1
|
Kahn D, Chen W, Linden Y, Corbeil KA, Lowry S, Higham CA, Mendez KS, Burch P, DiFondi T, Verhougstraete M, De Roos AJ, Haas CN, Gerba C, Hamilton KA. A microbial risk assessor's guide to Valley Fever (Coccidioides spp.): Case study and review of risk factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170141. [PMID: 38242485 PMCID: PMC10923130 DOI: 10.1016/j.scitotenv.2024.170141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Valley Fever is a respiratory disease caused by inhalation of arthroconidia, a type of spore produced by fungi within the genus Coccidioides spp. which are found in dry, hot ecosystems of the Western Hemisphere. A quantitative microbial risk assessment (QMRA) for the disease has not yet been performed due to a lack of dose-response models and a scarcity of quantitative occurrence data from environmental samples. A literature review was performed to gather data on experimental animal dosing studies, environmental occurrence, human disease outbreaks, and meteorological associations. As a result, a risk framework is presented with information for parameterizing QMRA models for Coccidioides spp., with eight new dose-response models proposed. A probabilistic QMRA was conducted for a Southwestern US agricultural case study, evaluating eight scenarios related to farming occupational exposures. Median daily workday risks for developing severe Valley Fever ranged from 2.53 × 10-7 (planting by hand while wearing an N95 facemask) to 1.33 × 10-3 (machine harvesting while not wearing a facemask). The literature review and QMRA synthesis confirmed that exposure to aerosolized arthroconidia has the potential to result in high attack rates but highlighted that the mechanistic relationships between environmental conditions and disease remain poorly understood. Recommendations for Valley Fever risk assessment research needs in order to reduce disease risks are discussed, including interventions for farmers.
Collapse
Affiliation(s)
- David Kahn
- Department of Civil Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - William Chen
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yarrow Linden
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karalee A Corbeil
- Department of Water Management and Hydrological Science, Texas A&M University, College Station, TX 79016, USA
| | - Sarah Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ciara A Higham
- Leeds Institute for Fluid Dynamics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Karla S Mendez
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX 77030, USA
| | - Paige Burch
- Seaford High School, 1575 Seamans Neck Rd, Seaford, NY 11783, USA
| | - Taylor DiFondi
- Seaford High School, 1575 Seamans Neck Rd, Seaford, NY 11783, USA
| | - Marc Verhougstraete
- University of Arizona, Mel and Enid Zuckerman College of Public Health, 1295 N. Marton Ave., Tucson, AZ 85724, USA
| | - Anneclaire J De Roos
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA
| | - Charles N Haas
- Department of Civil Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Charles Gerba
- University of Arizona, Mel and Enid Zuckerman College of Public Health, 1295 N. Marton Ave., Tucson, AZ 85724, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
2
|
Shao Y, Molestak E, Su W, Stankevič M, Tchórzewski M. Sordarin - the antifungal antibiotic with a unique modus operandi. Br J Pharmacol 2021; 179:1125-1145. [PMID: 34767248 DOI: 10.1111/bph.15724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Fungal infections cause serious problems in many aspects of human life, in particular infections in immunocompromised patients represent serious problems. Current antifungal antibiotics target various metabolic pathways, predominantly the cell wall or cellular membrane. Numerous compounds are available to combat fungal infections, but their efficacy is far from being satisfactory and some of them display high toxicity. The emerging resistance represents a serious issue as well; hence, there is a considerable need for new anti-fungal compounds with lower toxicity and higher effectiveness. One of the unique antifungal antibiotics is sordarin, the only known compound that acts on the fungal translational machinery per se. Sordarin inhibits protein synthesis at the elongation step of the translational cycle, acting on eukaryotic translation elongation factor 2. In this review, we intend to deliver a robust scientific platform promoting the development of antifungal compounds, in particular focusing on the molecular action of sordarin.
Collapse
Affiliation(s)
- Yutian Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Marek Stankevič
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
3
|
Early state research on antifungal natural products. Molecules 2014; 19:2925-56. [PMID: 24609016 PMCID: PMC6271505 DOI: 10.3390/molecules19032925] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/01/2014] [Accepted: 01/09/2014] [Indexed: 01/20/2023] Open
Abstract
Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.
