1
|
Farah N, Chin VK, Chong PP, Lim WF, Lim CW, Basir R, Chang SK, Lee TY. Riboflavin as a promising antimicrobial agent? A multi-perspective review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100111. [PMID: 35199072 PMCID: PMC8848291 DOI: 10.1016/j.crmicr.2022.100111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Riboflavin demonstrates antioxidant and photosensitizing properties. Riboflavin is able to induce ROS and modulate immune response. Riboflavin possesses potent antimicrobial activity when used alone or combined with other anti-infectives. The riboflavin biosynthesis pathway serves as an ideal drug target against microbes. UVA combination with riboflavin exhibits remarkable antimicrobial effects.
Riboflavin, or more commonly known as vitamin B2, forms part of the component of vitamin B complex. Riboflavin consisting of two important cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are involved in multiple oxidative-reduction processes and energy metabolism. Besides maintaining human health, different sources reported that riboflavin can inhibit or inactivate the growth of different pathogens including bacteria, viruses, fungi and parasites, highlighting the possible role of riboflavin as an antimicrobial agent. Moreover, riboflavin and flavins could produce reactive oxygen species (ROS) when exposed to light, inducing oxidative damage in cells and tissues, and thus are excellent natural photosensitizers. Several studies have illustrated the therapeutic efficacy of photoactivated riboflavin against nosocomial infections and multidrug resistant bacterial infections as well as microbial associated biofilm infections, revealing the potential role of riboflavin as a promising antimicrobial candidate, which could serve as one of the alternatives in fighting the global crisis of the emergence of antimicrobial resistance seen in different pathogenic microbes. Riboflavin could also be involved in modulating host immune responses, which might increase the pathogen clearance from host cells and increase host defense against microbial infections. Thus, the dual effects of riboflavin on both pathogens and host immunity, reflected by its potent bactericidal effect and alleviation of inflammation in host cells further imply that riboflavin could be a potential candidate for therapeutic intervention in resolving microbial infections. Hence, this review aimed to provide some insights on the promising role of riboflavin as an antimicrobial candidate and also a host immune-modulator from a multi-perspective view as well as to discuss the application and challenges on using riboflavin in photodynamic therapy against various pathogens and microbial biofilm-associated infections.
Collapse
Affiliation(s)
- Nuratiqah Farah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Wai Feng Lim
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, UPM, 43400, Serdang, Selangor, Malaysia
| | - Sui Kiat Chang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture. South China Botanical Garden, Chinese Academy of Sciences. Guangzhou, 510650 China
| | - Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia
- Corresponding author.
| |
Collapse
|
2
|
Abstract
As the world gets closer to eliminating malaria, the scientific community worldwide has begun to realize the importance of malaria transmission-blocking interventions. The onus of breaking the life cycle of the human malaria parasite Plasmodium falciparum predominantly rests upon transmission-blocking drugs because of emerging resistance to commonly used schizonticides and insecticides. This third part of our review series on malaria transmission-blocking entails transmission-blocking potential of preclinical transmission-blocking antimalarials and other non-malaria drugs/experimental compounds that are not in clinical or preclinical development for malaria but possess transmission-blocking potential. Collective analysis of the structure and the activity of these experimental compounds might pave the way toward generation of novel prototypes of next-generation transmission-blocking drugs.
Collapse
|
3
|
Penna-Coutinho J, Aguiar AC, Krettli/ AU. Commercial drugs containing flavonoids are active in mice with malaria and in vitro against chloroquine-resistant Plasmodium falciparum. Mem Inst Oswaldo Cruz 2018; 113:e180279. [PMID: 30540020 PMCID: PMC6282106 DOI: 10.1590/0074-02760180279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/05/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The main strategy to control human malaria still relies on specific
drug treatment, limited now by Plasmodium falciparum-resistant
parasites, including that against artemisinin derivatives. Despite the large
number of active compounds described in the literature, few of them reached full
development against human malaria. Drug repositioning is a fast and less
expensive strategy for antimalarial drug discovery, because these compounds are
already approved for human use. OBJECTIVES To identify new antimalarial drugs
from compounds commercially available and used for other indications. METHODS
Accuvit®, Ginkgo® and Soyfit®, rich in
flavonoids, and also the standard flavonoids, hesperidin, quercetin, and
genistein were tested against blood cultures of chloroquine-resistant P.
falciparum, as well as chloroquine, a reference antimalarial.
