1
|
Differentiated Levels of Ganciclovir Resistance Conferred by Mutations at Codons 591 to 603 of the Cytomegalovirus UL97 Kinase Gene. J Clin Microbiol 2017; 55:2098-2104. [PMID: 28446569 DOI: 10.1128/jcm.00391-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/17/2017] [Indexed: 12/28/2022] Open
Abstract
Diagnostic mutations in the cytomegalovirus UL97 kinase gene are used to assess the level of associated ganciclovir resistance and therapeutic options. The best-known mutations at codons 460, 520, or 591 to 607 individually confer 5- to 10-fold-decreased ganciclovir susceptibility, except that a 3-fold decrease occurs in the case of the amino acid substitution C592G. Less common point and in-frame deletion mutations at codons 591 to 603 remain incompletely characterized. The ganciclovir susceptibilities of 17 mutants in this codon range were evaluated by use of the same recombinant phenotyping system and extensive assay replicates in two types of cell cultures. Amino acid substitutions K599E and T601M conferred no ganciclovir resistance, while A591V conferred 3.8-fold-decreased susceptibility. In-frame deletions of three or more codons conferred at least 8-fold-increased ganciclovir resistance, while the level of resistance conferred by one- or two-codon deletions varied from 4- to 10-fold, depending on their location. Measured levels of ganciclovir resistance were closely comparable when assays were performed in either fibroblasts or modified retinal epithelial cells. The significant revision of a few previously published resistance phenotypes and the new data strengthen the interpretation of genotypic testing for cytomegalovirus drug resistance.
Collapse
|
2
|
Identification of resistance-associated HCMV UL97- and UL54-mutations and a UL97-polymporphism with impact on phenotypic drug-resistance. Antiviral Res 2016; 131:1-8. [DOI: 10.1016/j.antiviral.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
|
3
|
Novel Method Based on Real-Time Cell Analysis for Drug Susceptibility Testing of Herpes Simplex Virus and Human Cytomegalovirus. J Clin Microbiol 2016; 54:2120-7. [PMID: 27252463 DOI: 10.1128/jcm.03274-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 01/23/2023] Open
Abstract
The plaque reduction assay (PRA) is the gold standard phenotypic method to determine herpes simplex virus (HSV) and human cytomegalovirus (HCMV) susceptibilities to antiviral drugs. However, this assay is subjective and labor intensive. Here, we describe a novel antiviral phenotypic method based on real-time cell analysis (RTCA) that measures electronic impedance over time. The effective drug concentrations that reduced by 50% (EC50s) the cytopathic effects induced by HSV-1 and HCMV were evaluated by both methods. The EC50s of acyclovir and foscarnet against a reference wild-type (WT) HSV-1 strain in Vero cells were, respectively, 0.5 μM and 32.6 μM by PRA and 0.8 μM and 93.6 μM by RTCA. The EC50 ratios for acyclovir against several HSV-1 thymidine kinase (TK) mutants were 101.8×, 73.4×, 28.8×, and 35.4× (PRA) and 18.0×, 52.0×, 5.5×, and 87.8× (RTCA) compared to those for the WT. The EC50 ratios for acyclovir and foscarnet against the HSV-1 TK/DNA polymerase mutant were 182.8× and 9.7× (PRA) and >125.0× and 10.8× (RTCA) compared to the WT. The EC50s of ganciclovir and foscarnet against WT HCMV strain AD169 in fibroblasts were, respectively, 1.6 μM and 27.8 μM by PRA and 5.0 μM and 111.4 μM by RTCA. The EC50 ratios of ganciclovir against the HCMV UL97 mutant were 3.8× (PRA) and 8.2× (RTCA) compared to those for the WT. The EC50 ratios of ganciclovir and foscarnet against the HCMV UL97/DNA polymerase mutant were 17.1× and 12.1× (PRA) and 14.7× and 4.6× (RTCA) compared to those for the WT. RTCA allows objective drug susceptibility testing of HSV and HCMV and could permit high-throughput screening of new antivirals.
