1
|
Dabouei A, Mishra I, Kapur K, Cao C, Bridges AA, Xu M. Deep Video Analysis for Bacteria Genotype Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613253. [PMID: 39345538 PMCID: PMC11429917 DOI: 10.1101/2024.09.16.613253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Genetic modification of microbes is central to many biotechnology fields, such as industrial microbiology, bioproduction, and drug discovery. Understanding how specific genetic modifications influence observable bacterial behaviors is crucial for advancing these fields. In this study, we propose a supervised model to classify bacteria harboring single gene modifications to draw connections between phenotype and genotype. In particular, we demonstrate that the spatiotemporal patterns of Vibrio cholerae growth, recorded in terms of low-resolution bright-field microscopy videos, are highly predictive of the genotype class. Additionally, we introduce a weakly supervised approach to identify key moments in culture growth that significantly contribute to prediction accuracy. By focusing on the temporal expressions of bacterial behavior, our findings offer valuable insights into the underlying mechanisms and developmental stages by which specific genes control observable phenotypes. This research opens new avenues for automating the analysis of phenotypes, with potential applications for drug discovery, disease management, etc. Furthermore, this work highlights the potential of using machine learning techniques to explore the functional roles of specific genes using a low-resolution light microscope.
Collapse
|
2
|
Alkatheri AH, Yap PSX, Abushelaibi A, Lai KS, Cheng WH, Erin Lim SH. Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics (Basel) 2023; 12:190. [PMID: 36830101 PMCID: PMC9951906 DOI: 10.3390/antibiotics12020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Multidrug resistance (MDR) has become an increasing threat to global health because bacteria can develop resistance to antibiotics over time. Scientists worldwide are searching for new approaches that go beyond traditional antibiotic discovery and development pipelines. Advances in genomics, however, opened up an unexplored therapeutic opportunity for the discovery of new antibacterial agents. Genomic approaches have been used to discover several novel antibiotics that target critical processes for bacterial growth and survival, including histidine kinases (HKs), LpxC, FabI, peptide deformylase (PDF), and aminoacyl-tRNA synthetases (AaRS). In this review, we will discuss the use of microbial genomics in the search for innovative and promising drug targets as well as the mechanisms of action for novel antimicrobial agents. We will also discuss future directions on how the utilization of the microbial genomics approach could improve the odds of antibiotic development having a more successful outcome.
Collapse
Affiliation(s)
- Asma Hussain Alkatheri
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Aisha Abushelaibi
- Office of Campus Director, Abu Dhabi Colleges, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
3
|
Amaning Danquah C, Minkah PAB, Osei Duah Junior I, Amankwah KB, Somuah SO. Antimicrobial Compounds from Microorganisms. Antibiotics (Basel) 2022; 11:285. [PMID: 35326749 PMCID: PMC8944786 DOI: 10.3390/antibiotics11030285] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance is an exigent public health concern owing to the emergence of novel strains of human resistant pathogens and the concurrent rise in multi-drug resistance. An influx of new antimicrobials is urgently required to improve the treatment outcomes of infectious diseases and save lives. Plant metabolites and bioactive compounds from chemical synthesis have found their efficacy to be dwindling, despite some of them being developed as drugs and used to treat human infections for several decades. Microorganisms are considered untapped reservoirs for promising biomolecules with varying structural and functional antimicrobial activity. The advent of cost-effective and convenient model organisms, state-of-the-art molecular biology, omics technology, and machine learning has enhanced the bioprospecting of novel antimicrobial drugs and the identification of new drug targets. This review summarizes antimicrobial compounds isolated from microorganisms and reports on the modern tools and strategies for exploiting promising antimicrobial drug candidates. The investigation identified a plethora of novel compounds from microbial sources with excellent antimicrobial activity against disease-causing human pathogens. Researchers could maximize the use of novel model systems and advanced biomolecular and computational tools in exploiting lead antimicrobials, consequently ameliorating antimicrobial resistance.
Collapse
Affiliation(s)
- Cynthia Amaning Danquah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana;
| | - Prince Amankwah Baffour Minkah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana;
- Global Health and Infectious Disease Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Isaiah Osei Duah Junior
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana;
| | - Kofi Bonsu Amankwah
- Department of Biomedical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana;
| | - Samuel Owusu Somuah
- Department of Pharmacy Practice, School of Pharmacy, University of Health and Allied Sciences, PMB, Ho, Ghana;
| |
Collapse
|
4
|
Chung WY, Zhu Y, Mahamad Maifiah MH, Shivashekaregowda NKH, Wong EH, Abdul Rahim N. Novel antimicrobial development using genome-scale metabolic model of Gram-negative pathogens: a review. J Antibiot (Tokyo) 2020; 74:95-104. [PMID: 32901119 DOI: 10.1038/s41429-020-00366-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance (AMR) threatens the effective prevention and treatment of a wide range of infections. Governments around the world are beginning to devote effort for innovative treatment development to treat these resistant bacteria. Systems biology methods have been applied extensively to provide valuable insights into metabolic processes at system level. Genome-scale metabolic models serve as platforms for constraint-based computational techniques which aid in novel drug discovery. Tools for automated reconstruction of metabolic models have been developed to support system level metabolic analysis. We discuss features of such software platforms for potential users to best fit their purpose of research. In this work, we focus to review the development of genome-scale metabolic models of Gram-negative pathogens and also metabolic network approach for identification of antimicrobial drugs targets.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne, 3800, VIC, Australia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100, Jalan Gombak, Selangor, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | | |
Collapse
|
5
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
6
|
Lv Z, Zhao D, Chang J, Liu H, Wang X, Zheng J, Huang R, Lin Z, Shang Y, Ye L, Wu Y, Han S, Qu D. Anti-bacterial and Anti-biofilm Evaluation of Thiazolopyrimidinone Derivatives Targeting the Histidine Kinase YycG Protein of Staphylococcus epidermidis. Front Microbiol 2017; 8:549. [PMID: 28408903 PMCID: PMC5374206 DOI: 10.3389/fmicb.2017.00549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/16/2017] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus epidermidis is one of the most important opportunistic pathogens in nosocomial infections. The main pathogenicity associated with S. epidermidis involves the formation of biofilms on implanted medical devices, biofilms dramatically decrease the efficacy of conventional antibiotics and the host immune system. This emphasizes the urgent need for designing novel anti-staphylococcal biofilm agents. Based on the findings that compound 5, targeting the histidine kinase domain of S. epidermidis YycG, possessed bactericidal activity against staphylococci, 39 derivatives of compound 5 with intact thiazolopyrimidinone core structures were newly designed, 7 derivatives were further screened to explore their anti-bacterial and anti-biofilm activities. The seven derivatives strongly inhibited the growth of S. epidermidis and Staphylococcus aureus in the minimal inhibitory concentration range of 1.56–6.25 μM. All the derivatives reduced the proportion of viable cells in mature biofilms. They all displayed low cytotoxicity on mammalian cells and were not hemolytic to human erythrocytes. The biofilm inhibition activities of four derivatives (H5-32, H5-33, H5-34, and H5-35) were further investigated under shearing forces, they all led to significant decreases in the biofilm formation of S. epidermidis. These results were suggestive that the seven derivatives of compound 5 have the potential to be developed into agents for eradicating biofilm-associated infections.