Inhibition of parasite growth was measured in immunoenzymatic assay with
monoclonal anti-P. falciparum antibodies, specific to the
histidine-rich protein II. Tests in mice with P. berghei
malaria were based on percent of parasitaemia reduction. These compounds were
also evaluated for in vitro cytotoxicity. FINDINGS The
inhibition of parasite growth in vitro showed that
Accuvit® was the most active drug (IC50 5 ± 3.9
μg/mL). Soyfit® was partially active (IC50 13.6 ± 7.7
μg/mL), and Ginkgo® (IC50 38.4 ± 14 μg/mL) was inactive.
All such compounds were active in vivo at a dose of 50 mg/kg
body weight. Accuvit® and quercetin induced the highest reduction of
P. berghei parasitaemia (63% and 53%, respectively) on day
5 after parasite inoculation. As expected, the compounds tested were not toxic.
MAIN CONCLUSIONS The antimalarial activity of Accuvit® was not
related to flavonoids only, and it possibly results from synergisms with other
compounds present in this drug product, such as multivitamins. Multivitamins in
Accuvit® may explain its effect against the malaria parasites.
This work demonstrated for the first time the activity of these drugs, which are
already marketed.
Collapse
Affiliation(s)
- Julia Penna-Coutinho
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Laboratório de Malária Experimental e Humana, Belo Horizonte, MG, Brasil
| | - Anna Cc Aguiar
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Laboratório de Malária Experimental e Humana, Belo Horizonte, MG, Brasil
| | - Antoniana Ursine Krettli/
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Laboratório de Malária Experimental e Humana, Belo Horizonte, MG, Brasil
| |
Collapse
|
4
|
Duffy S, Loganathan S, Holleran JP, Avery VM. Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nat Protoc 2016; 11:976-92. [PMID: 27123949 DOI: 10.1038/nprot.2016.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tightly controlled induction of Plasmodium falciparum gametocytes in large-scale culture is a fundamental requirement for malaria drug discovery applications including, but not limited to, high-throughput screening. This protocol uses magnetic separation for isolation of hemozoin-containing parasites in order to (i) increase parasitemia, (ii) decrease hematocrit and (iii) introduce higher levels of young red blood cells in a culture simultaneously within 2-4 h. These parameters, along with red blood cell lysis products that are generated through schizont rupture, are highly relevant for enabling optimum induction of gametocytogenesis in vitro. No other previously published protocols have applied this particular approach for parasite isolation and maximization of fresh red blood cells before inducing gametocytogenesis, which is essential for obtaining highly synchronous gametocyte classical stages on a large scale. In summary, 500-1,000 million stage IV gametocytes can be obtained within 16 d from an initial 10 ml of asexual blood-stage culture.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Sasdekumar Loganathan
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - John P Holleran
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
5
|
Amoah LE, Kakaney C, Kwansa-Bentum B, Kusi KA. Activity of Herbal Medicines on Plasmodium falciparum Gametocytes: Implications for Malaria Transmission in Ghana. PLoS One 2015; 10:e0142587. [PMID: 26562778 PMCID: PMC4642932 DOI: 10.1371/journal.pone.0142587] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022] Open
Abstract
Background Malaria still remains a major health issue in Ghana despite the introduction of Artemisinin-based combination therapy (ACT) coupled with other preventative measures such as the use of insecticide treated nets (ITNs). The global quest for eradication of malaria has heightened the interest of identifying drugs that target the sexual stage of the parasite, referred to as transmission-blocking drugs. This study aimed at assessing the efficacy and gametocydal effects of some commonly used herbal malaria products in Ghana. Methodology/Principal Findings After identifying herbal anti-malarial products frequently purchased on the Ghanaian market, ten of them were selected and lyophilized. In vitro drug sensitivity testing of different concentrations of the herbal products was carried out on asexual and in vitro generated gametocytes of the 3D7 strain of Plasmodium falciparum. The efficacies of the products were assessed by microscopy. Cultures containing low dose of RT also produced the least number of late stage gametocytes. Two of the herbal products CM