Collapse
|
4
|
Keyvani H, Taghinezhad Saroukalaei S, Mohseni AH. Assessment of the Human Cytomegalovirus UL97 Gene for Identification of Resistance to Ganciclovir in Iranian Immunosuppressed Patients. Jundishapur J Microbiol 2016; 9:e31733. [PMID: 27540455 PMCID: PMC4978088 DOI: 10.5812/jjm.31733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 12/02/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) infections are a major cause of morbidity and mortality among immunocompromised patients. Prolonged antiviral therapy is a cause of mutation and drug resistance in the HCMV genome. Objectives The aim of this study was to identify resistance to ganciclovir (GCV) in Iranian immunosuppressed patients at two different stages of the disease: early (before GCV is initiated) and late (after six months of GCV therapy). Patients and Methods In this study, 87 specimens from Iranian patients were amplified using nested PCR amplification of the UL97 gene. Sequence analyses of products were performed for identifying the mutated codons. Results The present study show that the most frequent GCV-resistant mutations occurred in codons A594V (26.43%), H520Q (18.39%), and M460V (13.79%), consequently occurring at a low frequency in the L595S (2.29%), E596G (1.14%), and Del 594 (1.14%) codons, and with intermediate frequency in the C592G (10.34%), M460I (9.19%), and C603W (6.89%) codons. We describe for the first time a new GCV-resistance mutation, the deletion of codon 594, in the UL97 gene of Iranian HCMV patients after GCV therapy, following renal transplantation. Conclusions The findings of the present study can be utilized to detect GCV resistance patterns among Iranian immunocompromised patients and to treat HCMV infections accordingly.
Collapse
Affiliation(s)
- Hossein Keyvani
- School of Medicine, Iran University of Medical Sciences, Tehran, IR Iran
- Research and Development Department, Keyvan Virology Specialty Laboratory (KVSL), Tehran, IR Iran
| | - Sedigheh Taghinezhad Saroukalaei
- Research and Development Department, Keyvan Virology Specialty Laboratory (KVSL), Tehran, IR Iran
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
| | - Amir Hossein Mohseni
- Research and Development Department, Keyvan Virology Specialty Laboratory (KVSL), Tehran, IR Iran
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
- Corresponding author: Amir Hossein Mohseni, Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, IR Iran. Tel: +98-2188549747, Fax: +98-2188549747, E-mail: ,
| |
Collapse
|
5
|
Campos AB, Ribeiro J, Boutolleau D, Sousa H. Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: current state of the art. Rev Med Virol 2016; 26:161-82. [DOI: 10.1002/rmv.1873] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/09/2016] [Accepted: 02/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ana Bela Campos
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - David Boutolleau
- Sorbonne Universités; UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Paris France
- INSERM, U1135, CIMI-Paris; Paris France
- AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles Foix; Service de Virologie; Paris France
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
| |
Collapse
|
6
|
Göhring K, Hamprecht K, Jahn G. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients. Comput Struct Biotechnol J 2015; 13:153-9. [PMID: 25750703 PMCID: PMC4348572 DOI: 10.1016/j.csbj.2015.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
In pediatric and adult patients after stem cell transplantation (SCT) disseminated infections caused by human cytomegalovirus (HCMV) can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV), foscarnet (PFA) and cidofovir (CDV) are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97) and the polymerase-gene (UL54). Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood.
