1
|
Gobeil SMC, Clouthier CM, Park J, Gagné D, Berghuis AM, Doucet N, Pelletier JN. Maintenance of native-like protein dynamics may not be required for engineering functional proteins. ACTA ACUST UNITED AC 2014; 21:1330-1340. [PMID: 25200606 DOI: 10.1016/j.chembiol.2014.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 06/27/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022]
Abstract
Proteins are dynamic systems, and understanding dynamics is critical for fully understanding protein function. Therefore, the question of whether laboratory engineering has an impact on protein dynamics is of general interest. Here, we demonstrate that two homologous, naturally evolved enzymes with high degrees of structural and functional conservation also exhibit conserved dynamics. Their similar set of slow timescale dynamics is highly restricted, consistent with evolutionary conservation of a functionally important feature. However, we also show that dynamics of a laboratory-engineered chimeric enzyme obtained by recombination of the two homologs exhibits striking difference on the millisecond timescale, despite function and high-resolution crystal structure (1.05 Å) being conserved. The laboratory-engineered chimera is thus functionally tolerant to modified dynamics on the timescale of catalytic turnover. Tolerance to dynamic variation implies that maintenance of native-like protein dynamics may not be required when engineering functional proteins.
Collapse
Affiliation(s)
- Sophie M C Gobeil
- PROTEO Network, Université Laval, Québec QC G1V 0A6, Canada; Département de Biochimie, Université de Montréal, Montréal QC H3T 1J4, Canada
| | - Christopher M Clouthier
- PROTEO Network, Université Laval, Québec QC G1V 0A6, Canada; Département de Chimie, Université de Montréal, Montréal QC H3T 1J4, Canada
| | - Jaeok Park
- PROTEO Network, Université Laval, Québec QC G1V 0A6, Canada; Department of Biochemistry and Department of Microbiology and Immunology, McGill University, Montreal QC H3G 1Y6, Canada; GRASP Network, McGill University, Montréal QC H3G 1Y6, Canada
| | - Donald Gagné
- PROTEO Network, Université Laval, Québec QC G1V 0A6, Canada; GRASP Network, McGill University, Montréal QC H3G 1Y6, Canada; INRS-Institut Armand-Frappier, Université du Québec, Laval QC H7V 1B7, Canada
| | - Albert M Berghuis
- PROTEO Network, Université Laval, Québec QC G1V 0A6, Canada; Department of Biochemistry and Department of Microbiology and Immunology, McGill University, Montreal QC H3G 1Y6, Canada; GRASP Network, McGill University, Montréal QC H3G 1Y6, Canada
| | - Nicolas Doucet
- PROTEO Network, Université Laval, Québec QC G1V 0A6, Canada; GRASP Network, McGill University, Montréal QC H3G 1Y6, Canada; INRS-Institut Armand-Frappier, Université du Québec, Laval QC H7V 1B7, Canada
| | - Joelle N Pelletier
- PROTEO Network, Université Laval, Québec QC G1V 0A6, Canada; Département de Biochimie, Université de Montréal, Montréal QC H3T 1J4, Canada; Département de Chimie, Université de Montréal, Montréal QC H3T 1J4, Canada; Center for Green Chemistry and Catalysis (CCVC), Montréal QC H3A 0B8, Canada.
| |
Collapse
|
2
|
Morin S, Gagné SM. NMR dynamics of PSE-4 beta-lactamase: an interplay of ps-ns order and mus-ms motions in the active site. Biophys J 2009; 96:4681-91. [PMID: 19486690 DOI: 10.1016/j.bpj.2009.02.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 02/16/2009] [Accepted: 02/25/2009] [Indexed: 10/20/2022] Open
Abstract
The backbone dynamics for the 29.5 kDa class A beta-lactamase PSE-4 is presented. This solution NMR study was performed using multiple field (15)N spin relaxation and amide exchange data in the EX2 regime. Analysis was carried out with the relax program and includes the Lipari-Szabo model-free approach. Showing similarity to the homologous enzyme TEM-1, PSE-4 is very rigid on the ps-ns timescale, although slower mus-ms motions are present for several residues; this is especially true near the active site. However, significant dynamics differences exist between the two homologs for several important residues. Moreover, our data support the presence of a motion of the Omega loop first detected using molecular dynamics simulations on TEM-1. Thus, class A beta-lactamases appear to be a class of highly ordered proteins on the ps-ns timescale despite their efficient catalytic activity and high plasticity toward several different beta-lactam antibiotics. Most importantly, catalytically relevant mus-ms motions are present in the active site, suggesting an important role in catalysis.