Collapse
|
4
|
Abstract
Invasive fungal infections with primary and opportunistic mycoses have become increasingly common in recent years and pose a major diagnostic and therapeutic challenge. They represent a major area of concern in today's medical fraternity. The occurrence of invasive fungal diseases, particularly in AIDS and other immunocompromised patients, is life-threatening and increases the economic burden. Apart from the previously known polyenes and imidazole-based azoles, newly discovered triazoles and echinocandins are more effective in terms of specificity, yet some immunosuppressed hosts are difficult to treat. The main reasons for this include antifungal resistance, toxicity, lack of rapid and microbe-specific diagnoses, poor penetration of drugs into sanctuary sites, and lack of oral or intravenous preparations. In addition to combination antifungal therapy, other novel antimycotic treatments such as calcineurin signaling pathway blockers and vaccines have recently emerged. This review briefly summarizes recent developments in the pharmacotherapeutic treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Bijoy P Mathew
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
5
|
Abstract
Experimental models of coccidioidomycosis performed using various laboratory animals have been, and remain, a critical component of elucidation and understanding of the pathogenesis and host resistance to infection with Coccidioides spp., as well as to development of more efficacious antifungal therapies. The general availability of genetically defined strains, immunological reagents, ease of handling, and costs all contribute to the use of mice as the primary laboratory animal species for models of this disease. Five types of murine models are studied and include primary pulmonary disease, intraperitoneal with dissemination, intravenous infection emulating systemic disease, and intracranial or intrathecal infection emulating meningeal disease. Each of these models has been used to examine various aspects of host resistance, pathogenesis, or antifungal therapy. Other rodent species, such as rat, have been used much less frequently. A rabbit model of meningeal disease, established by intracisternal infection, has proven to model human meningitis well. This model is useful in studies of host response, as well as in therapy studies. A variety of other animal species including dogs, primates, and guinea pigs have been used to study host response and vaccine efficacy. However, cost and increased needs of animal care and husbandry are limitations that influence the use of the larger animal species.
Collapse
Affiliation(s)
- Karl V Clemons
- Division of Infectious Diseases, Santa Clara Valley Medical Center, 751 South Bascom Ave., San Jose, CA 95128-2699, USA.
| | | | | |
Collapse
|
6
|
DiCaudo DJ. Coccidioidomycosis: a review and update. J Am Acad Dermatol 2006; 55:929-42; quiz 943-5. [PMID: 17110216 DOI: 10.1016/j.jaad.2006.04.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 04/05/2006] [Accepted: 04/11/2006] [Indexed: 11/25/2022]
Abstract
Coccidioidomycosis occurs in arid and semi-arid regions of the New World from the western United States to Argentina. Highly endemic areas are present in the southwest United States. Coccidioides species live in the soil and produce pulmonary infection via airborne arthroconidia. The skin may be involved by dissemination of the infection, or by reactive eruptions, such as a generalized exanthem or erythema nodosum. Interstitial granulomatous dermatitis and Sweet's syndrome have recently been recognized as additional reactive signs of the infection. Coccidioidomycosis is a "great imitator" with protean manifestations. Cutaneous findings may be helpful clues in the diagnosis of this increasingly important disease.
Collapse
Affiliation(s)
- David J DiCaudo
- Department of Dermatology and Pathology, Mayo Clinic, Scottsdale, Arizona 85259, USA.
| |
Collapse
|
7
|
|
8
|
Arikan S, Rex JH. New agents for the treatment of systemic fungal infections – current status. Expert Opin Emerg Drugs 2005; 7:3-32. [PMID: 15989533 DOI: 10.1517/14728214.7.1.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Systemic antifungal chemotherapy is enjoying its most dynamic era. More antifungal agents are under development than ever before, including agents in entirely new classes. Major goals of current investigations are to identify compounds with a wide spectrum of activity, minimal toxicity and a high degree of target specificity. The antifungal drugs in development include new azoles {voriconazole, posaconazole (formerly SCH-56592), ravuconazole (formerly BMS-207147)}, lipid formulations of amphotericin B, a lipid formulation of nystatin, echinocandins {anidulafungin (formerly, LY-303366, VER-002), caspofungin (formerly MK-991), micafungin (formerly FK-463)}, antifungal peptides other than echinocandins, and sordarin derivatives. This discussion reviews the currently available antifungal agents and summarises the developmental issues that surround these new systemic antifungal drugs.