Collapse
Affiliation(s)
- Zhihui Lv
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Dan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Jun Chang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan UniversityShanghai, China
| | - Huayong Liu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen UniversityShenzhen, China
| | - Renzheng Huang
- Department of Gastroenterology, Zhongshan Hospital of Fudan UniversityShanghai, China
| | - Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministry of Education and Ministry of Public Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical School of Fudan UniversityShanghai, China
| |
Collapse
|
7
|
Suplatov D, Švedas V. Study of Functional and Allosteric Sites in Protein Superfamilies. Acta Naturae 2015; 7:34-45. [PMID: 26798490 PMCID: PMC4717248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interaction of proteins (enzymes) with a variety of low-molecular-weight compounds, as well as protein-protein interactions, is the most important factor in the regulation of their functional properties. To date, research effort has routinely focused on studying ligand binding to the functional sites of proteins (active sites of enzymes), whereas the molecular mechanisms of allosteric regulation, as well as binding to other pockets and cavities in protein structures, remained poorly understood. Recent studies have shown that allostery may be an intrinsic property of virtually all proteins. Novel approaches are needed to systematically analyze the architecture and role of various binding sites and establish the relationship between structure, function, and regulation. Computational biology, bioinformatics, and molecular modeling can be used to search for new regulatory centers, characterize their structural peculiarities, as well as compare different pockets in homologous proteins, study the molecular mechanisms of allostery, and understand the communication between topologically independent binding sites in protein structures. The establishment of an evolutionary relationship between different binding centers within protein superfamilies and the discovery of new functional and allosteric (regulatory) sites using computational approaches can improve our understanding of the structure-function relationship in proteins and provide new opportunities for drug design and enzyme engineering.
Collapse
Affiliation(s)
- D. Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Vorobjev hills 1-40, Moscow 119991, Russia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Vorobjev hills 1 -73, 119991, Moscow, Russia
| | - V. Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Vorobjev hills 1-40, Moscow 119991, Russia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Vorobjev hills 1 -73, 119991, Moscow, Russia
| |
Collapse
|
8
|
Bansal AK. Role of bioinformatics in the development of new antibacterial therapy. Expert Rev Anti Infect Ther 2014; 6:51-65. [DOI: 10.1586/14787210.6.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
10
|
Sarker M, Talcott C, Madrid P, Chopra S, Bunin BA, Lamichhane G, Freundlich JS, Ekins S. Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis. Pharm Res 2012; 29:2115-27. [PMID: 22477069 DOI: 10.1007/s11095-012-0741-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 03/16/2012] [Indexed: 11/29/2022]
Abstract
PURPOSE New strategies for developing inhibitors of Mycobacterium tuberculosis (Mtb) are required in order to identify the next generation of tuberculosis (TB) drugs. Our approach leverages the integration of intensive data mining and curation and computational approaches, including cheminformatics combined with bioinformatics, to suggest biological targets and their small molecule modulators. METHODS We now describe an approach that uses the TBCyc pathway and genome database, the Collaborative Drug Discovery database of molecules with activity against Mtb and their associated targets, a 3D pharmacophore approach and Bayesian models of TB activity in order to select pathways and metabolites and ultimately prioritize molecules that may be acting as substrate mimics and exhibit activity against TB. RESULTS In this study we combined the TB cheminformatics and pathways databases that enabled us to computationally search >80,000 vendor available molecules and ultimately test 23 compounds in vitro that resulted in two compounds (N-(2-furylmethyl)-N'-[(5-nitro-3-thienyl)carbonyl]thiourea and N-[(5-nitro-3-thienyl)carbonyl]-N'-(2-thienylmethyl)thiourea) proposed as mimics of D-fructose 1,6 bisphosphate, (MIC of 20 and 40 μg/ml, respectively). CONCLUSION This is a simple yet novel approach that has the potential to identify inhibitors of bacterial growth as illustrated by compounds identified in this study that have activity against Mtb.
Collapse
Affiliation(s)
- Malabika Sarker
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Iwai N, Nakayama K, Kitazume T. Antibacterial activities of imidazolium, pyrrolidinium and piperidinium salts. Bioorg Med Chem Lett 2011; 21:1728-30. [DOI: 10.1016/j.bmcl.2011.01.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
12
|
Abstract
Although there has been a relentless increase in resistance to antimicrobial agents amongst important bacterial pathogens throughout the world, it is well known that the number of new antimicrobial agents being brought to the market has undergone a steady decline in the past several decades. There are a number of reasons for this, which are detailed in this article, but there is also a great deal of continuing research to find new effective antimicrobials, much of it now being carried out in academic centres and especially in small biotechnology companies, rather than by large pharma. Whilst classic screening methods and chemical modification of known antimicrobial agents continue to produce potential leads for new antimicrobial agents, a number of other approaches are being investigated. These include the search for potentiators of the activity of known antimicrobial agents and the development of hybrid agents, novel membrane-active drugs, and inhibitors of bacterial virulence and pathogenesis. A number of new bacterial targets are also being exploited, as are bacteriophages and their lytic enzymes. Given the amount of investigation presently underway, it is clear that although the antibiotic pipeline is not as promising as it was half a century ago, it is far from dry.