Collapse
Affiliation(s)
- Katharina Göhring
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital of Tübingen, 72076 Tübingen, Germany
| | | | | |
Collapse
|
7
|
Komatsu TE, Pikis A, Naeger LK, Harrington PR. Resistance of human cytomegalovirus to ganciclovir/valganciclovir: A comprehensive review of putative resistance pathways. Antiviral Res 2014; 101:12-25. [DOI: 10.1016/j.antiviral.2013.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
|
8
|
Successful ganciclovir treatment of primary cytomegalovirus infection containing the UL97 mutation N510S in an intestinal graft recipient. Infection 2013; 41:875-9. [PMID: 23546999 DOI: 10.1007/s15010-013-0458-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
In solid organ transplantation, human cytomegalovirus (HCMV) is considered to be the most important viral pathogen. We report a case of a CMV R-/D+ small intestine transplant recipient with a primary CMV infection on valganciclovir prophylaxis. Sequencing of the HCMV DNA for drug resistance-associated mutations revealed the UL97 mutation N510S. This mutation has been initially reported to confer ganciclovir resistance. Based on in vitro recombinant phenotyping, this assumption has recently been questioned. Switching the antiviral treatment to an intravenous regimen of ganciclovir eliminated HCMV DNAemia, showing the in vivo efficacy of ganciclovir for the UL97 mutation N510S. Hence, knowledge of drug efficacy is crucial for an adequate choice of antiviral medication, carefully balancing antiviral potency versus the risk of harmful side effects.
Collapse
|
9
|
Cunha-Bang CD, Kirkby N, Sønderholm M, Sørensen SS, Sengeløv H, Iversen M, Rasmussen A, Gustafsson F, Frederiksen CM, Kjaer J, Lepri AC, Lundgren JD. The time course of development and impact from viral resistance against ganciclovir in cytomegalovirus infection. Am J Transplant 2013; 13:458-66. [PMID: 23282281 DOI: 10.1111/ajt.12042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/12/2012] [Accepted: 10/24/2012] [Indexed: 01/25/2023]
Abstract
(Val)ganciclovir is used to treat cytomegalovirus (CMV) infection following solid organ (SOT) or hematopoietic stem cell (HSCT) transplantation. Treatment failures occur, but the contribution from 39 known ganciclovir-related mutations (GRMs) in the CMV-UL97 gene remains controversial. We propose a categorization of these GRMs potentially useful when interpreting sequence analyses in clinical settings. The UL97 gene was sequenced from first/recurrent CMV infections among consecutive SOT or HSCT recipients during 2004-2009. GRMs were categorized as: Signature GRM (sGRM) if in vitro ganciclovir IC(50) ratio for mutated versus wild-type virus >2 (n = 24); polymorphic GRM (pGRM) if ratio <2 (n = 15). (Val)ganciclovir treatment failure was defined as persistent viremia for 30 days or switch to foscarnet within this period. Of 99 (49 HSCT and 50 SOT) recipients with one CMV infection episode, 15 (13 HSCT and 2 SOT) experienced a total of 19 recurrent infection episodes. The prevalence of sGRM was 0% at start of first episode, whereas at start of recurrent episodes, prevalence was 37%. Only one sGRM was present at a time in individual patients. Patients with CMV containing an sGRM (vs. wild type)-but not with a pGRM-were at excess risk of treatment failure (odds ratio = 70.6 [95% CI:8.2-609.6]; p < 0.001). sGRMs emerged only following longer termed use of antiherpetic drugs and usually in recurrent CMV infection episodes. Risk of ganciclovir treatment failure was raised if an sGRM was detected.
Collapse
Affiliation(s)
- C da Cunha-Bang
- Center for Viral Diseases, Department of Infectious Diseases, Copenhagen University Hospital/Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
[Prevention of cytomegalovirus disease in lung transplantation]. Enferm Infecc Microbiol Clin 2012; 29 Suppl 6:46-51. [PMID: 22541923 DOI: 10.1016/s0213-005x(11)70058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lung transplant recipients, more than other organ transplant recipients, are at particular risk for cytomegalovirus (CMV) infection and disease. CMV prevention avoids the indirect effects of this virus, such as opportunistic fungal infections and obliterative bronchiolitis, the latter being the major limiting factor in the long-term success of lung-transplantation. CMV prevention strategies have significantly reduced CMV disease and CMV-related mortality. Two major strategies are commonly used for CMV prevention: universal prophylaxis and preemptive therapy. In lung transplant recipients, the efficacy and safety of preemptive treatment have not been studied and therefore, cannot be recommended. Universal prophylaxis is the best strategy for preventing CMV disease in lung transplant recipients. There is no consensus on the optimal duration of prophylaxis, but the recently published GESITRA-SEIMC/REIPI 2011 Guidelines for the management of CMV infection in solid-organ transplant patients recommend 6 months posttransplantation. In D+/R- recipients, this period can be prolonged to 12 months if there are difficulties in monitoring at 6 months posttransplantation. The future of prevention will probably depend on immunoguided strategies.