Collapse
Affiliation(s)
- Sevtap Arikan
- Department of Microbiology and Clinical Microbiology, Hacettepe University Medical School, 06100 Ankara, Turkey.
| | | |
Collapse
|
9
|
Kamai Y, Kakuta M, Shibayama T, Fukuoka T, Kuwahara S. Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice. Antimicrob Agents Chemother 2005; 49:52-6. [PMID: 15616275 PMCID: PMC538903 DOI: 10.1128/aac.49.1.52-56.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The activities of R-135853, a novel sordarin derivative that possesses a 1,4-oxazepane ring moiety, were evaluated in vitro and in vivo. R-135853 exhibited potent in vitro activities against Candida albicans (fluconazole-susceptible strains), Candida glabrata, Candida tropicalis, and Cryptococcus neoformans, with MICs at which 90% of isolates were inhibited of 0.03, 1, 0.5, and 0.5 microg/ml, respectively. R-135853 also exhibited potent activities against fluconazole-susceptible dose-dependent and fluconazole-resistant strains of C. albicans, with MICs ranging from 0.03 to 0.06 mug/ml. However, R-135853 exhibited weak or no activity against Candida parapsilosis, Candida krusei, and Aspergillus spp. R-135853 exhibited dose-dependent efficacy against experimental murine hematogenous candidiasis induced by C. albicans when it was administered by both the subcutaneous and the oral routes and reduced viable cell counts in the kidneys significantly when it was administered at 50 mg/kg of body weight/dose (administration three times a day). In this model, R-135853 also exhibited dose-dependent efficacy by single oral administration. Subcutaneous administration of R-135853 exhibited dose-dependent efficacy against experimental murine esophageal candidiasis induced by fluconazole-resistant C. albicans, against which fluconazole at 50 mg/kg/dose was ineffective, and reduced viable cell counts in the esophagus significantly when it was administered at 10 and 50 mg/kg/dose. R-135853 eradicated C. albicans from the esophagi of one and four of five mice when it was administered at 10 and 50 mg/kg/dose, respectively. These results suggest that R-135853 is promising for the treatment of disseminated or mucosal candidiasis, including fluconazole-refractory infections.
Collapse
Affiliation(s)
- Yasuki Kamai
- Biological Research Laboratories, Sankyo Co., Ltd., 2-58 Hiromachi 1-chome, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Coccidioidomycosis is a systemic mycosis that is acquired by inhalation. It is endemic in desert-like areas of the southwest USA and neighboring regions, but is becoming increasingly prevalent in other regions of the world as a result of widespread travel. The clinical spectrum is broad, ranging from inapparent infections or symptoms of acute respiratory infection with spontaneous recovery to various manifestations of disseminated coccidioidomycosis. Since the majority of patients with disseminated coccidioidomycosis present with cutaneous manifestations, early diagnosis of this potentially life-threatening disease by dermatologists is important. Atypical skin changes, pulmonary infiltrates and a history of travel to areas where the disease is endemic are indicative of coccidioidomycosis. For conclusive diagnosis, identification of the fungus by histopathologic examination or culture is desirable. Serological tests can be helpful for establishing the diagnosis and monitoring the course of the disease. The treatment of choice for cutaneous coccidioidomycosis is currently oral azole antifungal agents, such as itraconazole 400 mg daily, continued for 6 months after clinical response. Since relapses are frequent after discontinuation of the treatment, close clinical, serological and radiological follow-up is required for years.