and RT inhibited the growth of late stage gametocytes by > 80% at 100 μg/ml whilst KG was the most inhibitory to early stage gametocytes at that same concentration. However at 1 μg/ml, only YF significantly inhibited the survival of late stage gametocytes although at that same concentration YF barely inhibited the survival of early stage gametocytes. Conclusions/Significance Herbal product RT (Aloe schweinfurthii, Khaya senegalensis, Piliostigma thonningii and Cassia siamea) demonstrated properties of a highly efficacious gametocydal product. Low dose of herbal product RT exhibited the highest gametocydal activity and at 100 μg/ml, RT exhibited >80% inhibition of late stage gametocytes. However inhibition of asexual stage parasite by RT was not optimal. Improving the asexual inhibition of RT could convert RT into an ideal antimalarial herbal product. We also found that generally C. sanguinolenta containing herbal products exhibited gametocydal activity in addition to high asexual efficacy. Herbal products with high gametocydal activity can help in the fight to reduce malaria transmission.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Courage Kakaney
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Bethel Kwansa-Bentum
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
6
|
Hoxmeier JC, Thompson BD, Broeckling CD, Small P, Foy BD, Prenni J, Dobos KM. Analysis of the metabolome of Anopheles gambiae mosquito after exposure to Mycobacterium ulcerans. Sci Rep 2015; 5:9242. [PMID: 25784490 PMCID: PMC4363836 DOI: 10.1038/srep09242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
Infection with Mycobacterium ulcerans causes Buruli Ulcer, a neglected tropical disease. Mosquito vectors are suspected to participate in the transmission and environmental maintenance of the bacterium. However, mechanisms and consequences of mosquito contamination by M. ulcerans are not well understood. We evaluated the metabolome of the Anopheles gambiae mosquito to profile the metabolic changes associated with bacterial colonization. Contamination of mosquitoes with live M. ulcerans bacilli results in disruptions to lipid metabolic pathways of the mosquito, specifically the utilization of glycerolipid molecules, an affect that was not observed in mosquitoes exposed to dead M. ulcerans. These results are consistent with aberrations of lipid metabolism described in other mycobacterial infections, implying global host-pathogen interactions shared across diverse saprophytic and pathogenic mycobacterial species. This study implicates features of the bacterium, such as the putative M. ulcerans encoded phospholipase enzyme, which promote virulence, survival, and active adaptation in concert with mosquito development, and provides significant groundwork for enhanced studies of the vector-pathogen interactions using metabolomics profiling. Lastly, metabolic and survival data suggest an interaction which is unlikely to contribute to transmission of M. ulcerans by A. gambiae and more likely to contribute to persistence of M. ulcerans in waters cohabitated by both organisms.
Collapse
Affiliation(s)
- J Charles Hoxmeier
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Brice D Thompson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523
| | - Pamela Small
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Jessica Prenni
- 1] Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523 [2] Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
7
|
Abstract
Drugs that kill or inhibit the sexual stages of Plasmodium in order to prevent transmission are important components of malaria control programmes. Reducing gametocyte carriage is central to the control of Plasmodium falciparum transmission as infection can result in extended periods of gametocytaemia. Unfortunately the number of drugs with activity against gametocytes is limited. Primaquine is currently the only licensed drug with activity against the sexual stages of malaria parasites and its use is hampered by safety concerns. This shortcoming is likely the result of the technical challenges associated with gametocyte studies together with the focus of previous drug discovery campaigns on asexual parasite stages. However recent emphasis on malaria eradication has resulted in an upsurge of interest in identifying compounds with activity against gametocytes. This review examines the gametocytocidal properties of currently available drugs as well as those in the development pipeline and examines the prospects for discovery of new anti-gametocyte compounds.