Collapse
Affiliation(s)
- Sébastien Morin
- Département de Biochimie et de Microbiologie and PROTEO, Université Laval, Québec, Canada
| | | |
Collapse
|
3
|
Urbach C, Evrard C, Pudzaitis V, Fastrez J, Soumillion P, Declercq JP. Structure of PBP-A from Thermosynechococcus elongatus, a Penicillin-Binding Protein Closely Related to Class A β-Lactamases. J Mol Biol 2009; 386:109-20. [PMID: 19100272 DOI: 10.1016/j.jmb.2008.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
|
4
|
Larios-Sanz M, Travisano M. Experimental evolution of an essential Bacillus gene in an E. coli host. Methods Mol Biol 2009; 532:269-287. [PMID: 19271191 DOI: 10.1007/978-1-60327-853-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The acquisition of foreign genes by HGT potentially greatly speeds up adaptation by allowing faster evolution of beneficial traits. The evolutionary integration of novel genes into host gene expression and physiology is critical for adaptation by HGT, but remains largely unknown. We are exploring the evolutionary consequences of gene acquisition in populations of Escherichia coli in real time. A plasmid bearing the genes necessary for sucrose catabolism was constructed and introduced into a single E. coli genotype. Wild-type E. coli is generally incapable of utilizing sucrose, but E. coli transformants were able to grow on sucrose as a sole carbon and energy source, albeit poorly. Twelve replicate populations were initiated and propagated in sucrose minimal media for 300 generations. Over this time, we observed large fitness improvements in the selected environment. These results demonstrate the potential for HGT to substantially increase microbial niche breadth.
Collapse
Affiliation(s)
- Maia Larios-Sanz
- Department of Biology, University of St. Thomas, Houston, TX, USA
| | | |
Collapse
|
5
|
Doucet N, Savard PY, Pelletier JN, Gagné SM. NMR investigation of Tyr105 mutants in TEM-1 beta-lactamase: dynamics are correlated with function. J Biol Chem 2007; 282:21448-59. [PMID: 17426035 DOI: 10.1074/jbc.m609777200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The existence of coupled residue motions on various time scales in enzymes is now well accepted, and their detailed characterization has become an essential element in understanding the role of dynamics in catalysis. To this day, a handful of enzyme systems has been shown to rely on essential residue motions for catalysis, but the generality of such phenomena remains to be elucidated. Using NMR spectroscopy, we investigated the electronic and dynamic effects of several mutations at position 105 in TEM-1 beta-lactamase, an enzyme responsible for antibiotic resistance. Even in absence of substrate, our results show that the number and magnitude of short and long range effects on (1)H-(15)N chemical shifts are correlated with the catalytic efficiencies of the various Y105X mutants investigated. In addition, (15)N relaxation experiments on mutant Y105D show that several active-site residues of TEM-1 display significantly altered motions on both picosecond-nanosecond and microsecond-millisecond time scales despite many being far away from the site of mutation. The altered motions among various active-site residues in mutant Y105D may account for the observed decrease in catalytic efficiency, therefore suggesting that short and long range residue motions could play an important catalytic role in TEM-1 beta-lactamase. These results support previous observations suggesting that internal motions play a role in promoting protein function.
Collapse
Affiliation(s)
- Nicolas Doucet
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7
| | | | | | | |
Collapse
|
6
|
Meyer MM, Silberg JJ, Voigt CA, Endelman JB, Mayo SL, Wang ZG, Arnold FH. Library analysis of SCHEMA-guided protein recombination. Protein Sci 2003; 12:1686-93. [PMID: 12876318 PMCID: PMC2323955 DOI: 10.1110/ps.0306603] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The computational algorithm SCHEMA was developed to estimate the disruption caused when amino acid residues that interact in the three-dimensional structure of a protein are inherited from different parents upon recombination. To evaluate how well SCHEMA predicts disruption, we have shuffled the distantly-related beta-lactamases PSE-4 and TEM-1 at 13 sites to create a library of 2(14) (16,384) chimeras and examined which ones retain lactamase function. Sequencing the genes from ampicillin-selected clones revealed that the percentage of functional clones decreased exponentially with increasing calculated disruption (E = the number of residue-residue contacts that are broken upon recombination). We also found that chimeras with low E have a higher probability of maintaining lactamase function than chimeras with the same effective level of mutation but chosen at random from the library. Thus, the simple distance metric used by SCHEMA to identify interactions and compute E allows one to predict which chimera sequences are most likely to retain their function. This approach can be used to evaluate crossover sites for recombination and to create highly mosaic, folded chimeras.
