Foodborne Pathog Dis 2014; 11:920-9. [DOI: 10.1089/fpd.2014.1808] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
48
|
Strand L, Jenkins A, Henriksen IH, Allum AG, Grude N, Kristiansen BE. High levels of multiresistance in quinolone resistant urinary tract isolates of Escherichia coli from Norway; a non clonal phenomen? BMC Res Notes 2014; 7:376. [PMID: 24941949 PMCID: PMC4077835 DOI: 10.1186/1756-0500-7-376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The problem of emerging ciprofloxacin resistance is compounded by its frequent association with multiresistance, the reason for which is not fully understood. In this study we compare multiresistance, clonal similarities and phylogenetic group in urinary tract isolates of Escherichia coli sensitive and resistant to the quinolone antimicrobials nalidixic acid and ciprofloxacin. RESULTS Quinolone resistant isolates were more resistant to non-quinolone antibiotics than sensitive isolates, with resistance to ampicillin, mecillinam, sulphonamide, trimethoprim, tetracycline, kanamycin and chloramphenicol significantly increased. Fifty-one percent of quinolone-resistant isolates were multiresistant. Although multiresistance was most prevalent (63%) in isolates showing high-level ciprofloxacin resistance, it was still highly prevalent (41%) in nalidixic acid resistant isolates with low-level ciprofloxacin resistance. Multiresistance was more frequent among singleton isolates (61%) than clonal isolates (40%) of quinolone resistant Escherichia coli. Ciprofloxacin resistance was associated with certain specific clones, among them the globally distributed clonal Group A. However, there was no significant difference in the overall degree of clonality between quinolone sensitive and resistant isolates. Ciprofloxacin resistance was positively associated with phylogroup D and negatively associated with phylogroup B2. This correlation was not associated with clonal isolates. CONCLUSION This study supports earlier findings of association between ciprofloxacin resistance and resistance to other antibiotics. The prevalence of multiresistance in quinolone-resistant isolates that have not yet developed high-level ciprofloxacin resistance suggest that multiresistance arises early in the development of quinolone resistance. This is consistent with exposure to quinolones causing quinolone resistance by mutations and mobilization of multiresistance elements by induction of the SOS response. The spread of clones seems to be less important than previously reported in regard to emergence of quinolone resistance and multiresistance as both are associated primarily with singleton isolates.
Collapse
|
49
|
Huang K, Xu CW, Zeng B, Xia QQ, Zhang AY, Lei CW, Guan ZB, Cheng H, Wang HN. Dynamics of quinolone resistance in fecal Escherichia coli of finishing pigs after ciprofloxacin administration. J Vet Med Sci 2014; 76:1213-8. [PMID: 24919413 PMCID: PMC4197147 DOI: 10.1292/jvms.14-0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escherichia coli resistance to quinolones has now become a serious issue in large-scale pig farms of China. It is necessary to study the dynamics of quinolone resistance in fecal Escherichia coli of pigs after antimicrobial administration. Here, we present the hypothesis that the emergence of resistance in pigs requires drug accumulation for 7 days or more. To test this hypothesis, 26 pigs (90 days old, about 30 kg) not fed any antimicrobial after weaning were selected and divided into 2 equal groups: the experimental (EP) group and control (CP) group. Pigs in the EP group were orally treated daily with 5 mg ciprofloxacin/kg of body weight for 30 days, and pigs in the CP group were fed a normal diet. Fresh feces were collected at 16 time points from day 0 to day 61. At each time point, ten E. coli clones were tested for susceptibility to quinolones and mutations of gyrA and parC. The results showed that the minimal inhibitory concentration (MIC) for ciprofloxacin increased 16-fold compared with the initial MIC (0.5 µg/ml) after ciprofloxacin administration for 3 days and decreased 256-fold compared with the initial MIC (0.5 µg/ml) after ciprofloxacin withdrawal for 26 days. GyrA (S83L, D87N/ D87Y) and parC (S80I) substitutions were observed in all quinolone-resistant E. coli (QREC) clones with an MIC ≥8 µg/ml. This study provides scientific theoretical guidance for the rational use of antimicrobials and the control of bacterial resistance.
Collapse
Affiliation(s)
- Kang Huang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, Sichuan 610064, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rohmer L, Jacobs MA, Brittnacher MJ, Fong C, Hayden HS, Hocquet D, Weiss EJ, Radey M, Germani Y, Talukder KA, Hager AJ, Kemner JM, Sims-Day EH, Matamouros S, Hager KR, Miller SI. Genomic analysis of the emergence of 20th century epidemic dysentery. BMC Genomics 2014; 15:355. [PMID: 24886041 PMCID: PMC4038718 DOI: 10.1186/1471-2164-15-355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/15/2014] [Indexed: 12/02/2022] Open
Abstract
Background Shigella dysenteriae type 1 (Sd1) causes recurrent epidemics of dysentery associated with high mortality in many regions of the world. Sd1 infects humans at very low infectious doses (10 CFU), and treatment is complicated by the rapid emergence of antibiotic resistant Sd1 strains. Sd1 is only detected in the context of human infections, and the circumstances under which epidemics emerge and regress remain unknown. Results Phylogenomic analyses of 56 isolates collected worldwide over the past 60 years indicate that the Sd1 clone responsible for the recent pandemics emerged at the turn of the 20th century, and that the two world wars likely played a pivotal role for its dissemination. Several lineages remain ubiquitous and their phylogeny indicates several recent intercontinental transfers. Our comparative genomics analysis reveals that isolates responsible for separate outbreaks, though closely related to one another, have independently accumulated antibiotic resistance genes, suggesting that there is little or no selection to retain these genes in-between outbreaks. The genomes appear to be subjected to genetic drift that affects a number of functions currently used by diagnostic tools to identify Sd1, which could lead to the potential failure of such tools. Conclusions Taken together, the Sd1 population structure and pattern of evolution suggest a recent emergence and a possible human carrier state that could play an important role in the epidemic pattern of infections of this human-specific pathogen. This analysis highlights the important role of whole-genome sequencing in studying pathogens for which epidemiological or laboratory investigations are particularly challenging. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-355) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laurence Rohmer
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|