Collapse
|
8
|
Haynes RK, Cheu KW, Chan HW, Wong HN, Li KY, Tang MMK, Chen MJ, Guo ZF, Guo ZH, Sinniah K, Witte AB, Coghi P, Monti D. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action. ChemMedChem 2012; 7:2204-26. [PMID: 23112085 DOI: 10.1002/cmdc.201200383] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/30/2012] [Indexed: 01/14/2023]
Abstract
Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox-active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid-methylene blue (MB), N-benzyl-1,4-dihydronicotinamide (BNAH)-MB, BNAH-lumiflavine, BNAH-riboflavin (RF), and NADPH-FAD-E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4-aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4-aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4-aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme-Fe(III) results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme-Fe(III) complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme-Fe(III) . The quinoline or arylmethanol reenters the DV, and so transfers more heme-Fe(III) out of the DV. In this way, the 4-aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Richard K Haynes
- Department of Chemistry, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dechy-Cabaret O, Benoit-Vical F. Effects of Antimalarial Molecules on the Gametocyte Stage of Plasmodium falciparum: The Debate. J Med Chem 2012; 55:10328-44. [DOI: 10.1021/jm3005898] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Odile Dechy-Cabaret
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- Service de Parasitologie-Mycologie
and Faculté de Médecine de Rangueil, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
10
|
Comparison and Optimization of Different Methods for the In Vitro Production of Plasmodium falciparum Gametocytes. J Parasitol Res 2012; 2012:927148. [PMID: 22523643 PMCID: PMC3317192 DOI: 10.1155/2012/927148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/15/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022] Open
Abstract
The generation of sexually committed parasites (gametocytogenesis) is poorly understood in malaria. If the mechanisms regulating this process were elucidated, new opportunities for blocking malaria transmission could be revealed. Here we compare several methods described previously for the in vitro production of Plasmodium falciparum gametocytes. Our approach relies on the combination of several factors that we demonstrated as impacting on or being critical to gametocytogenesis. An improved method has been developed for the in vitro production of P. falciparum gametocytes as the first step toward obtaining adequate numbers of pure gametocytes for in vitro studies, such as, for example, the identification of transmission blocking drugs.
Collapse
|
11
|
Haynes RK, Cheu KW, Li KY, Tang MMK, Wong HN, Chen MJ, Guo ZF, Guo ZH, Coghi P, Monti D. A partial convergence in action of methylene blue and artemisinins: antagonism with chloroquine, a reversal with verapamil, and an insight into the antimalarial activity of chloroquine. ChemMedChem 2011; 6:1603-15. [PMID: 21994127 DOI: 10.1002/cmdc.201100184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/13/2011] [Indexed: 12/19/2022]
Abstract
Artemisinins rapidly oxidize leucomethylene blue (LMB) to methylene blue (MB); they also oxidize dihydroflavins such as the reduced conjugates RFH₂ of riboflavin (RF), and FADH₂ of the cofactor flavin adenine dinucleotide (FAD), to the corresponding flavins. Like the artemisinins, MB oxidizes FADH₂, but unlike artemisinins, it also oxidizes NAD(P)H. Like MB, artemisinins are implicated in the perturbation of redox balance in the malaria parasite by interfering with parasite flavoenzyme disulfide reductases. The oxidation of LMB by artemisinin is inhibited by chloroquine (CQ), an inhibition that is abruptly reversed by verapamil (VP). CQ also inhibits artemisinin-mediated oxidation of RFH₂ generated from N-benzyl-1,4-dihydronicotinamide (BNAH)-RF, or FADH₂ generated from NADPH or NADPH-Fre, an effect that is also modulated by verapamil. The inhibition likely proceeds by the association of LMB or dihydroflavin with CQ, possibly involving donor-acceptor or π complexes that hinder oxidation by artemisinin. VP competitively associates with CQ, liberating LMB or dihydroflavin from their respective CQ complexes. The observations explain the antagonism between CQ-MB and CQ-artemisinins in vitro, and are reconcilable with CQ perturbing intraparasitic redox homeostasis. They further suggest that a VP-CQ complex is a means by which VP reverses CQ resistance, wherein such a complex is not accessible to the putative CQ-resistance transporter (PfCRT).