Collapse
|
13
|
Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth. J Antibiot (Tokyo) 2010; 63:89-94. [PMID: 20057515 DOI: 10.1038/ja.2009.128] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The WalK (a histidine kinase)/WalR (a response regulator, aka YycG/YycF) two-component system is indispensable in the signal transduction pathway for the cell-wall metabolism of Bacillus subtilis and Staphylococcus aureus. The inhibitors directed against WalK would be expected to have a bactericidal effect. After we screened 1368 culture broths of Streptomyces sp. by a differential growth assay, walkmycin A, B and C, which were produced by strain MK632-100F11, were purified using silica-gel column chromatography and HPLC. In this paper, the chemical structure of the major product (walkmycin B) was determined to be di-anthracenone (C(44)H(44)Cl(2)O(14)), which was very similar to BE40665A. MICs of walkmycin B against B. subtilis and S. aureus were 0.39 and 0.20 microg ml(-1), and IC(50) measurements against WalK were 1.6 and 5.7 microM, respectively. To clarify the affinity between WalK and walkmycin B, surface plasmon resonance was measured to obtain the equilibrium dissociation constant, K(D1), of 7.63 microM at the higher affinity site of B. subtilis WalK. These results suggest that walkmycin B inhibits WalK autophosphorylation by binding to the WalK cytoplasmic domain.
Collapse
|
14
|
Comparison of the essential cellular functions of the two murA genes of Bacillus anthracis. Antimicrob Agents Chemother 2008; 52:2009-13. [PMID: 18378720 DOI: 10.1128/aac.01594-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted antisense and gene replacement mutagenesis experiments demonstrate that only the murA1 gene and not the murA2 gene is required for the normal cellular growth of Bacillus anthracis. Antisense-based modulation of murA1 gene expression hypersensitizes cells to the MurA-specific antibiotic fosfomycin despite the normally high resistance of B. anthracis to this drug.
Collapse
|
15
|
Chua PR, Roof DM, Lee Y, Sakowicz R, Clarke D, Pierce D, Stephens T, Hamilton M, Morgan B, Morgans D, Nakai T, Tomasi A, Maxon ME. Effective killing of the human pathogen Candida albicans by a specific inhibitor of non-essential mitotic kinesin Kip1p. Mol Microbiol 2007; 65:347-62. [PMID: 17573815 PMCID: PMC1976386 DOI: 10.1111/j.1365-2958.2007.05787.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Kinesins from the bipolar (Kinesin-5) family are conserved in eukaryotic organisms and play critical roles during the earliest stages of mitosis to mediate spindle pole body separation and formation of a bipolar mitotic spindle. To date, genes encoding bipolar kinesins have been reported to be essential in all organisms studied. We report the characterization of CaKip1p, the sole member of this family in the human pathogenic yeast Candida albicans. C. albicans Kip1p appears to localize to the mitotic spindle and loss of CaKip1p function interferes with normal progression through mitosis. Inducible excision of CaKIP1 revealed phenotypes unique to C. albicans, including viable homozygous Cakip1 mutants and an aberrant spindle morphology in which multiple spindle poles accumulate in close proximity to each other. Expression of the C. albicans Kip1 motor domain in Escherichia coli produced a protein with microtubule-stimulated ATPase activity that was inhibited by an aminobenzothiazole (ABT) compound in an ATP-competitive fashion. This inhibition results in ‘rigor-like’, tight association with microtubules in vitro. Upon treatment of C. albicans cells with the ABT compound, cells were killed, and terminal phenotype analysis revealed an aberrant spindle morphology similar to that induced by loss of the CaKIP1 gene. The ABT compound discovered is the first example of a fungal spindle inhibitor targeted to a mitotic kinesin. Our results also show that the non-essential nature and implementation of the bipolar motor in C. albicans differs from that seen in other organisms, and suggest that inhibitors of a non-essential mitotic kinesin may offer promise as cidal agents for antifungal drug discovery.
Collapse
Affiliation(s)
- Penelope R Chua
- Cytokinetics, 280 East Grand Avenue, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lerner CG, Hajduk PJ, Wagner R, Wagenaar FL, Woodall C, Gu YG, Searle XB, Florjancic AS, Zhang T, Clark RF, Cooper CS, Mack JC, Yu L, Cai M, Betz SF, Chovan LE, McCall JO, Black-Schaefer CL, Kakavas SJ, Schurdak ME, Comess KM, Walter KA, Edalji R, Dorwin SA, Smith RA, Hebert EJ, Harlan JE, Metzger RE, Merta PJ, Baranowski JL, Coen ML, Thornewell SJ, Shivakumar AG, Saiki AY, Soni N, Bui M, Balli DJ, Sanders WJ, Nilius AM, Holzman TF, Fesik SW, Beutel BA. From Bacterial Genomes to Novel Antibacterial Agents: Discovery, Characterization, and Antibacterial Activity of Compounds that Bind to HI0065 (YjeE) from Haemophilus influenzae. Chem Biol Drug Des 2007; 69:395-404. [PMID: 17581233 DOI: 10.1111/j.1747-0285.2007.00521.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of a fully integrated and comprehensive strategy to discover novel antibacterial agents, NMR- and mass spectrometry-based affinity selection screens were performed to identify compounds that bind to protein targets uniquely found in bacteria and encoded by genes essential for microbial viability. A biphenyl acid lead series emerged from an NMR-based screen with the Haemophilus influenzae protein HI0065, a member of a family of probable ATP-binding proteins found exclusively in eubacteria. The structure-activity relationships developed around the NMR-derived biphenyl acid lead were consistent with on-target antibacterial activity as the Staphylococcus aureus antibacterial activity of the series correlated extremely well with binding affinity to HI0065, while the correlation of binding affinity with B-cell cytotoxicity was relatively poor. Although further studies are needed to conclusively establish the mode of action of the biphenyl series, these compounds represent novel leads that can serve as the basis for the development of novel antibacterial agents that appear to work via an unprecedented mechanism of action. Overall, these results support the genomics-driven hypothesis that targeting bacterial essential gene products that are not present in eukaryotic cells can identify novel antibacterial agents.
Collapse
Affiliation(s)
- Claude G Lerner
- Abbott Global Pharmaceutical Research and Development, Abbott Park, IL 60064-6098, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Osterman AL, Begley TP. A subsystems-based approach to the identification of drug targets in bacterial pathogens. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:131, 133-70. [PMID: 17195474 DOI: 10.1007/978-3-7643-7567-6_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This chapter describes a three-stage approach to target identification based upon subsystem analysis. Subsystems analysis focuses on related metabolic pathways as a unit and is a biochemically-informed approach to target selection. The process involves three stages of analysis; the first stage, selection of the target subsystem, is guided by information about its essentiality and on the predicted vulnerability of the targeted pathway or enzyme to inhibition. The second stage involves analysis of the target subsystem by means of comparative genomics, including genome context analysis and metabolic reconstruction. The third stage evaluates the selection of the specific target genes within the subsystem by target prioritization and validation. The whole process allows for a careful consideration of spectrum, drugability, biological rationale and the metabolic role of the specific target within the context of an integrated circuit within a specific metabolic pathway.