Collapse
Affiliation(s)
- F Meier
- Universitäts-Hautklinik der Eberhard-Karls-Universität Tübingen.
| | | | | | | | | | | |
Collapse
|
11
|
Polak A. Antifungal therapy--state of the art at the beginning of the 21st century. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; Spec No:59-190. [PMID: 12675476 DOI: 10.1007/978-3-0348-7974-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The most relevant information on the present state of the art of antifungal chemotherapy is reviewed in this chapter. For dermatomycoses a variety of topical antifungals are available, and safe and efficacious systemic treatment, especially with the fungicidal drug terbinafine, is possible. The duration of treatment can be drastically reduced. Substantial progress in the armamentarium of drugs for invasive fungal infections has been made, and a new class of antifungals, echinocandins, is now in clinical use. The following drugs in oral and/or intravenous formulations are available: the broad spectrum polyene amphotericin B with its new "clothes"; the sterol biosynthesis inhibitors fluconazole, itraconazole, and voriconazole; the glucan synthase inhibitor caspofungin; and the combination partner flucytosine. New therapy schedules have been studied; combination therapy has found a significant place in the treatment of severely compromised patients, and the field of prevention and empiric therapy is fast moving. Guidelines exist nowadays for the treatment of various fungal diseases and maintenance therapy. New approaches interfering with host defenses or pathogenicity of fungal cells are being investigated, and molecular biologists are looking for new targets studying the genomics of pathogenic fungi.
Collapse
|
12
|
Abstract
The vast number and variety of chemotherapeutic agents isolated from microbial natural products and used to treat bacterial infections have greatly contributed to the improvement of human health during the past century. However, only a limited number of antifungal agents (polyenes and azoles, plus the recently introduced caspofungin acetate) are currently available for the treatment of life-threatening fungal infections. Furthermore, the prevalence of systemic fungal infections has increased significantly during the past decade. For this reason, the development of new antifungal agents, preferably with novel mechanisms of action, is an urgent medical need. A selection of antifungal agents in early stages of development, produced by micro-organisms, is summarized in this review. The compounds are classified according to their mechanisms of action, covering inhibitors of the synthesis of cell wall components (glucan, chitin and mannoproteins), of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase and fatty acid elongation) and of protein synthesis (sordarins). In addition, some considerations related to the chemotaxonomy of the producing organisms and some issues relevant to antifungal drug discovery are also discussed.
Collapse
Affiliation(s)
- M F Vicente
- Centro de Investigacíon Básica, Merck Research Laboratories, Merck, Sharp and Dohme España, S. A. Josefa Valcárcel 38, 28027 Madrid, Spain.
| | | | | | | |
Collapse
|
13
|
Martinez A, Ferrer S, Santos I, Jimenez E, Sparrowe J, Regadera J, De Las Heras FG, Gargallo-Viola D. Antifungal activities of two new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats. Antimicrob Agents Chemother 2001; 45:3304-9. [PMID: 11709301 PMCID: PMC90830 DOI: 10.1128/aac.45.12.3304-3309.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarins constitute a new class of antifungal agents with a novel mechanism of action involving the selective inhibition of fungal protein synthesis. A further evolution of this class of antifungals has led to a new family of sordarin derivatives called azasordarins. The therapeutic efficacies of two new azasordarins, GW471552 and GW471558, were studied in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats. In all cases rats were immunosuppressed with dexamethasone in the drinking water. Oral candidiasis was established by inoculating 0.1 ml of a yeast suspension containing 5 x 10(8) cells of Candida albicans 4711E with a cotton swab on three alternate days. Vulvovaginal candidiasis was established in ovariectomized and estrus-induced rats by intravaginal inoculation of 10(7) CFU of C. albicans 4711E in 0.1 ml of saline. GW471552 and GW471558 were administered at 1, 5, and 10 mg/kg of body weight via the subcutaneous route. In oral candidiasis, azasordarins were administered each 8 h for 7 consecutive days, while in vaginal candidiasis the compounds were given each 4 h for 3 consecutive days. Antifungal activity of azasordarins was assessed by colony counts and by histological examination 1 day after treatment. In the oral infection model, GW471552 and GW471558 administered at 5 mg/kg significantly reduced (P < 0.05) the number of CFU of C. albicans compared with untreated controls. In addition, GW471552 and GW471558 given at 10 mg/kg eradicated C. albicans from the oral cavities of 100% of infected animals. Against vulvovaginal infection, both compounds showed significant therapeutic efficacy. GW471552 was able to eradicate the vaginal fungal burden at a dose of 10 mg/kg, and it significantly reduced the number of CFU of C. albicans in vaginas of rats treated with a dose of 5 mg/kg (P < 0.05). GW471558 showed greater efficacy, eradicating the fungal burden of 100% of infected rats at a dose of 5 mg/kg and significantly reducing (P < 0.05) the C. albicans vaginal counts even at a dose of 1 mg/kg. In both therapeutic efficacy studies, the histological findings confirmed the microbiological results. The experimental results presented show that the tested azasordarins are effective against oral and vulvovaginal candidiasis in immunosuppressed rats and could be promising antifungal agents for use in humans.
