1
|
Serian M, Mason AJ, Lorenz CD. Emergent conformational and aggregation properties of synergistic antimicrobial peptide combinations. NANOSCALE 2024; 16:20657-20669. [PMID: 39422704 PMCID: PMC11488577 DOI: 10.1039/d4nr03043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Synergy between antimicrobial peptides (AMPs) may be the key to their evolutionary success and could be exploited to develop more potent antibacterial agents. One of the factors thought to be essential for AMP potency is their conformational flexibility, but characterising the diverse conformational states of AMPs experimentally remains challenging. Here we introduce a method for characterising the conformational flexibility of AMPs and provide new insights into how the interplay between conformation and aggregation in synergistic AMP combinations yields emergent properties. We use unsupervised learning and molecular dynamics simulations to show that mixing two AMPs from the Winter Flounder family (pleurocidin (WF2) & WF1a) constrains their conformational space, reducing the number of distinct conformations adopted by the peptides, most notably for WF2. The aggregation behaviour of the peptides is also altered, favouring the formation of higher-order aggregates upon mixing. Critically, the interaction between WF1a and WF2 influences the distribution of WF2 conformations within aggregates, revealing how WF1a can modulate WF2 behaviour. Our work paves the way for deeper understanding of the synergy between AMPs, a fundamental process in nature.
Collapse
Affiliation(s)
- Miruna Serian
- Biological Physics & Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, UK
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - Christian D Lorenz
- Biological Physics & Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, UK
- Department of Engineering, King's College London, London, WC2R 2LS, UK.
| |
Collapse
|
2
|
Venkatesan U, Muniyan R. Review on the extension of shelf life for fruits and vegetables using natural preservatives. Food Sci Biotechnol 2024; 33:2477-2496. [PMID: 39144196 PMCID: PMC11319680 DOI: 10.1007/s10068-024-01602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 08/16/2024] Open
Abstract
Fruits and vegetables are important for the nutrition and health of individuals. They are highly perishable in nature because of their susceptibility to microbial growth. Foodborne pathogens create a significant problem for consumers, food businesses, and food safety. Postharvest factors, including transportation, environment, and preservation techniques, cause a reduction in product quality. The present world is using synthetic preservatives, which have negative impacts on consumer health. Food safety and demand for healthy foods among consumers, the scientific community, and the food industry resulted in the exploitation of natural preservatives, which play an important role in their effectiveness, prolonged shelf life, and safety. Natural preservatives include plants, animals, and microbiological sources with polymers to extend shelf life, improve quality, and enhance food safety. This review specifically focuses on mechanism of action of natural preservatives, spoilage of fruit and vegetables, the importance of edible film and coating on fruits and vegetables.
Collapse
Affiliation(s)
- Uma Venkatesan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Rajiniraja Muniyan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
3
|
Cho J, Hong HW, Park K, Myung H, Yoon H. Unveiling the mechanism of bactericidal activity of a cecropin A-fused endolysin LNT113. Int J Biol Macromol 2024; 260:129493. [PMID: 38224804 DOI: 10.1016/j.ijbiomac.2024.129493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Endolysins are lytic enzymes produced by bacteriophages at the end of their lytic cycle and degrade the peptidoglycan layer of the bacterial cell wall. Thus, they have been extensively explored as a promising antibacterial agent to replace or supplement current antibiotics. Gram-negative bacteria, however, are prone to resist exogenous endolysins owing to their protective outer membrane. We previously engineered endolysin EC340, encoded by the Escherichia coli phage PBEC131, by substituting its seven amino acids and fusing an antimicrobial peptide cecropin A at its N-terminus. The engineered endolysin LNT113 exerted superior activity to its intrinsic form. This study investigated how cecropin A fusion facilitated the bactericidal activity of LNT113 toward Gram-negative bacteria. Cecropin A of LNT113 markedly increased the interaction with lipopolysaccharides, while the E. coli defective in the core oligosaccharide was less susceptible to endolysins, implicating the interaction between the core oligosaccharide and endolysins. In fact, E. coli with compromised lipid A construction was more vulnerable to LNT113 treatment, suggesting that the integrity of the lipid A layer was important to resist the internalization of LNT113 across the outer membrane. Cecropin A fusion further accelerated the inner membrane destabilization, thereby enabling LNT113 to deconstruct it promptly. Owing to the increased membrane permeability, LNT113 could inactivate some Gram-positive bacteria as well. This study demonstrates that cecropin A fusion is a feasible method to improve the membrane permeability of endolysins in both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Jeongik Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Heejoon Myung
- LyseNTech Co., Ltd., Seongnam, South Korea; Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea.
| |
Collapse
|
4
|
Hegde A, Kabra S, Basawa RM, Khile DA, Abbu RUF, Thomas NA, Manickam NB, Raval R. Bacterial diseases in marine fish species: current trends and future prospects in disease management. World J Microbiol Biotechnol 2023; 39:317. [PMID: 37743401 PMCID: PMC10518295 DOI: 10.1007/s11274-023-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
The fisheries sub-sector of aquaculture-i.e., the pisciculture industry, contributes significantly to a country's economy, employing a sizable proportion of the population. It also makes important contributions to household food security because the current demand for animal protein cannot be fulfilled by harvesting wild fish from riverines, lakes, dams, and oceans. For good pond management techniques and sustaining fish health, the fisherfolk, and the industry require well-established regulatory structures, efficient disease management strategies, and other extended services. In rearing marine fish, infections resulting from disease outbreaks are a weighty concern because they can cause considerable economic loss due to morbidity and mortality. Consequently, to find effective solutions for the prevention and control of the major diseases limiting fish production in aquaculture, multidisciplinary studies on the traits of potential fish pathogens, the biology of the fish as hosts, and an adequate understanding of the global environmental factors are fundamental. This review highlights the various bacterial diseases and their causative pathogens prevalent in the pisciculture industry and the current solutions while emphasising marine fish species. Given that preexisting methods are known to have several disadvantages, other sustainable alternatives like antimicrobial peptides, synthetic peptides, probiotics, and medicinal treatments have emerged to be an enormous potential solution to these challenges.
Collapse
Affiliation(s)
- Avani Hegde
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Renuka Manjunath Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nava Bharati Manickam
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Berdejo D, García-Gonzalo D, Oulahal N, Denkova-Kostova R, Shopska V, Kostov G, Degraeve P, Pagan R. Minimal Processing Technologies for Production and Preservation of Tailor-Made Foods §. Food Technol Biotechnol 2023; 61:357-377. [PMID: 38022877 PMCID: PMC10666941 DOI: 10.17113/ftb.61.03.23.8013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/06/2023] [Indexed: 12/01/2023] Open
Abstract
Tailor-made foods, also known as foods with programmable properties, are specialised systems with unique composition prepared by different methods, using the known mechanisms of action of their bioactive ingredients. The development of tailor-made foods involves the evaluation of individual components, including bioactive substances derived from waste products of other productions, such as essential oils. These components are evaluated both individually and in combination within food compositions to achieve specific functionalities. This review focuses on the application of minimal processing technologies for the production and preservation of tailor-made foods. It examines a range of approaches, including traditional and emerging technologies, as well as novel ingredients such as biomolecules from various sources and microorganisms. These approaches are combined according to the principles of hurdle technology to achieve effective synergistic effects that enhance food safety and extend the shelf life of tailor-made foods, while maintaining their functional properties.