Collapse
Affiliation(s)
- Andrei L Osterman
- Burnham Institute for Medical Research, Infectious and Inflammatory Disease Center, La Jolla, California, USA.
| | | |
Collapse
|
18
|
Fischer HP, Freiberg C. Applications of transcriptional profiling in antibiotics discovery and development. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:21, 23-47. [PMID: 17195470 DOI: 10.1007/978-3-7643-7567-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter will review specific applications of microarray technology and related data analysis strategies in antibacterial research and development. We present examples of microarray applications spanning the entire antibiotics research and development pipeline, from target discovery, assay development, pharmacological evaluation, to compound safety studies. This review emphasizes the utility of microarrays for a systematic evaluation of novel chemistry as antibiotic agents. Transcriptional profiling has revolutionized the process of target elucidation and has the potential to offer substantial guidance in the identification of new targets. Microarrays will continue to be a workhorse of anti-infectives discovery programs ranging from efficacy assessments of antibiotics ('forward pharmacology') to drug safety evaluations ('toxicogenomics').
Collapse
|
19
|
Okada A, Gotoh Y, Watanabe T, Furuta E, Yamamoto K, Utsumi R. Targeting two-component signal transduction: a novel drug discovery system. Methods Enzymol 2007; 422:386-95. [PMID: 17628150 DOI: 10.1016/s0076-6879(06)22019-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed two screening systems for isolating inhibitors that target bacterial two-component signal transduction: (1) a differential growth assay using a temperature-sensitive yycF mutant (CNM2000) of Bacillus subtilis, which is supersensitive to histidine kinase inhibitors, and (2) a high-throughput genetic system for targeting the homodimerization of histidine kinases essential for the bacterial two-component signal transduction. By using these methods, we have been able to identify various types of inhibitors that block the autophosphorylation of histidine kinases with different modes of actions.
Collapse
Affiliation(s)
- Ario Okada
- Department of Bioscience, Kinki University, Nara, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Vicente M, Hodgson J, Massidda O, Tonjum T, Henriques-Normark B, Ron EZ. The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time? FEMS Microbiol Rev 2006; 30:841-52. [PMID: 17064283 DOI: 10.1111/j.1574-6976.2006.00038.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While newly developed technologies have revolutionized the classical approaches to combating infectious diseases, the difficulties associated with developing novel antimicrobials mean that these technologies have not yet been used to introduce new compounds into the market. The new technologies, including genomics and structural biology, open up exciting possibilities for the discovery of antibiotics. However, a substantial effort to pursue research, and moreover to incorporate the results into the production chain, is required in order to bring new antimicrobials to the final user. In the current scenario of emerging diseases and the rapid spread of antibiotic resistance, an active policy to support these requirements is vital. Otherwise, many valuable programmes may never be fully developed for lack of "interest" and funds (private and public). Will we react in time to avoid potential disaster?
Collapse
Affiliation(s)
- Miguel Vicente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Köstner M, Schmidt B, Bertram R, Hillen W. Generating tetracycline-inducible auxotrophy in Escherichia coli and Salmonella enterica serovar Typhimurium by using an insertion element and a hyperactive transposase. Appl Environ Microbiol 2006; 72:4717-25. [PMID: 16820464 PMCID: PMC1489314 DOI: 10.1128/aem.00492-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the construction and application of a novel insertion element for transposase-mediated mutagenesis in gram-negative bacteria. Besides Km(r) as a selectable marker, the insertion element InsTet(G-)1 carries the anhydrotetracycline (atc)-regulated outward-directed PA promoter so that atc-dependent conditional gene knockouts or knockdowns are generated. The complex formed between the purified hyperactive transposase and InsTet(G-)1 was electroporated into Escherichia coli or Salmonella enterica serovar Typhimurium, and mutant pools were collected. We used E. coli strains with either TetR or the reverse variant revTetR(r2), while only TetR was employed in Salmonella. Screening of the InsTet(G-)1 insertion mutant pools revealed 15 atc-regulatable auxotrophic mutants for E. coli and 4 atc-regulatable auxotrophic mutants for Salmonella. We have also screened one Salmonella mutant pool in murine macrophage-like J774-A.1 cells using ampicillin enrichment. Two mutants with the InsTet(G-)1 insertion in the gene pyrE or argA survived this procedure, indicating a reduced intracellular growth rate in J774-A.1 cells. The nature of the mutants and the modes of their regulation are discussed.
Collapse
Affiliation(s)
- Martin Köstner
- Lehrstuhl für Mikrobiologie, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | |
Collapse
|
22
|
Trawick JD, Schilling CH. Use of constraint-based modeling for the prediction and validation of antimicrobial targets. Biochem Pharmacol 2005; 71:1026-35. [PMID: 16329998 DOI: 10.1016/j.bcp.2005.10.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 11/17/2022]
Abstract
The overall process of antimicrobial drug discovery and development seems simple, to cure infectious disease by identifying suitable antibiotic drugs. However, this goal has been difficult to fulfill in recent years. Despite the promise of the high-throughput innovations sparked by the genomics revolution, discovery, and development of new antibiotics has lagged in recent years exacerbating the already serious problem of evolution of antibiotic resistance. Therefore, both new antimicrobials are desperately needed as are improvements to speed up or improve nearly all steps in the process of discovering novel antibiotics and bringing these to clinical use. Another product of the genomic revolution is the modeling of metabolism using computational methodologies. Genomic-scale networks of metabolic reactions based on stoichiometry, thermodynamics and other physico-chemical constraints that emulate microbial metabolism have been developed into valuable research tools in metabolic engineering and other fields. This constraint-based modeling is predictive in identifying critical reactions, metabolites, and genes in metabolism. This is extremely useful in determining and rationalizing cellular metabolic requirements. In turn, these methods can be used to predict potential metabolic targets for antimicrobial research especially if used to increase the confidence in prioritization of metabolic targets. The many different capacities of constraint-based modeling also enable prediction of cellular response to specific inhibitors such as antibiotics and this may, ultimately find a role in drug discovery and development. Herein, we describe the principles of metabolic modeling and how they might initially be applied to antimicrobial research.