Collapse
Affiliation(s)
- Michelle M Meyer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
We have developed a simple and general method that allows for the facile recombination of distantly related (or unrelated) proteins at multiple discrete sites. To evaluate the sequence-independent site-directed chimeragenesis (SISDC) method, we have recombined beta-lactamases TEM-1 and PSE-4 at seven sites, examined the quality of the chimeric genes created, and screened the library of 2(8) (256) chimeras for functional enzymes. Probe hybridization and sequencing analyses revealed that SISDC generated a random library with little sequence bias and in which all targeted fragments were recombined in the desired order. Sequencing the genes from clones having functional lactamases identified 14 unique chimeras. These chimeras are characterized by a lower level of disruption, as calculated by the SCHEMA algorithm, than the library as a whole. These results illustrate the use of SISDC in creating designed chimeric protein libraries and further illustrate the ability of SCHEMA to identify chimeras whose folded structures are likely not to be disrupted by recombination.
Collapse
Affiliation(s)
- Kaori Hiraga
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
8
|
Sanschagrin F, Thériault E, Sabbagh Y, Voyer N, Levesque RC. Combinatorial biochemistry and shuffling of TEM, SHV and Streptomyces albus omega loops in PSE-4 class A beta-lactamase. J Antimicrob Chemother 2000; 45:517-20. [PMID: 10747830 DOI: 10.1093/jac/45.4.517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The class A PSE-4 beta-lactamase was used for studying the importance of amino acids in the omega (Omega) loop and its interactions for hydrolysis of beta-lactam antibiotics. By cassette mutagenesis, we replaced the amino acids 163-179 Omega loop in PSE-4 with TEM-1, SHV-1 and Streptomyces albus G beta-lactamase Omega loops. Phenotypic analysis of Escherichia coli recombinants expressing the Omega loop PSE-4 mutant enzymes gave MICs and kinetic data similar to those of wild-type PSE-4.
Collapse
Affiliation(s)
- F Sanschagrin
- Microbiologie Moléculaire & Génie des Protéines, Sciences de la Vie et de la Santé, Faculté de Médecine, Pavillon Charles-Eugène Marchand, Université Laval, Canada
| | | | | | | | | |
Collapse
|
9
|
Yang Y, Rasmussen BA, Shlaes DM. Class A beta-lactamases--enzyme-inhibitor interactions and resistance. Pharmacol Ther 1999; 83:141-51. [PMID: 10511459 DOI: 10.1016/s0163-7258(99)00027-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Beta-Lactamases of Ambler's Class A are the most commonly encountered mechanism of bacterial resistance to beta-lactam antibiotics. In the face of selective pressure arising from use of either newer cephalosporins or beta-lactam/beta-lactamase inhibitor combinations, mutations arose among Class A beta-lactamase genes, leading to resistance. Clavulanic acid, a naturally occurring clavam, and the penicillanic acid sulfones sulbactam and tazobactam are the inhibitors in clinical use. This review focuses on the mechanism of inhibition by these currently marketed beta-lactamase inhibitors and on the mechanism by which specific amino acid substitutions might lead to resistance. The key amino acid positions important for inhibitor-resistance include Met69, Ser130, Arg244, Arg275, and Asn276. Ser130 is vital to the chemical mechanism of inhibition. Arg244 appears to be coordinated to Arg275 and Asp276 by hydrogen bonds. Arg244 is involved in positioning beta-lactams, especially penicillins and beta-lactamase inhibitors, via their carboxyl groups. Site-directed mutagenesis studies confirm the role of Arg244 and its coordinating partners in beta-lactam turnover and in the reactions leading to enzyme inactivation. This mechanism is dependent on the donation of a proton via a water coordinated to Arg244 and Val216 to clavulanic acid to allow formation of a favorable leaving group. This proton donation is probably not required for formation of a favorable leaving group for the sulfone inhibitors sulbactam and tazobactam. Therefore, some amino acid substitutions have differing effects on inhibition by clavulanic acid compared with the penicillanic acid sulfones. Met69 may play a more structural role in beta-lactam positioning within the oxyanion hole.
Collapse
Affiliation(s)
- Y Yang
- Wyeth-Ayerst Research, Pearl River, NY 10965, USA
| | | | | |
Collapse
|