Collapse
Affiliation(s)
- Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Nadia Oulahal
- Université de Lyon, Université Claude Bernard Lyon 1 (UCBL), ISARA Lyon, BioDyMIA Research Unit, Technopole Alimentec, 155 rue Henri de Boissieu, 01000 Bourg en Bresse, France
| | | | - Vesela Shopska
- University of Food Technologies (UFT), 26 Maritza boulevard, Plovdiv, Bulgaria
| | - Georgi Kostov
- University of Food Technologies (UFT), 26 Maritza boulevard, Plovdiv, Bulgaria
| | - Pascal Degraeve
- Université de Lyon, Université Claude Bernard Lyon 1 (UCBL), ISARA Lyon, BioDyMIA Research Unit, Technopole Alimentec, 155 rue Henri de Boissieu, 01000 Bourg en Bresse, France
| | - Rafael Pagan
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA (UNIZAR), C. de Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Bischetti M, Alaimo N, Nardelli F, Punzi P, Amariei C, Ingenito R, Musco G, Gallo M, Cicero DO. Structural insights on the selective interaction of the histidine-rich piscidin antimicrobial peptide Of-Pis1 with membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184080. [PMID: 36328080 DOI: 10.1016/j.bbamem.2022.184080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Of-Pis1 is a potent piscidin antimicrobial peptide (AMP), recently isolated from rock bream (Oplegnathus fasciatus). This rich in histidines and glycines 24-amino acid peptide displays high and broad antimicrobial activity and no significant hemolytic toxicity against human erythrocytes, suggesting low toxicity. To better understand the mechanism of action of Of-Pis1 and its potential selectivity, using NMR and CD spectroscopies, we studied the interaction with eukaryotic and procaryotic membranes and membrane models. Anionic sodium dodecyl sulfate (SDS) and lipopolysaccharide (LPS) micelles were used to mimic procaryotic membranes, while zwitterionic dodecyl phosphocholine (DPC) was used as eukaryotic membrane surrogate. In an aqueous environment, Of-Pis1 adopts a flexible random coil conformation. In DPC and SDS instead, the N-terminal region of Of-Pis1 forms an amphipathic α-helix with the non-polar face in close contact with the micelles. Slower solvent exchange and higher pKas of the histidine residues in SDS than in DPC suggest that Of-Pis1 interacts more tightly with SDS. Of-Pis1 also binds tightly and structurally perturbs LPS micelles. Of-Pis1 interacts with both Escherichia coli and mammalian cell membranes, but only in the presence of Escherichia coli membranes it populates the helical conformation. Furthermore, ligand-based NMR experiments support a tighter and more specific interaction with bacterial than with eukaryotic membranes. Overall, these data clearly show the selective interaction of this broadly active AMP with bacterial over eukaryotic membranes. The conformational information is discussed in terms of Of-Pis1 amino acid sequence and composition to provide insights useful to design more potent and selective AMPs.
Collapse
Affiliation(s)
- Martina Bischetti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Nadine Alaimo
- Structural Biology and Computational Chemistry, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Francesca Nardelli
- Biomolecular NMR Laboratory, I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Pasqualina Punzi
- Peptides Chemistry Unit, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Cristi Amariei
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Raffaele Ingenito
- Peptides Chemistry Unit, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy
| | - Giovana Musco
- Biomolecular NMR Laboratory, I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Mariana Gallo
- Structural Biology and Computational Chemistry, IRBM SpA, Via Pontina Km 30 600, 00 071 Pomezia, Rome, Italy.
| | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Woods C, Woolley L, Partridge G, Chen M, Haney EF, Hancock REW, Buller N, Currie A. Assessing the Activity of Antimicrobial Peptides Against Common Marine Bacteria Located in Rotifer (Brachionus plicatilis) Cultures. Probiotics Antimicrob Proteins 2022; 14:620-629. [PMID: 35612776 PMCID: PMC9246773 DOI: 10.1007/s12602-022-09928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/05/2022]
Abstract
Rotifers are used as the first feed for marine fish larvae and are grown in large cultures that have high loads of organic matter and heterotrophic bacteria; these bacteria are passed on to the developing fish larvae and can potentially lead to bacterial infections. A modified minimum inhibitory concentration (MIC) protocol for antimicrobial peptides was used to determine the potency of ten antimicrobial peptides (AMPs) in artificial seawater relevant to a rotifer culture (salinity of 25‰) against common marine pathogens. All of the AMPs had antimicrobial activity against the bacterial isolates when the salt concentration was approximately zero. However, in high salt concentrations, the majority of the AMPs had an MIC value greater than 65 µg mL−1 in artificial seawater (25‰). The only exceptions were 2009 (32.5 µg mL−1) and 3002 (32.5 µg mL−1) against Vibrio rotiferianus and Tenacibaculum discolor, respectively. The selected synthetic AMPs were not effective at reducing the bacterial load in brackish salt concentrations of a typical commercial rotifer culture (25‰).
Collapse
Affiliation(s)
- Chelsea Woods
- College of Science, Murdoch University, Engineering & Education, HealthPerth, WA, Australia. .,Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia.
| | - Lindsey Woolley
- College of Science, Murdoch University, Engineering & Education, HealthPerth, WA, Australia.,Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia
| | - Gavin Partridge
- College of Science, Murdoch University, Engineering & Education, HealthPerth, WA, Australia.,Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia
| | - Mengqi Chen
- Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Nicky Buller
- College of Science, Murdoch University, Engineering & Education, HealthPerth, WA, Australia.,Department of Primary Industries and Regional Development, Fremantle, Perth, WA, 6160, Australia
| | - Andrew Currie
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
8
|
Henao Arias DC, Toro LJ, Téllez Ramirez GA, Osorio-Méndez JF, Rodríguez-Carlos A, Valle J, Marín-Luevano SP, Rivas-Santiago B, Andreu D, Castaño Osorio JC. Novel antimicrobial cecropins derived from O. curvicornis and D. satanas dung beetles. Peptides 2021; 145:170626. [PMID: 34391826 DOI: 10.1016/j.peptides.2021.170626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Antibiotic resistance is an increasing global problem and therapeutic alternatives to traditional antibiotics are needed. Antimicrobial and host defense peptides represent an attractive source for new therapeutic strategies, given their wide range of activities including antimicrobial, antitumoral and immunomodulatory. Insects produce several families of these peptides, including cecropins. Herein, we characterized the sequence, structure, and biological activity of three cecropins called satanin 1, 2, and curvicin, found in the transcriptome of two dung beetle species Dichotomius satanas and Onthophagus curvicornis. Sequence and circular dichroism analyses show that they have typical features of the cecropin family: short length (38-39 amino acids), positive charge, and amphipathic α-helical structure. They are active mainly against Gram-negative bacteria (3.12-12.5 μg/mL), with low toxicity on eukaryotic cells resulting in high therapeutic indexes (TI > 30). Peptides also showed effects on TNFα production in LPS-stimulated PBMCs. The biological activity of Satanin 1, 2 and Curvicin makes them interesting leads for antimicrobial strategies.
Collapse
Affiliation(s)
- Diana Carolina Henao Arias
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia
| | - Lily Johana Toro
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia
| | - Germán Alberto Téllez Ramirez
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia.
| | - Juan Felipe Osorio-Méndez
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia
| | - Adrián Rodríguez-Carlos
- Medical Research Unit Zacatecas, IMSS, Interior de la Alameda #45, col. Centro, Zacatecas, Cp. 98000, Mexico
| | - Javier Valle
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park Dr Aiguader 88, 08003 Barcelona, Spain
| | - Sara Paulina Marín-Luevano
- Medical Research Unit Zacatecas, IMSS, Interior de la Alameda #45, col. Centro, Zacatecas, Cp. 98000, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit Zacatecas, IMSS, Interior de la Alameda #45, col. Centro, Zacatecas, Cp. 98000, Mexico.