Collapse
|
11
|
Tanaka K, Hori T, Yoto Y, Hatakeyama N, Yamamoto M, Suzuki N, Tsutsumi H. Human cytomegalovirus UL97 D605E polymorphism has a high prevalence in immunocompetent Japanese infants and children. Microbiol Immunol 2011; 55:328-30. [PMID: 21362026 DOI: 10.1111/j.1348-0421.2011.00327.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is no existing data on UL97 mutation in human cytomegalovirus (HCMV) isolates obtained from individuals who have never been exposed to ganciclovir (GCV). UL97 codons 439 to 645 from 61 CMV isolates from 61 immunocompetent Japanese infants and children were sequenced directly. No known GCV resistance mutations were found, meaning that the UL97 mutation had resulted from the use of GCV. On the other hand, a mutation at codon 605 (D to E) was frequently identified (56/61: 91.8%). This could be a genetic marker for HCMV in East Asian counties, because of its low prevalence in the strains of HCMV circulating in Western countries.
Collapse
Affiliation(s)
- Kaori Tanaka
- Department of Pediatrics, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Confirmation of resistance mutations requires phenotypic analysis; however, phenotypic assays are too time-consuming for diagnostic purposes. Genotypic assays based on sequencing provide more rapid results but are dependent on prior validation by phenotypic methods. Reports from many laboratories have produced an evolving list of confirmed resistance mutations, although differences in interpretation have led to some confusion. Recombinant phenotyping methods performed in a few research laboratories have resolved some of the conflicting results. Treatment options for drug-resistant HCMV infections are complex and have not been subjected to controlled clinical trials, although consensus guidelines have been proposed. This review summarizes the virological and clinical data pertaining to HCMV antiviral drug resistance.
Collapse
|
13
|
Martin M, Goyette N, Boivin G. Contrasting effects on ganciclovir susceptibility and replicative capacity of two mutations at codon 466 of the human cytomegalovirus UL97 gene. J Clin Virol 2010; 49:296-8. [PMID: 20843736 DOI: 10.1016/j.jcv.2010.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND Human cytomegalovirus (HCMV) infections cause significant morbidity in immunocompromised hosts. Resistance to ganciclovir is predominantly associated with alterations in the HCMV UL97 kinase and, more occasionally, with mutations in the HCMV DNA polymerase gene. OBJECTIVES The aim of this study was to investigate the impact of two different mutations found at the same UL97 codon on drug susceptibility and viral replicative capacity. Mutation V466G was observed in a solid organ transplant recipient whereas mutation V466M was observed in a patient with AIDS. STUDY DESIGN Two HCMV UL97 mutations, V466M and V466G, were transferred to recombinant viruses using a bacterial artificial chromosome system. Susceptibility testing of the recombinant wild-type and mutant viruses was performed using a standard plaque reduction assay. Replication kinetics of recombinant viruses was investigated using a yield assay. RESULTS Mutant V466G was resistant to ganciclovir and had significant replicative defect whereas mutant V466M was drug susceptible and had unaltered replication kinetics. Furthermore, mutant V466G formed small viral plaques with intracellular inclusions. CONCLUSIONS To our knowledge, this is the first report of such contrasting phenotypes for drug susceptibility and replicative capacity for HCMV mutations found at the same codon of the UL97 gene.