Collapse
Affiliation(s)
- John D Trawick
- Genomatica, Inc., 5405 Morehouse Dr., Suite 210, San Diego, CA 92121, USA.
| | | |
Collapse
|
23
|
Trepod CM, Mott JE. Elucidation of essential and nonessential genes in the Haemophilus influenzae Rd cell wall biosynthetic pathway by targeted gene disruption. Antimicrob Agents Chemother 2005; 49:824-6. [PMID: 15673779 PMCID: PMC547210 DOI: 10.1128/aac.49.2.824-826.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted gene disruption by in vitro transposon mutagenesis has been used to identify the genes required for biosynthesis of the Haemophilus influenzae Rd cell wall under standard cultivation conditions. Of the 28 genes known to be associated with the cell wall biosynthetic pathway, 14 were determined to be essential.
Collapse
|
24
|
Gallant P, Finn J, Keith D, Wendler P. The identification of quality antibacterial drug discovery targets: a case study with aminoacyl-tRNA synthetases. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Fischer HP. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:1-68. [PMID: 16216773 DOI: 10.1016/s1387-2656(05)11001-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developing a new drug is a tedious and expensive undertaking. The recently developed high-throughput experimental technologies, summarised by the terms genomics, transcriptomics, proteomics and metabolomics provide for the first time ever the means to comprehensively monitor the molecular level of disease processes. The "-omics" technologies facilitate the systematic characterisation of a drug target's physiology, thereby helping to reduce the typically high attrition rates in discovery projects, and improving the overall efficiency of pharmaceutical research processes. Currently, the bottleneck for taking full advantage of the new experimental technologies are the rapidly growing volumes of automatically produced biological data. A lack of scalable database systems and computational tools for target discovery has been recognised as a major hurdle. In this review, an overview will be given on recent progress in computational biology that has an impact on drug discovery applications. The focus will be on novel in silico methods to reconstruct regulatory networks, signalling cascades, and metabolic pathways, with an emphasis on comparative genomics and microarray-based approaches. Promising methods, such as the mathematical simulation of pathway dynamics are discussed in the context of applications in discovery projects. The review concludes by exemplifying concrete data-driven studies in pharmaceutical research that demonstrate the value of integrated computational systems for drug target identification and validation, screening assay development, as well as drug candidate efficacy and toxicity evaluations.
Collapse
|
26
|
Abstract
Increasing concern about the emergence of resistance in clinically important pathogens has led to the establishment of a number of surveillance programmes to monitor the true extent of resistance at the local, regional and national levels. Although some programmes have been operating for several years, their true usefulness is only now being realised. This review describes some of the major surveillance initiatives and the way in which the data have been used in a number of different settings. In the hospital, surveillance data have been used to monitor local antibiograms and determine infection control strategies and antibiotic usage policies. In the community, surveillance data have been used to monitor public health threats, such as infectious disease outbreaks involving resistant pathogens and the effects of bioterrorism countermeasures, by following the effects of prophylactic use of different antibiotics on resistance. Initially, the pharmaceutical industry sponsored surveillance programmes to monitor the susceptibility of clinical isolates to marketed products. However, in the era of burgeoning resistance, many developers of antimicrobial agents find surveillance data useful for defining new drug discovery and development strategies, in that they assist with the identification of new medical needs, allow modelling of future resistance trends, and identify high-profile isolates for screening the activity of new agents. Many companies now conduct pre-launch surveillance of new products to benchmark activity so that changes in resistance can be monitored following clinical use. Surveillance data also represent an integral component of regulatory submissions for new agents and, together with clinical trial data, are used to determine breakpoints. It is clear that antibiotic resistance surveillance systems will continue to provide valuable data to health care providers, university researchers, pharmaceutical companies, and government and regulatory agencies.
Collapse
|
27
|
Garbom S, Forsberg A, Wolf-Watz H, Kihlberg BM. Identification of novel virulence-associated genes via genome analysis of hypothetical genes. Infect Immun 2004; 72:1333-40. [PMID: 14977936 PMCID: PMC355990 DOI: 10.1128/iai.72.3.1333-1340.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 08/11/2003] [Accepted: 11/13/2003] [Indexed: 11/20/2022] Open
Abstract
The sequencing of bacterial genomes has opened new perspectives for identification of targets for treatment of infectious diseases. We have identified a set of novel virulence-associated genes (vag genes) by comparing the genome sequences of six human pathogens that are known to cause persistent or chronic infections in humans: Yersinia pestis, Neisseria gonorrhoeae, Helicobacter pylori, Borrelia burgdorferi, Streptococcus pneumoniae, and Treponema pallidum. This comparison was limited to genes annotated as hypothetical in the T. pallidum genome project. Seventeen genes with unknown functions were found to be conserved among these pathogens. Insertional inactivation of 14 of these genes generated nine mutants that were attenuated for virulence in a mouse infection model. Out of these nine genes, five were found to be specifically associated with virulence in mice as demonstrated by infection with Yersinia pseudotuberculosis in-frame deletion mutants. In addition, these five vag genes were essential only in vivo, since all the mutants were able to grow in vitro. These genes are broadly conserved among bacteria. Therefore, we propose that the corresponding vag gene products may constitute novel targets for antimicrobial therapy and that some vag mutants could serve as carrier strains for live vaccines.
Collapse
Affiliation(s)
- Sara Garbom
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
28
|
Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D, Callejo M, Ferretti V, Ha N, Kwan T, McCarty J, Srikumar R, Williams D, Wu JJ, Gros P, Pelletier J, DuBow M. Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 2004; 22:185-91. [PMID: 14716317 DOI: 10.1038/nbt932] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 11/14/2003] [Indexed: 11/09/2022]
Abstract
Over evolutionary time bacteriophages have developed unique proteins that arrest critical cellular processes to commit bacterial host metabolism to phage reproduction. Here, we apply this concept of phage-mediated bacterial growth inhibition to antibiotic discovery. We sequenced 26 Staphylococcus aureus phages and identified 31 novel polypeptide families that inhibited growth upon expression in S. aureus. The cellular targets for some of these polypeptides were identified and several were shown to be essential components of the host DNA replication and transcription machineries. The interaction between a prototypic pair, ORF104 of phage 77 and DnaI, the putative helicase loader of S. aureus, was then used to screen for small molecule inhibitors. Several compounds were subsequently found to inhibit both bacterial growth and DNA synthesis. Our results suggest that mimicking the growth-inhibitory effect of phage polypeptides by a chemical compound, coupled with the plethora of phages on earth, will yield new antibiotics to combat infectious diseases.