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park Dr Aiguader 88, 08003 Barcelona, Spain.
| | - Jhon Carlos Castaño Osorio
- Center of Biomedical Research, Group of Molecular Immunology, Universidad del Quindío, Cra, 15 calle 12 norte, Armenia, Quindío, Colombia
| |
Collapse
|
9
|
McMillan KAM, Coombs MRP. Investigating Potential Applications of the Fish Anti-Microbial Peptide Pleurocidin: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14070687. [PMID: 34358113 PMCID: PMC8308923 DOI: 10.3390/ph14070687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/05/2022] Open
Abstract
The anti-microbial peptide (AMP) pleurocidin is found in winter flounder (Pseudopleuronectes americanus), an Atlantic flounder species. There is promising evidence for clinical, aquaculture, and veterinary applications of pleurocidin. This review provides an overview of the current literature available on pleurocidin to guide future research directions. By fully elucidating pleurocidin’s mechanism of action and developing novel treatments against pathogenic microbes, populations of flatfish and humans can be protected. This review consulted publications from PubMed and Environment Complete with search terms such as “pleurocidin”, “winter flounder”, and “antimicrobial”. The fish immune system includes AMPs as a component of the innate immune system. Pleurocidin, one of these AMPs, has been found to be effective against various Gram-positive and Gram-negative bacteria. More investigations are required to determine pleurocidin’s suitability as a treatment against antibiotic-resistant pathogens. There is promising evidence for pleurocidin as a novel anti-cancer therapy. The peptide has been found to display potent anti-cancer effects against human cancer cells. Research efforts focused on pleurocidin may result in novel treatment strategies against antibiotic-resistant bacteria and cancer. More research is required to determine if the peptide is a suitable candidate to be developed into a novel anti-microbial treatment. Some of the microbes susceptible to the peptide are also pathogens of fish, suggesting its suitability as a therapeutic treatment for fish species.
Collapse
Affiliation(s)
| | - Melanie R. Power Coombs
- Biology Department, Acadia University, Wolfville, NS B4P 2R6, Canada;
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4H7, Canada
- Correspondence:
| |
Collapse
|
10
|
Simora RMC, Li S, Abass NY, Terhune JS, Dunham RA. Cathelicidins enhance protection of channel catfish, Ictalurus punctatus, and channel catfish ♀ × blue catfish, Ictalurus furcatus ♂ hybrid catfish against Edwarsiella ictaluri infection. JOURNAL OF FISH DISEASES 2020; 43:1553-1562. [PMID: 32929767 DOI: 10.1111/jfd.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Cathelicidins are a class of antimicrobial peptides (AMPs) known to possess rapid and direct antimicrobial activities against a variety of microorganisms. Recently identified cathelicidins derived from alligator and sea snake were found to be more effective in inhibiting microbial growth than other AMPs previously characterized. The ability of these two cathelicidins along with the peptides, cecropin and pleurocidin, to protect channel catfish (Ictalurus punctatus, Rafinesque) and hybrid catfish (I. punctatus ♀ × blue catfish, Ictalurus furcatus, Valenciennes ♂) against Edwardsiella ictaluri, one of the most prevalent pathogens affecting commercial catfish industry, was investigated. Cathelicidin-injected fish (50 µg ml-1 fish-1 ) that were simultaneously challenged with E. ictaluri through bath immersion at a concentration of ~1 × 106 CFU/ml had increased survival rates compared with other peptide treatments and the infected control. Bacterial numbers were also reduced in the liver and kidney of channel catfish and hybrid catfish in the cathelicidin treatments 24 hr post-infection. After 8 days of challenge, serum was collected to determine immune-related parameters such as bactericidal activity, lysozyme, serum protein, albumin and globulin. These immune-related parameters were significantly elevated in fish injected with the two cathelicidins as compared to other peptide treatments. These results indicate that cathelicidins derived from alligator and sea snake can stimulate immunity and enhance the resistance to E. ictaluri infection in channel catfish and hybrid catfish.
Collapse
Affiliation(s)
- Rhoda Mae C Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Philippines
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Nermeen Y Abass
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- Department of Agricultural Botany, Faculty of Agriculture Saba-Basha, Alexandria University, Alexandria City, Egypt
| | - Jeffery S Terhune
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
11
|
Mahrous KF, Aboelenin MM, Abd El-Kader HAM, Mabrouk DM, Gaafar AY, Younes AM, Mahmoud MA, Khalil WKB, Hassanane MS. Piscidin 4: Genetic expression and comparative immunolocalization in Nile tilapia (Oreochromis niloticus) following challenge using different local bacterial strains. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103777. [PMID: 32634526 DOI: 10.1016/j.dci.2020.103777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The antimicrobial activity of tilapia piscidin 4 (TP4) was determined in vitro against four bacterial strains, Aeromonas hydrophilla, Pseudomonas fluorescens, Streptococcus iniae and Vibrio anguillarum. Nile tilapia were infected with low and high doses of the tested pathogens; after 3, 6, 24 h and 7 days of the specific TP4 gene expression, tissue immunolocalization was also performed. Histopathological examination revealed septicaemia and necrosis of hemopoietic tissue for all of the tested bacteria. Immunolocalization showed abundance in S. iniae-infected fish tissues. Quantitative RT-PCR analysis revealed that high doses raised mRNA expression levels compared to low doses and expression levels increased in the infected fish, particularly after 24 h, indicating that TP4 exerts potent bactericidal activity against some fish pathogens and plays an essential role in fish immunity.
Collapse
Affiliation(s)
- Karima F Mahrous
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mohamad M Aboelenin
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Heba A M Abd El-Kader
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Dalia M Mabrouk
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Alkhateib Y Gaafar
- Hydrobiology Department, Veterinary Research Division, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Abdelgayed M Younes
- Hydrobiology Department, Veterinary Research Division, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mahmoud A Mahmoud
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Wagdy K B Khalil
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mohamed S Hassanane
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| |
Collapse
|
12
|
Barroso C, Carvalho P, Carvalho C, Santarém N, Gonçalves JFM, Rodrigues PNS, Neves JV. The Diverse Piscidin Repertoire of the European Sea Bass ( Dicentrarchus labrax): Molecular Characterization and Antimicrobial Activities. Int J Mol Sci 2020; 21:ijms21134613. [PMID: 32610543 PMCID: PMC7369796 DOI: 10.3390/ijms21134613] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Fish rely on their innate immune responses to cope with the challenging aquatic environment, with antimicrobial peptides (AMPs) being one of the first line of defenses. Piscidins are a group of fish specific AMPs isolated in several species. However, in the European sea bass (Dicentrarchuslabrax), the piscidin family remains poorly understood. We identified six different piscidins in sea bass, performed an in-depth molecular characterization and evaluated their antimicrobial activities against several bacterial and parasitic pathogens. Sea bass piscidins present variable amino acid sequences and antimicrobial activities, and can be divided in different sub groups: group 1, formed by piscidins 1 and 4; group 2, constituted by piscidins 2 and 5, and group 3, formed by piscidins 6 and 7. Additionally, we demonstrate that piscidins 1 to 5 possess a broad effect on multiple microorganisms, including mammalian parasites, while piscidins 6 and 7 have poor antibacterial and antiparasitic activities. These results raise questions on the functions of these peptides, particularly piscidins 6 and 7. Considering their limited antimicrobial activity, these piscidins might have other functional roles, but further studies are necessary to better understand what roles might those be.
Collapse
Affiliation(s)
- Carolina Barroso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Pedro Carvalho
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| | - Carla Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Parasite Disease, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Nuno Santarém
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Parasite Disease, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - José F. M. Gonçalves
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Porto, Portugal
| | - Pedro N. S. Rodrigues
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| | - João V. Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.C.); (N.S.); (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| |
Collapse
|
13
|
Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10068-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Stefi Raju V, Sarkar P, Pachaiappan R, Paray BA, Al-Sadoon MK, Arockiaraj J. Defense involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. FISH & SHELLFISH IMMUNOLOGY 2020; 99:368-378. [PMID: 32081807 DOI: 10.1016/j.fsi.2020.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In this study, we have evaluated bioinformatics characterization and antimicrobial role of two piscidin (Pi) peptide identified from the established transcriptome of striped murrel Channa striatus (Cs). The identified CsPi cDNA contains 256 nucleotides encode a protein with 70 amino acids in length which has two antimicrobial peptides and named CsRG12 and CsLC11. The gene expression analysis with various immune stimulants indicated an induced expression pattern of CsPi. Antibiogram showed that CsRG12 and CsLC11 was active against Staphylococcus aureus ATCC 33592, a major multi-drug resistant (MDR) bacterial pathogen and Bacillus cereus ATCC 2106. The minimum inhibitory concentration (MIC) and antibiofilm assays were conducted to observe the activity of pathogenic bacteria with these derived antimicrobial peptides. Flow cytometry analysis noticed that the CsRG12 and CsLC11 disrupt the membrane formation of S. aureus and B. cereus, which was further assured by scanning electron microscopic (SEM) images that bleb formation leads to disruption around the bacterial membrane. Overall, it is reported that CsPi is involved in innate immunity as the gene expression plays a remarkable role in up and down regulation during infection. In addition, the involvement of peptides in antibiofilm formation and bacterial membrane disruption support its immune character. This study leads to a possibility for the development of therapeutics in aquaculture biotechnology.