Collapse
|
14
|
Abstract
Recent studies have contributed to our understanding of risk factors for severe and potentially life-threatening infections with Coccidioides immitis, allowing a more rational approach to initiation of antifungal therapy for this infection, as well as determining its intensity and duration. A large randomized trial found that itraconazole and fluconazole had similar efficacies in the treatment of progressive nonmeningeal coccidioidomycosis. An animal model of coccidioidal meningitis suggested potential efficacy of systemically administered liposomal amphotericin B. Investigational agents that have activity against C. immitis include posaconazole, voriconazole, caspofungin, and sordarin derivatives.
Collapse
Affiliation(s)
- S C Deresinski
- Department of Medicine, Stanford University, Stanford, California, USA.
| |
Collapse
|
15
|
Herreros E, Almela MJ, Lozano S, Gomez de las Heras F, Gargallo-Viola D. Antifungal activities and cytotoxicity studies of six new azasordarins. Antimicrob Agents Chemother 2001; 45:3132-9. [PMID: 11600368 PMCID: PMC90794 DOI: 10.1128/aac.45.11.3132-3139.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 are members of a new family of sordarin derivatives called azasordarins. The in vitro activities of these compounds were evaluated against clinical isolates of yeasts, including Candida albicans, Candida non-albicans, and Cryptococcus neoformans strains. Activities against Pneumocystis carinii, Aspergillus spp., less common molds, and dermatophytes were also investigated. Azasordarin derivatives displayed significant activities against the most clinically important Candida species, with the exception of C. krusei. Against C. albicans, including fluconazole-resistant strains, MICs at which 90% of the isolates tested are inhibited (MIC(90)s) were 0.002 microg/ml with GW 479821, 0.015 microg/ml with GW 515716 and GW 587270, and 0.06 microg/ml with GW 471552, GW 471558, and GW 570009. The MIC(90)s of GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 were 0.12, 0.12, 0.03, 0.06, 0.12, and 0.06 microg/ml, respectively, against C. tropicalis and 4, 0.25, 0.06, 0.25, 0.5, and 0.5 microg/ml, respectively, against C. glabrata. In addition, some azasordarin derivatives (GW 479821, GW 515716, GW 570009, and GW 58720) were active against C. parapsilosis, with MIC(90)s of 2, 4, 4, and 1 microg/ml, respectively. The compounds were extremely potent against P. carinii, showing 50% inhibitory concentrations of <or=0.001 microg/ml. However Cryptococcus neoformans was resistant to all compounds tested (MIC > 16 microg/ml). These azasordarin derivatives also showed significant activity against emerging fungal pathogens, which affect immunocompromised patients, such as Rhizopus arrhizus, Blastoschizomyces capitatus, and Geotrichum clavatum. Against these organisms, the MICs of GW 587270 ranged from 0.12 to 1 microg/ml, those of GW 479821 and GW 515716 ranged from 0.12 to 2 microg/ml, and those of GW 570009 ranged from 0.12 to 4 microg/ml. Against Fusarium oxysporum, Scedosporium apiospermum, Absidia corymbifera, Cunninghamella bertholletiae, and dermatophytes, GW 587270 was the most active compound, with MICs ranging from 4 to 16 microg/ml. Against Aspergillus spp., the MICs of the compounds tested were higher than 16 microg/ml. The in vitro selectivity of azasordarins was investigated by cytotoxicity studies performed with five cell lines and primary hepatocytes. Concentrations of compound required to achieve 50% inhibition of the parameter considered (Tox(50)s) of GW 570009, GW 587270, GW 479281, and GW 515716 in the cell lines ranged from 60 to 96, 49 to 62, 24 to 36, and 16 to 38 microg/ml, respectively. The cytotoxicity values of GW 471552 and GW 471558 were >100 microg/ml for all cell lines tested. Tox(50)s on hepatocytes were in the following order: GW 471558 > GW 471552 > GW 570009 > GW 587270 > GW 515716 > GW 479821, with values ranging from higher than 100 microg/ml to 23 microg/ml. The cytotoxicity results obtained with fully metabolizing rat hepatocytes were in total agreement with those obtained with cell lines. In summary, the in vitro activities against important pathogenic fungi and the selectivity demonstrated in mammalian cell lines justify additional studies to determine the clinical usefulness of azasordarins.