Collapse
Affiliation(s)
- Jing Liu
- PhageTech Inc., 7170 Frederick Banting, 2nd Floor, Ville Saint Laurent, Quebec, Canada, H4S 2A1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kenny CH, Ding W, Kelleher K, Benard S, Dushin EG, Sutherland AG, Mosyak L, Kriz R, Ellestad G. Development of a fluorescence polarization assay to screen for inhibitors of the FtsZ/ZipA interaction. Anal Biochem 2003; 323:224-33. [PMID: 14656529 DOI: 10.1016/j.ab.2003.08.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fluorescence polarization competition assay has been developed to screen for inhibitors of the Escherichia coli FtsZ/ZipA protein-protein interaction. A previously published X-ray costructure demonstrated that a 17-amino-acid peptide, corresponding to FtsZ C-terminal residues 367-383 (FtsZ(367-383)), interacts with the C-terminal FtsZ binding domain of ZipA (ZipA(185-328)). Phage display was employed to identify a unique but related peptide which when further modified and labeled was shown to have a higher affinity to ZipA(185-328) than the FtsZ(367-383) peptide and binds to the same site. This peptide had a six fold increase in fluorescence polarization upon binding to ZipA(185-328) compared to a two fold increase for the FtsZ(367-383) fluorophore. As a result, assay parameters using the phage display peptide were further optimized and adapted for the high-throughput screen. A high-throughput screen of 250,000 compounds identified 29 hits with inhibition equal to or greater than 30% at 50 microg/ml. An X-ray costructure of a promising small molecule in this library complexed with ZipA(185-328) (KI=12 microM) revealed that the compound binds to the same hydrophobic pocket as the FtsZ(367-383) peptide.
Collapse
Affiliation(s)
- Cynthia Hess Kenny
- Screening Sciences, Biophysics/Enzymology, Wyeth Research, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Aminoglycoside antibiotics have had a major impact on our ability to treat bacterial infections for the past half century. Whereas the interest in these versatile antibiotics continues to be high, their clinical utility has been compromised by widespread instances of resistance. The multitude of mechanisms of resistance is disconcerting but also illuminates how nature can manifest resistance when bacteria are confronted by antibiotics. This article reviews the most recent knowledge about the mechanisms of aminoglycoside action and the mechanisms of resistance to these antibiotics.
Collapse
Affiliation(s)
- Sergei B Vakulenko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
31
|
Abstract
The sequencing of entire bacterial genomes is becoming increasingly routine, promising to revolutionise approaches to identifying putative antimicrobial drug targets. In silico methods can be used to identify putative gene products by comparing sequences of biochemically characterised enzymes and proteins with data produced by sequencing projects. Comparative genomics between a pathogenic bacterium versus nonpathogen as well as pathogen versus host can identify molecular targets that would be ideal for future investigation. The aim of these comparisons would be to identify genes that code for pathogenicity factors in the bacterium or genes essential for bacterial survival. The latter set of genes includes those that are nonfunctional or redundant in the host as well as genes absent from the host but essential in the pathogen. The products of these genes would be ideal targets for antimicrobial compounds. If compounds could be generated that disrupt the pathogen's ability to thrive but not affect the host, since there is a lack of the targeted protein, they could prove to be powerful therapeutics. An elegant example illustrating the power of comparative genomics involves comparison of the pathways of bacterial and eukaryotic aminoacyl-tRNA synthesis. Comparison of pathogenic bacterial genomes shows that many bacteria lack the genes encoding either one or two specific aminoacyl-tRNA synthetases, enzymes involved in ensuring correct aminoacylation of tRNA for subsequent translation of the genetic code. Bacteria have an alternative pathway by which amide aminoacyl-tRNAs are formed. Comparative genomics has demonstrated that this pathway is uniquely prokaryotic/archaeal and also relatively widely found in pathogenic bacteria, indicating the potential of the catalytic enzymes of the pathway as targets for novel antimicrobial drugs.
Collapse
Affiliation(s)
- Brian Fritz
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
32
|
Affiliation(s)
- Robert C Moellering
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Safran C. En quoi l’industrie pharmaceutique contribue-t-elle à l’amélioration de la qualité en antibiothérapie ? Med Mal Infect 2003. [DOI: 10.1016/s0399-077x(02)00441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
De Backer MD, Van Dijck P, Luyten WHML. Functional genomics approaches for the identification and validation of antifungal drug targets. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:113-27. [PMID: 12083946 DOI: 10.2165/00129785-200202020-00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
So far, antifungal drug discovery seems to have benefited little from the enormous advances in the field of genomics in the last decade. Although it has become clear that traditional drug screening is not delivering the long-awaited novel potent antifungals, little has been reported on efforts to use novel genome-based methodologies in the quest for new drugs acting on human pathogenic fungi. Although the market for a novel systemic and even topical broad-spectrum antifungal appears considerable, many large pharmaceutical companies have decided to scale back their activities in antifungal drug discovery. Here we report on some of the recent advances in genomics-based technologies that will allow us not only to identify and validate novel drug targets but hopefully also to discover active therapeutic agents. Novel drug targets have already been found by 'en masse' gene inactivation strategies (e.g. using antisense RNA inhibition). In addition, genome expression profiling using DNA microarrays helps to assign gene function but also to understand better the mechanism of action of known drugs (e.g. itraconazole) and to elucidate how new drug candidates work. No doubt, we have a long way to go just to catch up with the advances made in other therapeutic areas, but all tools are at hand to derive practical benefits from the genomics revolution. The next few years should prove a very exciting time in the history of antifungal drug discovery.
Collapse
|
35
|
Barekzi NA, Felts AG, Poelstra KA, Slunt JB, Grainger DW. Locally delivered polyclonal antibodies potentiate intravenous antibiotic efficacy against gram-negative infections. Pharm Res 2002; 19:1801-7. [PMID: 12523657 DOI: 10.1023/a:1021481122011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Comparison of the anti-microbial efficacy of locally delivered antibodies in tandem with conventional systemic administration of ceftazidime antibiotic therapy in two lethal gram-negative animal infection models. METHODS Previously published lethal E. coli-induced closed peritonitis and Klebsiella-induced burn wound infections were generated in outbred female CF-1 mice cohorts. Pooled human polyclonal antibodies were injected locally into sites of infection in these mice simultaneously with intravenous infusions of the broad-spectrum antibiotic, ceftazidime. Mouse survival was compared in sham control cohorts vs. both ceftazidime-alone or antibody-alone systemically infused cohorts as well as local antibody-systemic ceftazidime combination therapy cohorts. Microbial burdens in blood and tissue samples (by agar plating), as well as interleukin-6 cytokine levels (using ELISA) correlated with sepsis, were monitored in sacrificed animals as a function of antimicrobial treatment regimen. RESULTS Local delivery of human polyclonal antibodies to infection sites was shown to produce synergistic therapeutic efficacy in combination with systemic antibiotic administration in these lethal wound infection models in mice. Enhanced benefits of the unique combination therapy included host survival, bacterial burden both locally and systemically, and IL-6 levels in host serum. CONCLUSIONS Commercial pooled human antibodies contain a broad spectrum of antimicrobial activity against gram-negative pathogens. Prevention of systemization of infection correlates with host survival in these models. Local control of infection using doses of local, high-titer polyclonal antibodies can enhance traditional approaches to curb systemic spread of infection using intravenous antibiotics. Antibodies provide antimicrobial efficacy independent of known pathogen resistance mechanisms.