Collapse
Affiliation(s)
- V Stefi Raju
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - R Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
15
|
Yaghoubzadeh Z, Kaboosi H, Peyravii Ghadikolaii F, Safari R, Fattahi E. The Half Maximal Inhibitory Concentration (IC50) Effect of Protein Hydrolysates from Rainbow Trout (Oncorhynchus mykiss) Skin on Enterotoxin A Gene Expression in Staphylococcus aureus. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10036-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Protective Immunity against Vibrio harveyi in Grouper Induced by Single Vaccination with Poly (Lactide-co-glycolide) Microparticles Releasing Pleurocidin Peptide and Recombinant Glyceraldehyde-3-phosphate Dehydrogenase. Vaccines (Basel) 2020; 8:vaccines8010033. [PMID: 31963816 PMCID: PMC7157564 DOI: 10.3390/vaccines8010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
The peptide adjuvant, pleurocidin (PLE), and the Vibrio harveyi antigen, recombinant glyceraldehyde-3-phosphate dehydrogenase (rGAPDH) protein, were encapsulated with poly (lactide-co-glycolide) (PLG) polymers in our previous study to produce PLG-encapsulated PLE plus rGAPDH microparticles (PLG-PLE/rGAPDH MPs) that sustained stable release of both PLE and rGAPDH as well as, after two-time vaccination with MPs, generated long-term protective immunity against V. harveyi in grouper. Stable controlled-release of PLE plus rGAPDH from PLG-PLE/rGAPDH MPs is an attractive feature for developing an effective single-dose vaccine. In the present study, therefore, we aim to evaluate whether single administration with PLG-PLE/rGAPDH MPs in grouper would result in protective immunity against V. harveyi. Peritoneal vaccination of grouper with one dose of PLG-PLE/rGAPDH MPs raised serum titers over a long 12-week period. Moreover, twelve weeks after vaccination, significant lymphocyte proliferation and maximum TNF-α production were found in grouper immunized with a single dose of PLG-PLE/rGAPDH MPs. More importantly, immune responses elicited by single vaccination with PLG-PLE/rGAPDH MPs protected 80% of fish against a lethal peritoneal challenge of the highly virulent V. harveyi (Vh MML-1). In conclusion, our data truly reveal the feasibility of the development of a single-dose vaccine against V. harveyi based on PLG-PLE/rGAPDH MPs.
Collapse
|
17
|
Wang Q, Ji W, Xu Z. Current use and development of fish vaccines in China. FISH & SHELLFISH IMMUNOLOGY 2020; 96:223-234. [PMID: 31821845 DOI: 10.1016/j.fsi.2019.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
In the past decades, the aquaculture industry made great progress in China, which contributes more than 70% yield of the world's farmed fish. Along with the rapid growth of fish production, increased emergence and outbreak of numbers of diseases pose harm to the aquaculture industry and food safety. From the efficient, safe, environmental and ethical aspects, vaccines is definitely the most appropriate and focused method to control different kinds of fish diseases. In China, researchers have done huge works on the fish vaccines, and so far six domestic aquatic vaccine products along with one imported aquatic vaccine have obtained the national veterinary medicine certificate. More critically, some new vaccines have also entered the field experiment stage and showed broad market prospects. In the present review, authors summarize seven aquatic vaccines, including the live vaccine against grass carp hemorrhagic disease, the inactivated vaccine against Aeromonas hydrophila sepsis in fish, the live vaccine against Edwardsiella tarda in turbot, the anti-idiotypic antibody vaccine against Vibrio alginolyticus, V. parahaemolyticus, and E. tarda in Japanese flounder, the cell-cultured inactivated vaccine against grass carp hemorrhagic disease, the inactivated vaccine against fish infectious spleen and kidney necrosis virus (ISKNV), and the genetically engineered live vaccine against V. anguillarum in turbot. Moreover, different delivery routes of fish vaccines are also compared in this review, along with differential fish immune response after vaccination. All these efforts will ultimately benefit the healthy and sustainable development of aquaculture industry in China.
Collapse
Affiliation(s)
- Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Ji
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
18
|
Fernandez C, Mascolo D, Monaghan SJ, Baily JL, Chalmers L, Paladini G, Adams A, Bron JE, Fridman S. Methacarn preserves mucus integrity and improves visualization of amoebae in gills of Atlantic salmon (Salmo salar L.). JOURNAL OF FISH DISEASES 2019; 42:883-894. [PMID: 30950084 DOI: 10.1111/jfd.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Two aqueous fixation methods (modified Davidson's solution and modified Davidson's solution with 2% (w/v) Alcian blue) were compared against two non-aqueous fixation methods (methacarn solution and methacarn solution with 2% (w/v) Alcian blue) along with the standard buffered formalin fixation method to (a) improve preservation of the mucous coat on Atlantic salmon, Salmo salar L., gills and (b) to examine the interaction between the amoebae and mucus on the gill during an infection with amoebic gill disease. Aqueous fixatives demonstrated excellent cytological preservation but failed to deliver the preservation of the mucus when compared to the non-aqueous-based fixatives; qualitative and semi-quantitative analysis revealed a greater preservation of the gill mucus using the non-aqueous methacarn solution. A combination of this fixation method and an Alcian blue/Periodic acid-Schiff staining was tested in gills of Atlantic salmon infected with amoebic gill disease; lectin labelling was also used to confirm the mucus preservation in the methacarn-fixed tissue. Amoebae were observed closely associated with the mucus demonstrating that the techniques employed for preservation of the mucous coat can indeed avoid the loss of potential mucus-embedded parasites, thus providing a better understanding of the relationship between the mucus and parasite.
Collapse
Affiliation(s)
- Carolina Fernandez
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Dario Mascolo
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Sean J Monaghan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Johanna L Baily
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Lynn Chalmers
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Giuseppe Paladini
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - James E Bron
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| | - Sophie Fridman
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland
| |
Collapse
|
19
|
Sharma D, Poonam, Shrivastava R, Bisht GS. In Vitro Efficacy of Lipid Conjugated Peptidomimetics Against Mycobacterium smegmatis. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09859-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Hou J, Liu Z, Cao S, Wang H, Jiang C, Hussain MA, Pang S. Broad-Spectrum Antimicrobial Activity and Low Cytotoxicity against Human Cells of a Peptide Derived from Bovine α S1-Casein. Molecules 2018; 23:E1220. [PMID: 29783753 PMCID: PMC6100444 DOI: 10.3390/molecules23051220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/05/2018] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
The primary objective of this study was to improve our understanding of the antimicrobial mechanism of protein-derived peptides and to provide evidence for protein-derived peptides as food bio-preservatives by examining the antimicrobial activities, low cytotoxicity, stabilities, and mechanism of Cp1 (LRLKKYKVPQL). In this study, the protein-derived peptide Cp1 was synthesized from bovine αS1-casein, and its potential use as a food biopreservative was indicated by the higher cell selectivity shown by 11-residue peptide towards bacterial cells than human RBCs. It also showed broad-spectrum antimicrobial activity, with minimum inhibitory concentrations (MICs) of 64⁻640 μM against both gram-positive and gram-negative bacteria. The peptide had low hemolytic activity (23.54%, 512 μM) as well as cytotoxicity. The results of fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that Cp1 exerted its activity by permeabilizing the microbial membrane and destroying cell membrane integrity. We found that Cp1 had broad-spectrum antimicrobial activity, low hemolytic activity, and cytotoxicity. The results also revealed that Cp1 could cause cell death by permeabilizing the cell membrane and disrupting membrane integrity. Overall, the findings presented in this study improve our understanding of the antimicrobial potency of Cp1 and provided evidence of the antimicrobial mechanisms of Cp1. The peptide Cp1 could have potential applications as a food biopreservative.