Collapse
Affiliation(s)
- Mélanie Martin
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
14
|
Schreiber A, Härter G, Schubert A, Bunjes D, Mertens T, Michel D. Antiviral treatment of cytomegalovirus infection and resistant strains. Expert Opin Pharmacother 2009; 10:191-209. [PMID: 19236193 DOI: 10.1517/14656560802678138] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review discusses the management of resistant cytomegalovirus and prevention strategies for fatal therapy failures. Five drugs, ganciclovir/valganciclovir, cidofovir, foscarnet and fomivirsen, have been approved so far for the treatment of human cytomegalovirus (HCMV) diseases. Except for fomivirsen, all of the approved drugs share the same target molecule, the viral DNA polymerase. The emergence of drug-resistant HCMV has also been reported for all of them. For optimal care of patients, the clinical virologist has to provide the most meaningful assays for monitoring of therapy and early detection of emerging drug-resistant HCMV. Additionally, a quantitative drug monitoring would be helpful. New antiviral agents are urgently needed with less adverse effects, good oral bioavailability and possibly novel targets or mechanisms of action to avoid cross-resistance and to improve the ability to suppress the selection of resistant virus strains by combination therapy. Compounds like maribavir, leflunomide and artesunate, which exhibit anti-HCMV activity in vitro and in patients need to be evaluated in clinical studies. Besides these, new therapy approaches like immunotherapy or new diagnostic techniques like pyrosequencing have to be considered in the future.
Collapse
Affiliation(s)
- Andreas Schreiber
- Universitätsklinikum Ulm, Institut für Virologie, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Chou S. Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir. Rev Med Virol 2008; 18:233-46. [PMID: 18383425 DOI: 10.1002/rmv.574] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the human CMV UL97 kinase gene are a major mechanism of viral resistance to two anti-CMV drugs, ganciclovir (GCV) and maribavir (MBV). GCV, the most widely used and established therapy for CMV, is a substrate for the UL97 kinase. Well-characterised GCV-resistance mutations at UL97 codons 460, 520 and 590-607 impair the phosphorylation of GCV that is necessary for its antiviral activity, presumably by altering substrate recognition. In contrast, MBV is an inhibitor of the UL97 kinase and is the first new CMV therapy to reach later stage clinical trials in many years. No MBV-resistant CMV isolates have yet been detected in clinical trials, but after culture propagation under drug, UL97 mutations that confer moderate to high-level MBV resistance have been identified at codons 353, 397, 409 and 411. These mutations are located upstream of the GCV-resistance mutations and are close to the ATP-binding and catalytic domains common to all kinases, consistent with MBV acting as a small molecule ATP-competitive kinase inhibitor. So far, no UL97 mutations are known to confer resistance to both GCV and MBV.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
16
|
Establishment of a cell-based assay for screening of compounds inhibiting very early events in the cytomegalovirus replication cycle and characterization of a compound identified using the assay. Antimicrob Agents Chemother 2008; 52:2420-7. [PMID: 18458124 DOI: 10.1128/aac.00134-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To simplify the detection of infectious human cytomegalovirus (HCMV), we generated a cell line that produced luciferase in a dose-dependent manner upon HCMV infection. Using this cell line, we identified anti-HCMV compounds from a diverse library of 9,600 compounds. One of them, 1-(3,5-dichloro-4-pyridyl)piperidine-4-carboxamide (DPPC), was effective against HCMV (Towne strain) infection of human lung fibroblast cells at a 50% effective concentration of 2.5 microM. DPPC also inhibited the growth of clinical HCMV isolates and guinea pig and mouse cytomegaloviruses. Experiments using various time frames for treatment of the cells with DPPC demonstrated that DPPC was effective during the first 24 h after HCMV infection. DPPC treatment decreased not only viral DNA replication but also IE1 and IE2 expression at mRNA and protein levels in the HCMV-infected cells. However, DPPC did not inhibit the attachment of HCMV particles to the cell surface. DPPC is a unique compound that targets the very early phase of cytomegalovirus infection, probably by disrupting a pathway that is important after viral entry but before immediate-early gene expression.