Collapse
Affiliation(s)
- E Herreros
- Glaxo Smithkline, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Aviles P, Pateman A, San Roman R, Guillén MJ, Gómez De Las Heras F, Gargallo-Viola D. Animal pharmacokinetics and interspecies scaling of sordarin derivatives following intravenous administration. Antimicrob Agents Chemother 2001; 45:2787-92. [PMID: 11557470 PMCID: PMC90732 DOI: 10.1128/aac.45.10.2787-2792.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarin derivatives constitute a new group of synthetic antifungal agents that selectively inhibit fungal protein synthesis. They have demonstrated in vitro activity against the most important fungal pathogens, both yeast and filamentous. This new family of compounds has also shown in vivo activity against murine Candida albicans, Histoplasma capsulatum, and Coccidioides immitis experimental infections, as well as against Pneumocystis carinii pneumonia in rats. After intravenous dosing in animals, both the area under the concentration-time curve and the elimination half-life were highest in Cynomolgus monkeys, followed by those in rats, mice, and rabbits. The volume of distribution at steady state for sordarin derivatives was similar in all species tested. The clearance in rats and mice was higher than for other species. GM 237354, a sordarin derivative, was characterized by high serum protein binding in mouse, rat, and monkey serum (unbound fraction, < or =5%). An indirect evaluation of the effect of liver function upon the metabolism of this class of compounds has been made in animals with impaired liver function such as Gunn rats, as well as in allometric studies that showed better correlations of half-life to liver blood flow than to animal body weight. Linearity of the main pharmacokinetic parameters was demonstrated after intravenous dosing of the representative compound GM 193663 at 10 and 20 mg/kg of body weight in rats. Allometry was used to determine whether human pharmacokinetic parameters can be predicted from animal data by regression analysis against body weight and liver blood flow. All these results have demonstrated that the human pharmacokinetics of sordarin derivatives can be forecast from animal data.
Collapse
Affiliation(s)
- P Aviles
- GlaxoSmithKline, Parque Tecnológico de Madrid, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Aviles P, Falcoz C, Guillén MJ, San Roman R, Gómez De Las Heras F, Gargallo-Viola D. Correlation between in vitro and in vivo activities of GM 237354, a new sordarin derivative, against Candida albicans in an in vitro pharmacokinetic-pharmacodynamic model and influence of protein binding. Antimicrob Agents Chemother 2001; 45:2746-54. [PMID: 11557464 PMCID: PMC90726 DOI: 10.1128/aac.45.10.2746-2754.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antifungal effect of GM 237354, a sordarin derivative, was studied in an in vitro pharmacokinetic (PK)-pharmacodynamic dynamic system (bioreactor) which reproduces PK profiles observed in a previously described model of drug efficacy against murine systemic candidiasis. Immunocompetent mice infected intravenously with 10(5) CFU of Candida albicans were treated with GM 237354 at 2.5, 10, and 40 mg/kg of body weight every 8 h subcutaneously for 7 days. Free concentrations in serum were calculated by multiplying total concentrations measured in vivo by 0.05, the free fraction determined in vitro by equilibrium dialysis. In the bioreactor the inoculum was approximately 10(6) CFU/ml; and a one-compartment PK model was used to reproduce the PK profiles of free and total GM 237354 in serum obtained in mice, and clearance of C. albicans was measured over 48 h. A good correlation was observed when the in vivo fungal kidney burden and the area under the survival time curve were compared with the in vitro broth "burden," although only when free in vivo levels in serum were reproduced in vitro. GM 237354 displayed a 3-log decrease effect both in vivo and in vitro. The very few reports available on in vitro-in vivo correlations have been obtained with antibiotics. The good in vitro-in vivo correlation obtained with an antifungal agent shows that the in vitro dynamic system could constitute a powerful investigational tool prior to assessment of the efficacy of an anti-infective agent in animals and humans.