Collapse
Affiliation(s)
- Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhijing Liu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Songsong Cao
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Haimei Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Chenggang Jiang
- Harbin Veterinary Research Institute, CAAS, Harbin 150001, China.
| | - Muhammad Altaf Hussain
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Shiyue Pang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
21
|
Muncaster S, Kraakman K, Gibbons O, Mensink K, Forlenza M, Jacobson G, Bird S. Antimicrobial peptides within the Yellowtail Kingfish (Seriola lalandi). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:67-80. [PMID: 28433529 DOI: 10.1016/j.dci.2017.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
A number of Seriola species are currently farmed or being investigated as future aquaculture species in countries around the world. However they face a number of issues and limitations which will need to be overcome to ensure future stability and growth, one of which are disease outbreaks. Despite this, very little has been done to understand the immune system of Seriola species and very few immune genes have been characterised. Antimicrobial peptides (AMP) are naturally occurring low molecular weight polypeptides that play a major role in an organism's immune system and act effectively as a first line of defence. This investigation isolates the full length cDNA sequences of two AMP's, piscidin and hepcidin from the yellowtail kingfish (Seriola lalandi). The full-length cDNA of the piscidin gene encodes a 65 amino acid prepropeptide, containing a 25-residue peptide, predicted to form an amphipathic helix-loop-helix structure. Phylogenetic analysis using fish piscidin sequences, showed that this AMP is only found in bony fish within the Acanthomorpha clade and that a possible three groups within the piscidin family exists, with S. lalandi belonging to a particular group. The full-length cDNA of the hepcidin gene encodes a 90 amino acid preprohepcidin, which contains a typical RX(R/K)R motif for cleavage of the mature peptide which comprises of eight conserved cysteine residues. Phylogenetic analysis of known vertebrate hepcidin antimicrobial peptide (HAMP) sequences, shows sequences from the Neoteleostei clade of bony fish form two very separate groups, HAMP1 and HAMP2, with the S. lalandi hepcidin gene grouped with the HAMP1 sequences. HAMP2 sequences are found to have multiple copies within fish and genome analysis showed very clearly that these two groups of genes are located on separate regions on the genome, with the multiple HAMP2 copies formed from tandem gene duplications. Lastly, using qPCR the expression of the S. lalandi piscidin gene within healthy fish was highest within, spleen and gills and lowest in liver, whereas hepcidin was highest in the liver with little or no expression in the spleen and gills.
Collapse
Affiliation(s)
- Simon Muncaster
- Marine and Environmental Group, School of Applied Science, Bay of Plenty Polytechnic, Tauranga, New Zealand
| | - Kirsty Kraakman
- Molecular Genetics, School of Science, Faculty of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Olivia Gibbons
- Molecular Genetics, School of Science, Faculty of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Koen Mensink
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Gregory Jacobson
- Molecular Genetics, School of Science, Faculty of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Steve Bird
- Molecular Genetics, School of Science, Faculty of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|
22
|
Transcriptome Analysis of Flounder (Paralichthys olivaceus) Gill in Response to Lymphocystis Disease Virus (LCDV) Infection: Novel Insights into Fish Defense Mechanisms. Int J Mol Sci 2018; 19:ijms19010160. [PMID: 29304016 PMCID: PMC5796109 DOI: 10.3390/ijms19010160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Lymphocystis disease virus (LCDV) infection may induce a variety of host gene expression changes associated with disease development; however, our understanding of the molecular mechanisms underlying host-virus interactions is limited. In this study, RNA sequencing (RNA-seq) was employed to investigate differentially expressed genes (DEGs) in the gill of the flounder (Paralichthys olivaceus) at one week post LCDV infection. Transcriptome sequencing of the gill with and without LCDV infection was performed using the Illumina HiSeq 2500 platform. In total, RNA-seq analysis generated 193,225,170 clean reads aligned with 106,293 unigenes. Among them, 1812 genes were up-regulated and 1626 genes were down-regulated after LCDV infection. The DEGs related to cellular process and metabolism occupied the dominant position involved in the LCDV infection. A further function analysis demonstrated that the genes related to inflammation, the ubiquitin-proteasome pathway, cell proliferation, apoptosis, tumor formation, and anti-viral defense showed a differential expression. Several DEGs including β actin, toll-like receptors, cytokine-related genes, antiviral related genes, and apoptosis related genes were involved in LCDV entry and immune response. In addition, RNA-seq data was validated by quantitative real-time PCR. For the first time, the comprehensive gene expression study provided valuable insights into the host-pathogen interaction between flounder and LCDV.
Collapse
|
23
|
Pisoschi AM, Pop A, Georgescu C, Turcuş V, Olah NK, Mathe E. An overview of natural antimicrobials role in food. Eur J Med Chem 2017; 143:922-935. [PMID: 29227932 DOI: 10.1016/j.ejmech.2017.11.095] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
The present paper aims to review the natural food preservatives with antimicrobial properties emphasizing their importance for the future of food manufacturing and consumers' health. The extraction procedures applied to natural antimicrobials will be considered, followed by the description of some natural preservatives' antimicrobial mechanism of action, including (i) membrane rupture with ATP-ase activity inhibition, (ii) leakage of essential biomolecules from the cell, (iii) disruption of the proton motive force and (iiii) enzyme inactivation. Moreover, a provenance-based classification of natural antimicrobials is discussed by considering the sources of origin for the major natural preservative categories: plants, animals, microbes and fungi. As well, the structure influence on the antimicrobial potential is considered. Natural preservatives could also constitute a viable alternative to address the critical problem of microbial resistance, and to hamper the negative side effects of some synthetic compounds, while meeting the requirements for food safety, and exerting no negative impact on nutritional and sensory attributes of foodstuffs.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Sector 5, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Sector 5, Bucharest, Romania
| | - Cecilia Georgescu
- "Lucian Blaga" University of Sibiu, Faculty of Agriculture Science, Food Industry and Environmental Protection, Dr. I. Ratiu str.7-9, 550012, Sibiu, Romania
| | - Violeta Turcuş
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania
| | - Neli Kinga Olah
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania
| | - Endre Mathe
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania; University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Food Technology, Böszörményi út 138, H-4032, Debrecen, Hungary
| |
Collapse
|
24
|
Salger SA, Reading BJ, Noga EJ. Tissue localization of piscidin host-defense peptides during striped bass (Morone saxatilis) development. FISH & SHELLFISH IMMUNOLOGY 2017; 61:173-180. [PMID: 28034834 DOI: 10.1016/j.fsi.2016.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Infectious diseases are a major cause of larval mortality in finfish aquaculture. Understanding ontogeny of the fish immune system and thus developmental timing of protective immune tissues and cells, may help to decrease serious losses of larval fishes when they are particularly vulnerable to infection. One component of the innate immune system of fishes is the host-defense peptides, which include the piscidins. Piscidins are small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and protozoan pathogens. We describe for the first time the cellular and tissue localization of three different piscidins (1, 3, and 4) during striped bass (Morone saxatilis) larval ontogeny using immunofluorescent histochemistry. From 16 days post hatch to 12 months of age, piscidin staining was observed in cells of the epithelial tissues of gill, digestive tract, and skin, mainly in mast cells. Staining was also seen in presumptive hematopoietic cells in the head kidney. The three piscidins showed variable cellular and tissue staining patterns, possibly relating to differences in tissue susceptibility or pathogen specificity. This furthers our observation that the piscidins are not a monolithic family of antimicrobials, but that different AMPs have different (more specialized) functions. Furthermore, no immunofluorescent staining of piscidins was observed in post-vitellogenic oocytes, embryos, or larvae from hatch to 14 days post hatch, indicating that this critical component of the innate immune system is inactive in pre-hatch and young larval striped bass.