Collapse
|
17
|
Scott GM, Weinberg A, Rawlinson WD, Chou S. Multidrug resistance conferred by novel DNA polymerase mutations in human cytomegalovirus isolates. Antimicrob Agents Chemother 2006; 51:89-94. [PMID: 17043128 PMCID: PMC1797699 DOI: 10.1128/aac.00633-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of antiviral-resistant cytomegalovirus (CMV) strains is a continuing clinical problem, with increased numbers of immunocompromised patients given longer-duration antiviral prophylaxis. Two previously unrecognized CMV DNA polymerase mutations (N408K and A834P) identified separately and together in at-risk lung and kidney transplant recipients and a third mutation (L737M) identified in a liver transplant recipient were characterized by marker transfer to antiviral-sensitive laboratory strains AD169 and Towne. Subsequent phenotypic analyses of recombinant strains demonstrated the ability of mutation N408K to confer ganciclovir (GCV) and cidofovir (CDV) resistance and of mutation A834P to confer GCV, foscarnet, and CDV resistance. Mutation L737M did not confer resistance to any of the antiviral agents tested. A recombinant strain containing both N408K and A834P demonstrated increased GCV and CDV resistance compared to the levels of resistance of the virus containing only the A834P mutation. The addition of mutation N408K in combination with A834P also partially reconstituted the replication impairment of recombinant virus containing only A834P. This suggests that perturbation of both DNA polymerization (A834P) and exonuclease (N408K) activities contributes to antiviral resistance and altered replication kinetics in these mutant strains. The identification of these multidrug-resistant CMV strains in at-risk seronegative recipients of organs from seropositive donors suggests that improved prophylactic and treatment strategies are required. The additive effect of multiple mutations on antiviral susceptibility suggests that increasing antiviral-resistant phenotypes can result from different virus-antiviral interactions.
Collapse
Affiliation(s)
- Gillian M Scott
- Virology Research, POWH and UNSW Research Laboratories, Level 3 Clinical Sciences Building, Prince of Wales Hospital, Avoca Street, Randwick, NSW 2031, Australia.
| | | | | | | |
Collapse
|
18
|
Lee GC, Lee DG, Choi SM, Yoo JH, Park SH, Choi JH, Min WS, Cho OH, Lee CH, Shin WS. Use of time-saving flow cytometry for rapid determination of resistance of human cytomegalovirus to ganciclovir. J Clin Microbiol 2005; 43:5003-8. [PMID: 16207954 PMCID: PMC1248522 DOI: 10.1128/jcm.43.10.5003-5008.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are two ways to assess the susceptibility of human cytomegalovirus (HCMV) to ganciclovir (GCV): one is a genotypic test that detects resistance-related mutations and the other is a phenotypic test that actually assesses susceptibility. The advantages of genotyping the UL 97 gene are its rapidity and accuracy. However, to detect novel mutations or mutations affecting the UL 54 DNA polymerase, a phenotypic test such as the plaque reduction assay (PRA) is also required. To avoid the shortcomings of PRA such as its time-consuming nature and labor-intensiveness, we developed a time-saving fluorescence-activated cell sorting (TS-FACS) technique. We obtained a GCV 50% inhibitory concentration (IC(50)) from five clinical isolates and an HCMV laboratory strain (AD169) and compared the results with those from the PRA. The laboratory strain and three clinical isolates were sensitive to GCV. Although there was a minor discrepancy in the case of one of the three isolates, the GCV IC(50) values obtained by TS-FACS analysis correlated well with the results of the PRA. The remaining two isolates were resistant to GCV; one was GCV resistant due to the mutation M 460 V, and the GCV IC(50) results obtained by TS-FACS analysis and by PRA were also comparable. The advantages of TS-FACS analysis are the shorter time required, the possibility of automation, and its comparability to PRA, considered the gold standard. Thus, TS-FACS analysis may be useful as an alternative to PRA in the clinic.