Collapse
Affiliation(s)
- P Aviles
- GlaxoSmithKline S.A., Parque Tecnológico de Madrid, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Martinez A, Regadera J, Jimenez E, Santos I, Gargallo-Viola D. Antifungal efficacy of GM237354, a sordarin derivative, in experimental oral candidiasis in immunosuppressed rats. Antimicrob Agents Chemother 2001; 45:1008-13. [PMID: 11257009 PMCID: PMC90418 DOI: 10.1128/aac.45.4.1008-1013.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GM237354 is a novel sordarin derivative with a broad spectrum of potent activity against a wide range of fungi. The members of this new class of antifungal agents act as potent inhibitors of fungal protein synthesis. In this study, the therapeutic effects of GM237354 were investigated in a novel experimental oral Candida albicans infection model in immunosuppressed rats. The animals were immunosuppressed with dexamethasone in their drinking water and infected on three alternate days. GM237354 was given three times per day for seven consecutive days at 1.25, 2.5, 5, or 10 mg/kg of body weight per dose. In addition, to provide a preliminary idea of the correlation between regimen administration and therapeutic efficacy, GM237354 was administered to two additional groups of rats at 5 mg/kg once or twice a day for 7 days. The drug efficacy was assessed microbiologically, histologically, and by a morphometric study of lesions. Evident agreement was observed among results obtained by the different methods in all of the animals studied. Microbiologically, the efficacy of GM237354 was determined by measuring the number of C. albicans organisms in the oral cavities of rats in the middle (day 4) and at the end (day 7) of the treatment. GM237354 administered at 5, 7.5, 10, 15, or 30 mg/kg/day for 7 days significantly reduced the number of CFU in the oral cavities of treated rats compared with the number of CFU in the oral cavities of the untreated controls. A significant reduction was also observed when GM237354 was administered at 7.5, 10, 15, or 30 mg/kg/day for 4 days. Furthermore, C. albicans was not detected in oral swabs from any infected rats after 1 week of treatment when GM237354 was administered at 15 or 30 mg/kg/day or after 4 days of treatment at 30 mg/kg/day. Histologically, untreated control animals showed extensive colonization of the epithelium of the dorsal tongue by numerous hyphae. Animals treated with GM237354 at 7.5 mg/kg/day showed small areas with superficial hyphal penetration into the epithelium that produced intraepithelial microabscesses. However, animals treated with GM237354 at 15 mg/kg/day showed multiple regenerative areas of the covering epithelium, and only focalized zones of the tongue surface were occupied by hyphae. No hyphal colonization of the epithelium was seen in rats treated with GM237354 at 30 mg/kg/day and which showed extensive areas of epithelial regeneration of the tongue. The histopathology findings were confirmed by morphometry studies, and the percentage of epithelium occupied by C. albicans hyphae decreased from 17.5% in the control group to 4.8 and 0.1% in animals treated with GM237354 at 7.5 and 15 mg/kg/day, respectively. These results demonstrated that the sordarin derivative GM237354 was effective against experimental oral candidiasis in immunosuppressed rats, and further studies are needed to determine the potential of GM237354 for use in the treatment of this infection in humans.