Collapse
Affiliation(s)
- Scott A Salger
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States.
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Edward J Noga
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
25
|
Shi X, Zhang X, Yao Q, He F. A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor. J Microbiol Methods 2016; 133:69-75. [PMID: 27932084 DOI: 10.1016/j.mimet.2016.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/04/2016] [Accepted: 12/04/2016] [Indexed: 01/26/2023]
Abstract
The rapid detection of microbes is critical in clinical diagnosis and food safety. Culture-dependent assays are the most widely used microbial detection methods, but these assays are time-consuming. In this study, a rapid microbial detection method was proposed using a pleurocidin/single-walled carbon nanotubes/interdigital electrode-multichannel series piezoelectric quartz crystal (pleurocidin/SWCNT/IDE-MSPQC) sensor. The selected pleurocidin antimicrobial peptide served as a recognition probe that exhibits broad-spectrum antimicrobial activity and the SWCNT acted as the electronic transducer and cross-linker for the immobilization of pleurocidin on the IDE. The response mechanism of the sensor was based on the specific interaction between pleurocidin and the microbe causing pleurocidin to detach from the SWCNT modified IDE, resulting in a sensitive frequency shift response of the MSPQC. Microbes that may be clinically present in the bloodstream during an infection were successfully detected by the proposed method within 15min. The developed strategy provides a new universal platform for the rapid detection of microbes.
Collapse
Affiliation(s)
- Xiaohong Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Department of Chemistry, Taiyuan Normal University, Taiyuan 030000, China.
| | - Xiaoqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiongqiong Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
26
|
Ferraresso S, Bonaldo A, Parma L, Buonocore F, Scapigliati G, Gatta PP, Bargelloni L. Ontogenetic onset of immune-relevant genes in the common sole (Solea solea). FISH & SHELLFISH IMMUNOLOGY 2016; 57:278-292. [PMID: 27554393 DOI: 10.1016/j.fsi.2016.08.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Fish are free-living organisms since initial stages of development and are exposed to numerous pathogens before their lymphoid organs have matured and adaptive immunity has developed. Susceptibility to diseases and juvenile mortality represent key critical factors for aquaculture. In this context, the characterization of the appearance kinetics of the immune system key members will be useful in understanding the ability of a particular species in generating immune protection against invading pathogens at different developmental stages. The present study characterized, for the first time, the transcriptional onset of un-explored relevant genes of both innate and adaptive immune system during the Solea solea ontogenesis. Gene expression profiles of immune relevant genes was investigated, by means of DNA microarray, in ten developmental stages, from hatching (1 day post-hatching, dph) to accomplishment of the juvenile form (33 dph). The obtained results revealed that transcripts encoding relevant members of innate immune repertoire, such as lysozyme, AMPs (hepcidin, β-defensin), PPRs and complement components are generally characterized by high expression levels at first stages (i.e. hatch and first feeding) indicating protection from environmental pathogens even at early development. Transcription of adaptive immune genes (i.e. Class I and class II MHC, TCRs) differs from that of the innate immune system. Their onset coincides with metamorphosis and larvae-to-juvenile transition, and likely overlaps with the appearance and maturation of the main lymphoid organs. Finally, data collected suggest that at the end of metamorphosis S. solea cell-mediated immune system hasn't still undergone full maturation.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy.
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy.
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| |
Collapse
|
27
|
Lee NK, Paik HD. Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems. Korean J Food Sci Anim Resour 2016; 36:547-57. [PMID: 27621697 PMCID: PMC5018516 DOI: 10.5851/kosfa.2016.36.4.547] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 01/16/2023] Open
Abstract
This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
28
|
Zhang M, Wei W, Sun Y, Jiang X, Ying X, Tao R, Ni L. Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts. Arch Oral Biol 2016; 70:79-87. [PMID: 27341459 DOI: 10.1016/j.archoralbio.2016.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 05/08/2016] [Accepted: 06/07/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Fish epidermal antimicrobial peptides, such as pleurocidin, are cathelicidins with broad-spectrum antimicrobial activity against gram negative and gram-positive bacteria, as well as fungi. In the current study, we attempted to optimize peptide bioactivity by sequence modification and assess the antimicrobial activities. METHODS Fifteen pleurocidin analogues were designed, and the efficacy of pleurocidin congeners against common cariogenic microorganisms was tested; furthermore, we performed a preliminary study of the antimicrobial mechanism. We assayed the minimal inhibitory concentration (MIC), minimal bactericide concentration (MBC) and bactericidal kinetics to determine the cell killing activity. Scanning electron microscopy (SEM) was used to observe the bacterial membrane after treatment with congeners' peptides. Human gingival fibroblasts (HGFs) were also used in toxicity studies. RESULTS The MIC and MBC results indicated that peptide congeners had different antimicrobial activities against the tested oral strains. Toxicity studies indicated that several congener peptides had little effect on human gingival fibroblasts (HGFs) with 5min of in vitro treatment. CONCLUSION Our findings suggested that several pleurocidin congeners had the antimicrobial effect against Streptococcus mutans, Streptococcus sanguinis and Streptococcus sobrinus.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Stomatology, The 101 Military Hospital, Wuxi 214000, People's Republic of China
| | - Wang Wei
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yingming Sun
- Department of Stomatology, The 101 Military Hospital, Wuxi 214000, People's Republic of China
| | - Xiu Jiang
- School of Stomatology, Anhui Medical University, Anhui 230032, People's Republic of China
| | - Xiu Ying
- School of Stomatology, Anhui Medical University, Anhui 230032, People's Republic of China
| | - Rui Tao
- Department of Stomatology, The 101 Military Hospital, Wuxi 214000, People's Republic of China.