Collapse
Affiliation(s)
- Nazir A Barekzi
- Anthony G. Gristina Institute for Biomedical Research, 520 Huntmar Park Drive, Herndon, Virginia 20170, USA
| | | | | | | | | |
Collapse
|
36
|
Donadio S, Carrano L, Brandi L, Serina S, Soffientini A, Raimondi E, Montanini N, Sosio M, Gualerzi CO. Targets and assays for discovering novel antibacterial agents. J Biotechnol 2002; 99:175-85. [PMID: 12385707 DOI: 10.1016/s0168-1656(02)00208-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The increasing frequency of nosocomial infections due to multi-resistant pathogens exerts a significant toll and calls for novel and better antibiotics. Different approaches can be used in the search for novel antibiotics acting on drug-resistant bacterial pathogens. We present some considerations on valid bacterial targets to be used for searching new antibiotics, and how the information from bacterial genome sequences can assist in choosing the appropriate targets. Other factors to be considered in target selection are the chemical diversity available for screening and its uniqueness. We will conclude discussing our strategy for searching novel antibacterials. This is based on a large collection of microbial extracts as a source of chemical diversity and on the use of specific targets essential for the viability of bacterial pathogens. Two assay strategies have been implemented: a pathway-based assay, where a series of essential bacterial targets is screened in a single assay; and a binding assay, where many targets can be screened individually in the same format.
Collapse
Affiliation(s)
- Stefano Donadio
- Biosearch Italia, via R. Lepetit 34, 21040 Gerenzano(VA), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gerdes SY, Scholle MD, D'Souza M, Bernal A, Baev MV, Farrell M, Kurnasov OV, Daugherty MD, Mseeh F, Polanuyer BM, Campbell JW, Anantha S, Shatalin KY, Chowdhury SAK, Fonstein MY, Osterman AL. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 2002; 184:4555-72. [PMID: 12142426 PMCID: PMC135229 DOI: 10.1128/jb.184.16.4555-4572.2002] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel drug targets are required in order to design new defenses against antibiotic-resistant pathogens. Comparative genomics provides new opportunities for finding optimal targets among previously unexplored cellular functions, based on an understanding of related biological processes in bacterial pathogens and their hosts. We describe an integrated approach to identification and prioritization of broad-spectrum drug targets. Our strategy is based on genetic footprinting in Escherichia coli followed by metabolic context analysis of essential gene orthologs in various species. Genes required for viability of E. coli in rich medium were identified on a whole-genome scale using the genetic footprinting technique. Potential target pathways were deduced from these data and compared with a panel of representative bacterial pathogens by using metabolic reconstructions from genomic data. Conserved and indispensable functions revealed by this analysis potentially represent broad-spectrum antibacterial targets. Further target prioritization involves comparison of the corresponding pathways and individual functions between pathogens and the human host. The most promising targets are validated by direct knockouts in model pathogens. The efficacy of this approach is illustrated using examples from metabolism of adenylate cofactors NAD(P), coenzyme A, and flavin adenine dinucleotide. Several drug targets within these pathways, including three distantly related adenylyltransferases (orthologs of the E. coli genes nadD, coaD, and ribF), are discussed in detail.
Collapse
|
38
|
Abstract
The most advanced methods for computer-aided drug design and database mining incorporate protein flexibility. Such techniques are not only needed to obtain proper results; they are also critical for dealing with the growing body of information from structural genomics.
Collapse
Affiliation(s)
- Heather A Carlson
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, USA.
| |
Collapse
|
39
|
Chopra I, Hesse L, O'Neill A. Exploiting current understanding of antibiotic action for discovery of new drugs. J Appl Microbiol 2002. [DOI: 10.1046/j.1365-2672.92.5s1.13.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Ball KD, Trevors JT. Bacterial genomics: the use of DNA microarrays and bacterial artificial chromosomes. J Microbiol Methods 2002; 49:275-84. [PMID: 11869792 DOI: 10.1016/s0167-7012(01)00375-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immense amounts of genetic information are contained within microbial genomes. As the number of completely sequenced microbial genomes is increasing, functional and comparative genomic techniques will be employed for sequence analysis and gene characterization. Sequence comparison and expression profiling by DNA microarrays can determine phylogenetic relationships and identify genes while bacterial artificial chromosomes (BACs) allow the study of entire biochemical pathways and permit the expression of bacterial genes in a foreign host.
Collapse
Affiliation(s)
- Kristen D Ball
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
41
|
Abstract
The emergence and spread of hospital acquired multi drug resistant bacteria present a need for new antibiotics with innovative mode of action. Advances in molecular microbiology and genomics have led to the identification of numerous bacterial genes coding for proteins that could potentially serve as targets for antibacterial compounds. Histidine kinase promoted two-component systems are extremely common in bacteria and play an important role in essential signal transduction for adapting to bacterial stress. Since signal transduction in mammals occurs by a different mechanism, inhibition of histidine kinases could be a potential target for antimicrobial agents. This review will summarize our current knowledge of the structure and function of histidine kinase and the development of antibiotics with a new mode of action: targeting histidine kinase promoted signal transduction and its subsequent regulation of gene expression system.
Collapse
Affiliation(s)
- Masayuki Matsushita
- The Scripps Research Institute, Department of Chemistry BCC-582, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Steinbacher S, Kaiser J, Wungsintaweekul J, Hecht S, Eisenreich W, Gerhardt S, Bacher A, Rohdich F. Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. J Mol Biol 2002; 316:79-88. [PMID: 11829504 DOI: 10.1006/jmbi.2001.5341] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoprenoids are biosynthesized from isopentenyl diphosphate and the isomeric dimethylallyl diphosphate via the mevalonate pathway or a mevalonate-independent pathway that was identified during the last decade. The non-mevalonate pathway is present in many bacteria, some algae and in certain protozoa such as the malaria parasite Plasmodium falciparum and in the plastids of higher plants, but not in mammals and archaea. Therefore, these enzymes have been recognised as promising drug targets. We report the crystal structure of Escherichia coli 2C- methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), which converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate into 2C-methyl-d-erythritol 2,4-cyclodiphosphate and CMP in a Mg-dependent reaction. The protein forms homotrimers that tightly bind one zinc ion per subunit at the active site, which helps to position the substrate for direct attack of the 2-phosphate group on the beta-phosphate.