Collapse
Affiliation(s)
- A Martinez
- Research Department, Glaxo Wellcome S.A., 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Graybill JR. The role of murine models in the development of antifungal therapy for systemic mycoses. Drug Resist Updat 2000; 3:364-383. [PMID: 11498404 DOI: 10.1054/drup.2000.0171] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Animal testing is crucial to the development of new antifungal compounds. This review describes the role that murine and other animal models have played in the development of three classes of antifungal agents: the polyenes, the triazoles and the echinocandins and the ways in which these models have been either the positive link in the path from in vitro studies to the patient, or have foreclosed later clinical evaluation. Efficacy studies in particular mycoses are discussed, as well as studies designed to determine whether combinations of antifungal drugs may have value over single agents. Copyright 2000 Harcourt Publishers Ltd.
Collapse
|
20
|
Martinez A, Aviles P, Jimenez E, Caballero J, Gargallo-Viola D. Activities of sordarins in experimental models of candidiasis, aspergillosis, and pneumocystosis. Antimicrob Agents Chemother 2000; 44:3389-94. [PMID: 11083645 PMCID: PMC90210 DOI: 10.1128/aac.44.12.3389-3394.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarin derivatives represent a new class of antifungal agents that act as potent inhibitors of fungal protein synthesis and possess a broad spectrum of activity. The in vivo activity of GM193663 and GM237354 was studied in mouse models of disseminated candidiasis and aspergillosis and in a rat model of pneumocystosis. The pharmacokinetic behavior of both sordarin derivatives was studied in mice and rats. In all studies, compounds were administered by the subcutaneous route. After a subcutaneous dose of 50 mg/kg of body weight to mice, the maximum level in serum, area under the concentration-time curve, half-life, and clearance for GM193663 and GM237354 were 51.8 and 23 microg/ml, 79.5 and 46 microg. h/ml, 0.8 and 0.85 h, and 21 and 25 ml/h, respectively. Systemic candidiasis and aspergillosis were established in CD-1 male mice infected with Candida albicans or Aspergillus fumigatus. For systemic candidiasis, compounds were given three times per day for seven consecutive days at 15, 30, 60, or 120 mg/kg/day. GM193663 and GM237354 showed dose-related efficacy against C. albicans, with 50% effective doses, 1 month after infection, of 25.2 and 10.7 mg/kg/dose, respectively. In experimental infections with A. fumigatus, GM237354 was given three times per day at 30, 60, or 120 mg/kg/day for five consecutive days. Animals treated with GM237354 demonstrated irregular responses. The survival of animals treated with GM237354 was 0, 30, and 0% at 30, 60, and 120 mg/kg/day, respectively. The therapeutic efficacy of GM193663 and GM237354 against Pneumocystis carinii was studied in an experimental P. carinii pneumonia (PCP) rat model. After a subcutaneous dose of 10 mg/kg given to rats, the maximum level in serum, area under the concentration-time curve, half-life, and clearance for GM193663 and GM237354 were 6.6 and 7.2 microg/ml, 8.5 and 11.8 microg. h/ml, 0.7 and 0.8 h, and 230 and 133 ml/h, respectively. To induce spontaneous PCP, rats were chronically immunosuppressed with dexamethasone. Infected animals were treated twice daily for 10 days at 0.2, 2, or 10 mg/kg/day. The therapeutic effect was estimated by the reduction in the number of cysts in the lungs of treated versus untreated animals. GM193663 and GM237354 significantly reduced the mean (+/- standard deviation) log number of cysts from 7.6 +/- 0.2 in the untreated group to 4.7 +/- 0.2 and 4.6 +/- 0.1, respectively, when the drugs were administered at a dose of 2 mg/kg/day. The log number of cysts was also reduced in infected animals given lower doses of the compounds (0.2 mg/kg/day). In summary, GM193663 and GM237354 are new sordarin derivatives that may potentially play a major role in the treatment of candidiasis and PCP. Further testing with Aspergillus in other animal models is warranted.
Collapse
Affiliation(s)
- A Martinez
- Research Department, Glaxo Wellcome S.A., 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | |
Collapse
|