| | - Longxing Ni
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
29
|
Zaccone D, Icardo JM, Kuciel M, Alesci A, Pergolizzi S, Satora L, Lauriano ER, Zaccone G. Polymorphous granular cells in the lung of the primitive fish, the bichirPolypterus senegalus. ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology Polígono de Cazoña; Faculty of Medicine; University of Cantabria; s/n 39011 Santander Spain
| | - Michał Kuciel
- Poison Information Centre; Jagiellonian University Medical College; Kopernika 15 31-501 Crakow Poland
| | - Alessio Alesci
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Simona Pergolizzi
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Leszek Satora
- Department of Physiology and Reproduction of Animals; University of Rzeszow; Werynia 502 36-100 Kolbuszowa Rzeszow Poland
| | - Eugenia Rita Lauriano
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| | - Giacomo Zaccone
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.); University of Messina; Viale Stagno d'Alcontres 31 I-98166 Messina Italy
| |
Collapse
|
30
|
Jeon D, Jeong MC, Kim JK, Jeong KW, Ko YJ, Kim Y. Structure-Activity Relationship of the N-terminal Helix Analog of Papiliocin, PapN. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2015. [DOI: 10.6564/jkmrs.2015.19.2.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
32
|
Munang'andu HM, Mutoloki S, Evensen Ø. A Review of the Immunological Mechanisms Following Mucosal Vaccination of Finfish. Front Immunol 2015; 6:427. [PMID: 26379665 PMCID: PMC4547047 DOI: 10.3389/fimmu.2015.00427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Mucosal organs are principle portals of entry for microbial invasion and as such developing protective vaccines against these pathogens can serve as a first line of defense against infections. In general, all mucosal organs in finfish are covered by a layer of mucus whose main function is not only to prevent pathogen attachment by being continuously secreted and sloughing-off but it serves as a vehicle for antimicrobial compounds, complement, and immunoglobulins that degrade, opsonize, and neutralize invading pathogens on mucosal surfaces. In addition, all mucosal organs in finfish possess antigen-presenting cells (APCs) that activate cells of the adaptive immune system to generate long-lasting protective immune responses. The functional activities of APCs are orchestrated by a vast array of proinflammatory cytokines and chemokines found in all mucosal organs. The adaptive immune system in mucosal organs is made of humoral immune responses that are able to neutralize invading pathogens as well as cellular-mediated immune responses whose kinetics are comparable to those induced by parenteral vaccines. In general, finfish mucosal immune system has the capacity to serve as the first-line defense mechanism against microbial invasion as well as being responsive to vaccination.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
33
|
Wang X, Yue T, Lee TC. Development of Pleurocidin-poly(vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Conlon JM. Host-defense peptides of the skin with therapeutic potential: From hagfish to human. Peptides 2015; 67:29-38. [PMID: 25794853 DOI: 10.1016/j.peptides.2015.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
It is now well established that peptides that were first identified on the basis of their ability to inhibit growth of bacteria and fungi are multifunctional and so are more informatively described as host-defense peptides. In some cases, their role in protecting the organism against pathogenic microorganisms, although of importance, may be secondary. A previous article in the journal (Peptides 2014; 57:67-77) assessed the potential of peptides present in the skin secretions of frogs for development into anticancer, antiviral, immunomodulatory and antidiabetic drugs. This review aims to extend the scope of this earlier article by focusing upon therapeutic applications of host-defense peptides present in skin secretions and/or skin extracts of species belonging to other vertebrate classes (Agnatha, Elasmobranchii, Teleostei, Reptilia, and Mammalia as represented by the human) that supplement their potential role as anti-infectives for use against multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| |
Collapse
|
35
|
Monette MM, Evans DL, Krunkosky T, Camus A, Jaso-Friedmann L. Nonspecific cytotoxic cell antimicrobial protein (NCAMP-1): a novel alarmin ligand identified in zebrafish. PLoS One 2015; 10:e0116576. [PMID: 25689842 PMCID: PMC4331361 DOI: 10.1371/journal.pone.0116576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 12/10/2014] [Indexed: 01/13/2023] Open
Abstract
Cells from the coelomic cavity of adult zebrafish (zf) were used to study the alarmin-like activities of nonspecific cytotoxic cell antimicrobial protein-1 (NCAMP-1). Immunohistochemistry studies using polyclonal anti-NCAMP-1 identified constitutive NCAMP-1 in epithelial cells of the zf anterior kidney, in liver parenchyma and in the lamina propria of the intestine. NCAMP-1 was also located in the cytosol of mononuclear cells in these tissues. Cytosolic NCAMP-1 was detected in a diverse population of coelomic cells (CC) using confocal microscopy and polyclonal anti-NCAMP-1 staining. Large mononuclear and heterophil-like CC had intracellular NCAMP-1. These studies indicated that NCAMP-1 is constitutively found in epithelial cells and in ZFCC. To establish a relationship between NCAMP-1 and the alarmin functions of ATP, a stimulation-secretion model was initiated using zf coelomic cells (ZFCC). ZFCCs treated with the alarmin ATP secreted NCAMP-1 into culture supernatants. Treatment of ZFCC with either ATP or NCAMP-1 activated purinergic receptor induced pore formation detected by the ZFCC uptake of the dye YO-PRO-1. ATP induced YO-PRO-1 uptake was inhibited by antagonists oxidized-ATP, KN62, or CBB. These antagonists did not compete with NCAMP-1 induced YO-PRO-1 uptake. Binding of ZFCC by both ATP and NCAMP-1 produced an influx of Ca2+. Combined treatment of ZFCC with ATP and NCAMP-1 increased target cell cytotoxicity. Individually NCAMP-1 or ATP treatment did not produce target cell damage. Similar to ATP, NCAMP-1 activates cellular pore formation, calcium influx and cytotoxicity.
Collapse
Affiliation(s)
- Margaret Mariscal Monette
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Donald Lee Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Thomas Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Alvin Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Liliana Jaso-Friedmann
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Romany JS, McElroy AE, Fast MD. Measures of immune system status in young-of-the-year winter flounder Pseudopleuronectes americanus. JOURNAL OF FISH BIOLOGY 2015; 86:148-161. [PMID: 25557428 DOI: 10.1111/jfb.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 09/19/2014] [Indexed: 06/04/2023]
Abstract
The immune status of young-of-the-year (YOY) winter flounder Pseudopleuronectes americanus was evaluated in fish collected from six areas around Long Island, NY, U.S.A. representing more urban areas with high population density in the west, to less densely populated more rural areas in to the east. Gene expression markers for innate immunity (pleurocidin) and contaminant exposure (cytochrome P4501A; cyp1a) were measured in liver and fin of fish collected at each site. Expression of pleurocidin was significantly higher in fin than liver, but was highly variable among individuals. Some statistically significant differences in pleurocidin expression among sites were observed, although elevated levels were not associated with degree of urbanization. Expression was related in part to fish size: a positive correlation between expression and total length (LT ) of fish was observed with the largest LT class (>125 mm) exhibiting significantly elevated pleurocidin expression as compared with fish in the smaller LT class. This indicates that immune competency may increase with age. No site-specific differences in cyp1a expression were observed. These data suggest that exposure to aromatic hydrocarbon contaminants is fairly widespread throughout the study area and that any differences in pleurocidin expression in YOY P. americanus are probably due to other factors. Antimicrobial activity was also measured as a functional indicator of immune response. Activity was highly variable, showing no significant site-specific differences, and no significant correlation to pleurocidin expression. The lack of correlation between pleurocidin expression and antimicrobial activity indicates that other antimicrobial peptides may be active against the bacteria tested or that other factors are influencing antimicrobial activity. This is the first quantitative evaluation of pleurocidin expression in YOY P. americanus from an urban area. Further work is needed to characterize factors controlling pleurocidin expression, as well as other indicators of immune response in young fish.
Collapse
Affiliation(s)
- J S Romany
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, U.S.A
| | | | | |
Collapse
|
37
|
Bae JS, Shim SH, Hwang SD, Park MA, Jee BY, An CM, Kim YO, Kim JW, Park CI. Expression analysis and biological activity of moronecidin from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:345-353. [PMID: 25050859 DOI: 10.1016/j.fsi.2014.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/10/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
The piscidin-family, one of antimicrobial peptides (AMPs) mainly distributed in fish, is crucial effectors of fish innate immune response. Piscidin-family typically has broad-spectrum antimicrobial activity and the ability to modulate the immune response. In this study, we identified moronecidin (Rbmoro) included in piscidin-family from rock bream and investigated its gene expression using quantitative real-time PCR and biological activity (including antimicrobial and cytotoxic activity). The coding region of Rbmoro was 204 bp encoding 67 amino acid residues. Tertiary structure prediction of Rbmoro showed an amphipathic α-helical structure. Rbmoro gene was widely expressed in different tissues of healthy fish. Additionally, Rbmoro gene expression was induced in all tested tissues after infection with Edwardsiella tarda, Streptococcus iniae and red seabream iridovirus. We synthesized mature peptide of Rbmoro based on amino acid sequence of its AMP 12 domain, and the synthetic peptide appeared broad-spectrum antimicrobial activity to various bacteria. However, the synthetic peptide has weak haemolytic activity against fish erythrocytes. These results suggest that Rbmoro might play an important role in innate immune response of rock bream.