Collapse
Affiliation(s)
- Richard K Haynes
- Department of Chemistry, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kwansa-Bentum B, Ayi I, Suzuki T, Otchere J, Kumagai T, Anyan WK, Osei JHN, Asahi H, Ofori MF, Akao N, Wilson MD, Boakye DA, Ohta N. Plasmodium falciparum isolates from southern Ghana exhibit polymorphisms in the SERCA-type PfATPase6 though sensitive to artesunate in vitro. Malar J 2011; 10:187. [PMID: 21745377 PMCID: PMC3146903 DOI: 10.1186/1475-2875-10-187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2005, Ghana replaced chloroquine with artemisinin-based combination therapy as the first-line treatment for uncomplicated malaria. The aim of this work was to determine for the first time, polymorphisms in the putative pfATPase6 and pftctp, pfmdr1, pfcrt genes in Ghanaian isolates, particularly at a time when there is no report on artemisinin resistance in malaria parasites from Ghana. The sensitivity of parasite isolates to anti-malaria drugs were also evaluated for a possible association with polymorphisms in these genes. METHODS The prevalence of point mutations in the above Plasmodium falciparum genes were assessed from filter-paper blood blot samples by DNA sequencing. In vitro drug sensitivity test was carried out on some of the blood samples from volunteers visiting hospitals/clinics in southern Ghana using a modified version of the standard WHO Mark III micro-test. RESULTS All successfully tested parasite isolates were sensitive to artesunate; while 19.4%, 29.0% and 51.6% were resistant to quinine, amodiaquine and chloroquine respectively. The geometric mean of IC50 value for artesunate was 0.73 nM (95% CI, 0.38-1.08), amodiaquine 30.69 nM (95% CI, 14.18-47.20) and chloroquine 58.73 nM (95% CI, 38.08-79.38). Twenty point mutations were observed in pfATPase6 gene, with no L263E and S769N. All mutations found were low in frequency, except D639G which was observed in about half of the isolates but was not associated with artesunate response (p = 0.42). The pftctp gene is highly conserved as no mutation was observed, while CVIET which is chloroquine-resistant genotype at codon 72-76 of the pfcrt gene was identified in about half of the isolates; this was consistent with chloroquine IC50 values (p = 0.001). Mutations were present in pfmdr1 gene but were not associated with artemisinin response (p = 1.00). CONCLUSION The pfATPase6 gene is highly polymorphic with D639G appearing to be fixed in Ghanaian isolates. These may just be spontaneous mutations as all parasite isolates that were tested displayed satisfactory in vitro response to artesunate. However, there is no improvement in susceptibility of the parasites to chloroquine five years after its proscription.
Collapse
Affiliation(s)
- Bethel Kwansa-Bentum
- Section of Environmental Parasitology, Department of International Health Development, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kwansa-Bentum B, Ayi I, Suzuki T, Otchere J, Kumagai T, Anyan WK, Asahi H, Akao N, Wilson MD, Boakye DA, Ohta N. Administrative practices of health professionals and use of artesunate-amodiaquine by community members for treating uncomplicated malaria in southern Ghana: implications for artemisinin-based combination therapy deployment. Trop Med Int Health 2011; 16:1215-24. [PMID: 21740487 DOI: 10.1111/j.1365-3156.2011.02833.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the use of artemisinin-based combination and monotherapy by community members and the administrative practices of health professionals in treating malaria in Ghana. METHOD This study is a community-based cross-sectional survey in 11 rural and urban areas in southern Ghana. Using the interviewer method, close-ended questionnaires were administered to community members. Similar questionnaires were also administered in health facilities, community pharmacies and licensed chemical shops. RESULTS A total of 1085 individuals comprising 959 non-health professionals and 126 health professionals were interviewed. Fifty-seven per cent of the community members visit pharmacies/drug stores as the first point of call when they suspect malaria. According to the participating drug sellers, artemether-lumefantrine (AL) is the most prescribed/sold anti-malarial drug (59.2%), followed by dihydroartemisinin (35%), sulfadoxine-pyrimethamine (33.0%) and artesunate-amodiaquine (AS-AQ) (27.2%). The majority of customers who visit pharmacies or drug stores without prescription have their anti-malarial drug selected by the shop attendant; in situations like that, dihydroartemisinin and artesunate monotherapies are sold just as AS-AQ and AL. Chloroquine is still sold by some drug vendors, 5 years after its proscription. CONCLUSION Whereas the use of AS-AQ and AL are acceptable, the frequent use of dihydroartemisinin and artesunate monotherapy threatens the future of ACTs.