Collapse
Affiliation(s)
- Stefan Steinbacher
- Abteilung für Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, Martinsried, D-82152, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
This review focuses on target-based approaches for developing new chemical classes of antibacterial agents aimed at the bacterial cell wall. The clinical success of antibiotics such as beta-lactams and glycopeptides validates this chemotherapeutic strategy and emerging resistance to these agents warrants the development of new antibacterial drugs. Understanding the mechanism of action and resistance to beta-lactams and glycopeptides at a molecular level has supported the development of new agents that prevent transpeptidation and transglycosylation reactions of peptidoglycan polymerisation. The enzymes involved in the synthesis of the peptidoglycan structural unit have also been targeted for antibacterial discovery. The influence of bacterial genetics and genomics, structural biology, assay development and the properties of known inhibitors on these approaches will be discussed in the context of drug discovery.
Collapse
Affiliation(s)
- David W Green
- Cubist Pharmaceuticals, Inc., 65 Hayden Ave., Lexington, MA 02421, USA.
| |
Collapse
|
44
|
Discovery and development of new anti-bacterial drugs. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0165-7208(02)80022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Chen X, Ji ZL, Chen YZ. TTD: Therapeutic Target Database. Nucleic Acids Res 2002; 30:412-5. [PMID: 11752352 PMCID: PMC99057 DOI: 10.1093/nar/30.1.412] [Citation(s) in RCA: 419] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Revised: 08/28/2001] [Accepted: 08/28/2001] [Indexed: 02/07/2023] Open
Abstract
A number of proteins and nucleic acids have been explored as therapeutic targets. These targets are subjects of interest in different areas of biomedical and pharmaceutical research and in the development and evaluation of bioinformatics, molecular modeling, computer-aided drug design and analytical tools. A publicly accessible database that provides comprehensive information about these targets is therefore helpful to the relevant communities. The Therapeutic Target Database (TTD) is designed to provide information about the known therapeutic protein and nucleic acid targets described in the literature, the targeted disease conditions, the pathway information and the corresponding drugs/ligands directed at each of these targets. Cross-links to other databases are also introduced to facilitate the access of information about the sequence, 3D structure, function, nomenclature, drug/ligand binding properties, drug usage and effects, and related literature for each target. This database can be accessed at http://xin.cz3.nus.edu.sg/group/ttd/ttd.asp and it currently contains entries for 433 targets covering 125 disease conditions along with 809 drugs/ligands directed at each of these targets. Each entry can be retrieved through multiple methods including target name, disease name, drug/ligand name, drug/ligand function and drug therapeutic classification.
Collapse
Affiliation(s)
- X Chen
- Department of Computational Science, National University of Singapore, Blk S17, Level 7, 3 Science Drive 2, 117543 Singapore
| | | | | |
Collapse
|
46
|
Fischer HP. 'The impact of expression profiling technologies on antimicrobial target identification and validation'. Drug Discov Today 2001; 6:1149-1150. [PMID: 11700214 DOI: 10.1016/s1359-6446(01)02047-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
O'Neill AJ, Chopra I. Use of mutator strains for characterization of novel antimicrobial agents. Antimicrob Agents Chemother 2001; 45:1599-600. [PMID: 11372639 PMCID: PMC90517 DOI: 10.1128/aac.45.1.1599-1600.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Abstract
Evidence of increasing resistance to antibiotics in soil and other natural isolates highlights the importance of horizontal transfer of resistance genes in facilitating gene flux in bacteria. Horizontal gene transfer in bacteria is favored by the presence of mobile genetic elements and by the organization of bacterial genomes into operons allowing for the cooperative transfer of genes with related functions. The selective pressure for the spread of resistance genes correlates strongly with the clinical and agricultural overuse of antibiotics. The future of antimicrobial chemotherapy may lie in developing new antimicrobials using information from comparative functional microbial genomics to find genetic targets for antimicrobials and also to understand gene expression enabling selective targeting of genes with expression that correlates with the infectious process.
Collapse
Affiliation(s)
- V C Nwosu
- Department of Biology, North Carolina Central University, Durham 27707, USA.
| |
Collapse
|
49
|
Shea JE, Santangelo JD, Feldman RG. Combating Gram-positive pathogens: emerging techniques to identify relevant virulence targets. Expert Opin Ther Targets 2001; 5:155-64. [PMID: 15992173 DOI: 10.1517/14728222.5.2.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent progress in microbial genome sequencing, along with functional genomics technologies based on gene expression, proteomics and genetics have facilitated the identification of significant numbers of Gram-positive virulence genes. These genes represent a novel and heterogeneous class of targets for antimicrobial drug development. This review will concentrate of the contribution of two functional genomics technologies, in vivo expression technology (IVET) based on gene expression and signature-tagged mutagenesis (STM), a genetics based technology to the identification of virulence genes in Gram-positive pathogens.
Collapse
Affiliation(s)
- J E Shea
- Microscience Ltd., 545 Eskdale Road, Winnersh Triangle, Wokingham, Berkshire, RG41 5TU, UK.
| | | | | |
Collapse
|
50
|
Abstract
The frequency of opportunistic infections caused by the fungus Candida albicans is very high and is expected to continue to increase as the number of immunocompromised patients rises. Research initiatives to study the biology of this organism and elucidate its pathogenic determinants have therefore expanded significantly during the last 5-10 years. The past few years have also brought continuous improvement in the techniques to study gene function by gene inactivation and by regulated gene expression and to study gene expression and protein localization by using gene reporter systems. As steadily more genomic sequence information from this human fungal pathogen becomes available, we are entering a new era in antimicrobial research. However, many of the currently available molecular genetics tools are poorly adapted to a genome-wide functional analysis in C. albicans, and further development of these tools is hampered by the asexual and diploid nature of this organism. This review outlines recent advances in the development of molecular tools for functional analysis in C. albicans and summarizes current knowledge about the genomic and genetic variability of this important human fungal pathogen.
Collapse
Affiliation(s)
- M D De Backer
- Department of Advanced Bio-Technologies, Janssen Research Foundation, B-2340 Beerse, Belgium.
| | | | | |
Collapse
|