Collapse
Affiliation(s)
- Gyu-Cheol Lee
- Clinical Research Institute, St. Mary's Hospital, The Catholic University of Korea, College of Medicine, 150-713 Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yeo AC, Chan KP, Kumarasinghe G, Yap HK. Rapid detection of codon 460 mutations in the UL97 gene of ganciclovir-resistant cytomegalovirus clinical isolates by real-time PCR using molecular beacons. Mol Cell Probes 2005; 19:389-93. [PMID: 16098713 DOI: 10.1016/j.mcp.2005.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/29/2005] [Indexed: 11/20/2022]
Abstract
A rapid real-time polymerase chain reaction (PCR) assay using molecular beacons has been developed for the simultaneous detection of wild-type and mutant strains of cytomegaloviruses (CMV) with respect to codon 460 of the UL97 gene has been developed. The molecular beacons were designed to complement the wild-type codon 460 or the mutant sequence arising from a single base-pair difference (point mutation). Discrimination between wild-type and mutant templates was demonstrated as the beacons did not generate fluorescence with their respective mismatch targets but only with those that they were designed to perfectly anneal with. Samples that harbor mixed populations of CMV could also be readily recognized. Applied to a small number of clinical samples, the retrospective screening by this assay are in general concordance with that obtained by PCR-RFLP. Using molecular beacons strategy, codon 460 mutation was detected in ten out o the total number of 40 samples, whereas the latter method identified nine samples as containing the mutation. The discrepant result arose from the genotyping of one clinical sample as mixed (containing both wild-type and mutant CMV strains) by molecular beacons but as wild-type by PCR-RFLP, suggesting that this real-time strategy is possibly more sensitive for mutation analysis.
Collapse
Affiliation(s)
- Adrian C Yeo
- Department of Pediatrics, National University of Singapore, Singapore; School of Chemical and Life Sciences, Singapore Polytechnic, 500 Dover Road, 138651 Singapore.
| | | | | | | |
Collapse
|
20
|
Hantz S, Michel D, Fillet AM, Guigonis V, Champier G, Mazeron MC, Bensman A, Denis F, Mertens T, Dehee A, Alain S. Early selection of a new UL97 mutant with a severe defect of ganciclovir phosphorylation after valaciclovir prophylaxis and short-term ganciclovir therapy in a renal transplant recipient. Antimicrob Agents Chemother 2005; 49:1580-3. [PMID: 15793144 PMCID: PMC1068598 DOI: 10.1128/aac.49.4.1580-1583.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the emergence of a new ganciclovir resistance mutation in the UL97 gene of human cytomegalovirus, deletion of codon 601, after valaciclovir and short-term ganciclovir therapy following kidney transplantation. Its role in ganciclovir resistance was supported by decreased ganciclovir phosphorylation in a recombinant vaccinia virus system.
Collapse
Affiliation(s)
- Sébastien Hantz
- Department of Bacteriology-Virology-Hygiene, EA 3175, Teaching Hospital Dupuytren, Limoges cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- C Gilbert
- Research Center in Infectious Diseases of the Centre Hospitalier Universitaire de Québec, Université Laval, Sainte-Foy, Québec, Canada
| | | |
Collapse
|
22
|
Michel D, Mertens T. The UL97 protein kinase of human cytomegalovirus and homologues in other herpesviruses: impact on virus and host. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:169-80. [PMID: 15023359 DOI: 10.1016/j.bbapap.2003.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2003] [Accepted: 11/12/2003] [Indexed: 11/16/2022]
Abstract
The human herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), human herpesvirus 6A (HHV-6A), HHV-6B, HHV-7 and HHV-8, establish persistent infections with possible recurrence during immunosuppression. HCMV replication is inhibited by the nucleoside analogue ganciclovir (GCV), the compound of choice for the treatment of HCMV diseases and preemptive treatment of infections. The viral UL97 protein (pUL97) which shares homologies with protein kinases and bacterial phosphotransferases is able to monophosphorylate GCV. Homologues of pUL97 are found in HSV (UL13), VZV (ORF47), EBV (BGLF4), HHV-6 (U69), HHV-8 (ORF36) as well as in murine CMV (M97) or rat CMV (R97). Several indolocarbazoles have been reported to be specific inhibitors of pUL97. The protein is important for efficient replication of the virus. Autophosphorylation of pUL97 was observed using different experimental systems. Most recently, it has been shown that pUL97 interacts with the DNA polymerase processivity factor pUL44. Indolocarbazole protein kinase inhibitors are promising lead compounds for the development of more specific inhibitors of HCMV.