Collapse
Affiliation(s)
- Bethel Kwansa-Bentum
- Section of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Blocking Plasmodium falciparum Malaria Transmission with Drugs: The Gametocytocidal and Sporontocidal Properties of Current and Prospective Antimalarials. Pharmaceuticals (Basel) 2010. [PMCID: PMC4052541 DOI: 10.3390/ph4010044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Drugs that kill or inhibit the sexual stages of Plasmodium could potentially amplify or synergize the impact of other interventions by blocking transmission to mosquitoes. Primaquine and other 8-aminoquinolines have long offered such potential, but safety and other concerns have limited their use. Although transmission-blocking properties are not often a priority of drug discovery efforts, a number of interesting gametocytocidal and/or sporontocidal drug candidates have emerged in recent years. Some still bear significant technical and safety concerns, while others have passed clinical trials and are on the verge of entering the antimalarial armamentarium. Recent advances in our knowledge of gametocyte differentiation, gametogenesis and sporogony have also led to the identification of a large array of potential new targets for drugs that might interfere with malaria transmission. This review examines the properties of existing and prospective drugs, mechanisms of action, counter-indications and their potential role in regional malaria elimination efforts.
Collapse
|
15
|
Berry A, Deymier C, Sertorio M, Witkowski B, Benoit-Vical F. Pfs 16 pivotal role in Plasmodium falciparum gametocytogenesis: a potential antiplasmodial drug target. Exp Parasitol 2008; 121:189-92. [PMID: 19014941 DOI: 10.1016/j.exppara.2008.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 10/15/2008] [Accepted: 10/24/2008] [Indexed: 11/29/2022]
Abstract
Mature gametocytes, the sexual stage of Plasmodium falciparum, ensure the continued transmission of malaria from the human host to the mosquito vector. Even if gametocytes are not implicated in the malaria physiopathology it is crucial to the spread of malaria. Gametocytes are to be a key target for drugs used against Plasmodium in public health. The expression levels of 4 sexual-stage specific genes, Pfs 16, Pfs 25, Pfg 27 and S 18S rRNA, during gametocytogenesis of various P. falciparum strains were analyzed by a real time PCR assay. The strains showed different capacities to produce mature gametocytes and in parallel different patterns of sexual gene expression. There was a correlation only between Pfs 16 cDNA overexpression in the first 48h of the culture and the production of mature gametocytes. Pfs 16 is an early marker of the development of mature gametocytes in cultures and is therefore a potential target for new antimalarial drugs.
Collapse
Affiliation(s)
- Antoine Berry
- Service de Parasitologie-Mycologie du CHU de Toulouse, Toulouse, France.
| | | | | | | | | |
Collapse
|
16
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Nmoris OPG, Ukwandu NCD, Isaac C, Egwunyenga AO, Alawode PO, Anyanwu ALC. Riboflavin and thiamin status of Nigerian children with Plasmodium falciparum malaria. Trop Med Health 2008. [DOI: 10.2149/tmh.2007-57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
18
|
Thurnham DI. An overview of interactions between micronutrients and of micronutrients with drugs, genes and immune mechanisms. Nutr Res Rev 2007; 17:211-40. [DOI: 10.1079/nrr200486] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe objective of the present review is to examine critically the consequences of interactions that micronutrients undergo with nutrients and non-nutrients (mainly prescribed medicines) in diets and lifestyle factors (smoking, tea and alcohol consumption). In addition, the review describes recent work on interactions between nutrients and genes, the influence of gene polymorphisms on micronutrients, the impact of immune responses on micronutrients and specific interactions of antioxidant micronutrients in disease processes to minimise potential pro-oxidant damage.