Collapse
Affiliation(s)
- Detlef Michel
- Universitätsklinikum Ulm, Abteilung Virologie, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | |
Collapse
|
23
|
Gilbert C, Bestman-Smith J, Boivin G. Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms. Drug Resist Updat 2002; 5:88-114. [PMID: 12135584 DOI: 10.1016/s1368-7646(02)00021-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleoside analogues such as acyclovir and ganciclovir have been the mainstay of therapy for alphaherpesviruses (herpes simplex virus (HSV) and varicella-zoster virus (VZV)) and cytomegalovirus (CMV) infections, respectively. Drug-resistant herpesviruses are found relatively frequently in the clinic, almost exclusively among severely immunocompromised patients receiving prolonged antiviral therapy. For instance, close to 10% of patients with AIDS receiving intravenous ganciclovir for 3 months excrete a drug-resistant CMV isolate in their blood or urine and this percentage increases with cumulative drug exposure. Many studies have reported that at least some of the drug-resistant herpesviruses retain their pathogenicity and can be associated with progressive or relapsing disease. Viral mutations conferring resistance to nucleoside analogues have been found in either the drug activating/phosphorylating genes (HSV or VZV thymidine kinase, CMV UL97 kinase) and/or in conserved regions of the viral DNA polymerase. Currently available second line agents for the treatment of herpesvirus infections--the pyrophosphate analogue foscarnet and the acyclic nucleoside phosphonate derivative cidofovir--also inhibit the viral DNA polymerase but are not dependent on prior viral-specific activation. Hence, viral DNA polymerase mutations may lead to a variety of drug resistance patterns which are not totally predictable at the moment due to insufficient information on specific drug binding sites on the polymerase. Although some CMV and HSV DNA polymerase mutants have been found to replicate less efficiently in cell cultures, further research is needed to correlate viral fitness and clinical outcome.
Collapse
Affiliation(s)
- Christian Gilbert
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Québec and Laval University, Québec City, Canada
| | | | | |
Collapse
|
24
|
Abstract
The control of the global expansion and proliferation of the AIDS pandemic has been complicated by the emergence of resistant strains of HIV-1 to the many new antiviral drugs directed to the genes coding for reverse transcriptase and protease enzymes of the virus. Similarly, new drug regimens for the management of chronic hepatitis B and C infections have been complicated by the lack of sustained clinical responses recently associated with either nucleotide mutation (HBV) or specific genotype of the virus (HCV). Commercial systems for performing and interpreting genotypic analysis will facilitate the recognition of informative mutations, standardize results between laboratories, and produce informative and interpretative result formats for optimal treatment of patients. Drug-resistant strains of herpesviruses (HSV, VZV, CMV) are generally associated with prolonged treatment of these infections in immunocompromised patients. Ultimate relevance of genotypic assays for routine clinical practice will require correlation with phenotypic results and the outcomes of long-term studies associating clinical improvement with antiviral drugs with specific mutation patterns of these viruses.
Collapse
Affiliation(s)
- T F Smith
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
25
|
Wolf DG, Yaniv I, Ashkenazi S, Honigman A. Emergence of multiple human cytomegalovirus ganciclovir-resistant mutants with deletions and substitutions within the UL97 gene in a patient with severe combined immunodeficiency. Antimicrob Agents Chemother 2001; 45:593-5. [PMID: 11158760 PMCID: PMC90332 DOI: 10.1128/aac.45.2.593-595.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with multiple ganciclovir-resistant human cytomegalovirus mutants, containing different substitutions and deletions in the UL97 gene, was found in a patient with severe combined immunodeficiency (SCID) within 3 weeks of ganciclovir therapy. A novel 11-codon deletion at positions 590 to 600 was identified. These unique findings may be related to the nature of the immunodeficiency in the SCID patient.
Collapse
Affiliation(s)
- D G Wolf
- Department of Clinical Microbiology and Infectious Diseases, Hadassah University Hospital, Jerusalem, and Schneider Children Medical Center, Petach Tiqva, Israel.
| | | | | | | |
Collapse
|