Collapse
|
19
|
Evstigneev MP, Rybakova KA, Davies DB. Heteroassociation of antibiotic norfloxacin with aromatic vitamins in aqueous solution. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906040129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Afonso A, Hunt P, Cheesman S, Alves AC, Cunha CV, do Rosário V, Cravo P. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 2006; 50:480-9. [PMID: 16436700 PMCID: PMC1366921 DOI: 10.1128/aac.50.2.480-489.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/17/2005] [Accepted: 11/15/2005] [Indexed: 11/20/2022] Open
Abstract
Resistance of Plasmodium falciparum to drugs such as chloroquine and sulfadoxine-pyrimethamine is a major problem in malaria control. Artemisinin (ART) derivatives, particularly in combination with other drugs, are thus increasingly used to treat malaria, reducing the probability that parasites resistant to the components will emerge. Although stable resistance to artemisinin has yet to be reported from laboratory or field studies, its emergence would be disastrous because of the lack of alternative treatments. Here, we report for the first time, to our knowledge, genetically stable and transmissible ART and artesunate (ATN)-resistant malaria parasites. Each of two lines of the rodent malaria parasite Plosmodium chabaudi chabaudi, grown in the presence of increasing concentrations of ART or ATN, showed 15-fold and 6-fold increased resistance to ART and ATN, respectively. Resistance remained stable after cloning, freeze-thawing, after passage in the absence of drug, and transmission through mosquitoes. The nucleotide sequences of the possible genetic modulators of ART resistance (mdr1, cg10, tctp, and atp6) of sensitive and resistant parasites were compared. No mutations in these genes were identified. In addition we investigated whether changes in the copy number of these genes could account for resistance but found that resistant parasites retained the same number of copies as their sensitive progenitors. We believe that this is the first report of a malaria parasite with genetically stable and transmissible resistance to artemisinin or its derivatives.
Collapse
Affiliation(s)
- A Afonso
- Centro de Malaria e Outras Doenças Tropicais/IHMT/UEI Malaria, Rua da Junqueira 96, 1349-008 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
21
|
Bell A. Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol Lett 2005; 253:171-84. [PMID: 16243458 DOI: 10.1016/j.femsle.2005.09.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 11/18/2022] Open
Abstract
Interactions between antimicrobial agents provide clues as to their mechanisms of action and influence the combinations chosen for therapy of infectious diseases. In the treatment of malaria, combinations of drugs, in many cases acting synergistically, are increasingly important in view of the frequency of resistance to single agents. The study of antimalarial drug interactions is therefore of great significance to both treatment and research. It is therefore worrying that the analysis of drug-interaction data is often inadequate, leading in some cases to dubious conclusions about synergism or antagonism. Furthermore, making mechanistic deductions from drug-interaction data is not straightforward and of the many reported instances of antimalarial synergism or antagonism, few have been fully explained biochemically. This review discusses recent findings on antimalarial drug interactions and some pitfalls in their analysis and interpretation. The conclusions are likely to have relevance to other antimicrobial agents.
Collapse
Affiliation(s)
- Angus Bell
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin--Trinity College, Dublin 2, Ireland.
| |
Collapse
|
22
|
Abstract
This review critically examines the relationship between nutritional status and malaria. The data indicate that protein-energy malnutrition is associated with greater malaria morbidity and mortality in humans. In addition, controlled trials of either vitamin A or zinc supplementation show that these nutrients can substantially reduce clinical malaria attacks. Data for iron indicate that supplementation may minimally aggravate certain malariometric indices in some settings and also strongly improve hematologic status. Withholding of iron supplements from deficient population is, therefore, not currently indicated. Available evidence for other nutrients describe varied effects, with some deficiencies being exacerbative (e.g., thiamine), protective (e.g., vitamin E), or both exacerbative and protective in different settings (e.g., riboflavin, vitamin C). The roles of folate, other B vitamins, unsaturated fatty acids, amino acids, and selenium are also examined. Study of the interactions between nutrition and malaria may provide insight to protective mechanisms and result in nutrient-based interventions as low-cost and effective adjuncts to current methods of malaria prevention and treatment.
Collapse
Affiliation(s)
- A H Shankar
- Departments of International Health and of Molecular Microbiology and Immunology, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland, USA.
| |
Collapse
|