Collapse
Affiliation(s)
- Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Sang Hee Shim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Seong Don Hwang
- Aquatic Life Disease Control Division, National Fisheries Research and Development Institute (NFRDI), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Myoung-Ae Park
- Aquatic Life Disease Control Division, National Fisheries Research and Development Institute (NFRDI), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Bo-Young Jee
- Aquatic Life Disease Control Division, National Fisheries Research and Development Institute (NFRDI), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Cheul-Min An
- Biotechnology Research Division, NFRDI, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, NFRDI, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Ju-Won Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea.
| |
Collapse
|
38
|
Godreuil S, Leban N, Padilla A, Hamel R, Luplertlop N, Chauffour A, Vittecoq M, Hoh F, Thomas F, Sougakoff W, Lionne C, Yssel H, Missé D. Aedesin: structure and antimicrobial activity against multidrug resistant bacterial strains. PLoS One 2014; 9:e105441. [PMID: 25162372 PMCID: PMC4146511 DOI: 10.1371/journal.pone.0105441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/18/2014] [Indexed: 11/18/2022] Open
Abstract
Multidrug resistance, which is acquired by both Gram-positive and Gram-negative bacteria, causes infections that are associated with significant morbidity and mortality in many clinical settings around the world. Because of the rapidly increasing incidence of pathogens that have become resistant to all or nearly all available antibiotics, there is a need for a new generation of antimicrobials with a broad therapeutic range for specific applications against infections. Aedesin is a cecropin-like anti-microbial peptide that was recently isolated from dengue virus-infected salivary glands of the Aedes aegypti mosquito. In the present study, we have refined the analysis of its structural characteristics and have determined its antimicrobial effects against a large panel of multidrug resistant bacterial strains, directly isolated from infected patients. Based the results from nuclear magnetic resonance spectroscopy analysis, Aedesin has a helix-bend-helix structure typical for a member of the family of α-helix anti-microbial peptides. Aedesin efficiently killed Gram-negative bacterial strains that display the most worrisome resistance mechanisms encountered in the clinic, including resistance to carbapenems, aminoglycosides, cephalosporins, 4th generation fluoroquinolones, folate inhibitors and monobactams. In contrast, Gram-positive strains were insensitive to the lytic effects of the peptide. The anti-bacterial activity of Aedesin was found to be salt-resistant, indicating that it is active under physiological conditions encountered in body fluids characterized by ionic salt concentrations. In conclusion, because of its strong lytic activity against multidrug resistant Gram-negative bacterial strains displaying all types of clinically relevant resistance mechanisms known today, Aedesin might be an interesting candidate for the development of alternative treatment for infections caused by these types of bacteria.
Collapse
Affiliation(s)
- Sylvain Godreuil
- Centre Hospitalier Régional Universitaire de Montpellier, Hôpital Arnaud de Villeneuve, Département de Bactériologie-Virologie, Montpellier, France
| | - Nadia Leban
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS-UMR 5236/UM1/UM2, Montpellier, France
| | - André Padilla
- Centre de Biochimie Structurale Inserm U1054, CNRS UMR5048, Montpellier, France
| | - Rodolphe Hamel
- Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM1, Montpellier, France
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aurélie Chauffour
- Centre d'Immunologie et des Maladies Infectieuses, Inserm U1135, Sorbonne Universités, UPMC, APHP Hôpital Pitié-Salpêtrière, Paris, France
| | - Marion Vittecoq
- Centre de Recherche de la Tour du Valat, le Sambuc, Arles, France
| | - François Hoh
- Centre de Biochimie Structurale Inserm U1054, CNRS UMR5048, Montpellier, France
| | - Frédéric Thomas
- Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM1, Montpellier, France
| | - Wladimir Sougakoff
- Centre d'Immunologie et des Maladies Infectieuses, Inserm U1135, Sorbonne Universités, UPMC, APHP Hôpital Pitié-Salpêtrière, Paris, France
| | - Corinne Lionne
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS-UMR 5236/UM1/UM2, Montpellier, France
| | - Hans Yssel
- Centre d'Immunologie et des Maladies Infectieuses, Inserm U1135, Sorbonne Universités, UPMC, APHP Hôpital Pitié-Salpêtrière, Paris, France
| | - Dorothée Missé
- Laboratoire MIVEGEC, UMR 224 IRD/CNRS/UM1, Montpellier, France
- * E-mail:
| |
Collapse
|
39
|
Chuang SC, Huang WL, Kau SW, Yang YP, Yang CD. Pleurocidin Peptide Enhances Grouper Anti-Vibrio harveyi Immunity Elicited by Poly(lactide-co-glycolide)-Encapsulated Recombinant Glyceraldehyde-3-phosphate Dehydrogenase. Vaccines (Basel) 2014; 2:380-96. [PMID: 26344624 PMCID: PMC4494259 DOI: 10.3390/vaccines2020380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 11/22/2022] Open
Abstract
Outer membrane proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are considered immunodominant antigens for eliciting protective immunity against Vibrio harveyi, the main etiological agent of vibriosis in fish. Cationic antimicrobial peptides (AMPs), such as pleurocidin (PLE), play important roles in activating and recruiting immune cells, thereby contributing to subsequent innate and adaptive immune responses. In the present study, we aimed to use PLE peptide as a potent adjuvant to improve the immunogenicity of V. harveyi recombinant GAPDH (rGAPDH). In order to prepare a controlled-release vaccine, PLE peptide and rGAPDH protein were simultaneously encapsulated into polymeric microparticles made from the biodegradable poly(lactide-co-glycolide) (PLG) polymer. The resulting PLG-encapsulated PLE plus rGAPDH (PLG-PLE/rGAPDH) microparticles, 3.21–6.27 μm in diameter, showed 72%–83% entrapment efficiency and durably released both PLE and rGAPDH for a long 30-day period. Following peritoneal immunization in grouper (Epinephelus coioides), PLG-PLE/rGAPDH microparticles resulted in significantly higher (p < 0.05, nested design) long-lasting GAPDH-specific immunity (serum titers and lymphocyte proliferation) than PLG-encapsulated rGAPDH (PLG-rGAPDH) microparticles. After an experimental challenge of V. harveyi, PLG-PLE/rGAPDH microparticles conferred a high survival rate (85%), which was significantly higher (p < 0.05, chi-square test) than that induced by PLG-rGAPDH microparticles (67%). In conclusion, PLE peptide exhibits an efficacious adjuvant effect to elicit not only improved immunity, but also enhanced protection against V. harveyi in grouper induced by rGAPDH protein encapsulated in PLG microparticles.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Department of Physiology, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan.
| | - Wan-Ling Huang
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912, Taiwan.
| | - Sau-Wei Kau
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912, Taiwan.
| | - Yun-Pei Yang
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912, Taiwan.
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 912, Taiwan.
| |
Collapse
|
40
|
Masso-Silva JA, Diamond G. Antimicrobial peptides from fish. Pharmaceuticals (Basel) 2014; 7:265-310. [PMID: 24594555 PMCID: PMC3978493 DOI: 10.3390/ph7030265] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture.
Collapse
Affiliation(s)
- Jorge A Masso-Silva
- Department of Pediatrics and Graduate School of Biomedical Sciences, Rutgers New Jersey Medical School, Newark, NJ 07101, USA.
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, FL 32610, USA.
| |
Collapse
|
41
|
Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor. Mucosal Immunol 2014; 7:177-87. [PMID: 23839065 DOI: 10.1038/mi.2013.37] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 04/26/2013] [Indexed: 02/04/2023]
Abstract
Pleurocidins are a novel family of α-helical cationic antimicrobial peptides (CAPs) that are structurally and functionally similar to cathelicidins, one of the major CAP families. As cathelicidins stimulate mast cell chemotaxis and mediator release, we postulated that pleurocidins similarly activate mast cells. A screen of 20 pleurocidin peptides revealed that some were capable of degranulating the human mast cell line LAD2 (Laboratory of Allergic Diseases 2). Pleurocidin NRC-04 caused LAD2 to adhere, migrate, degranulate, and release cysteinyl leukotrienes and prostaglandin D2. Moreover, pleurocidin increased intracellular Ca(2+) mobilization in mast cells and induced the production of proinflammatory chemokines such as monocyte chemotactic protein-1/C-C motif chemokine ligand 2 (CCL2) and macrophage inflammatory protein-1β/CCL4. Our evaluation of possible cellular mechanisms suggested that G proteins, phosphoinositol-3 kinase (PI3K), phospholipase C (PLC), and phosphokinase C (PKC) were involved in pleurocidin-induced mast cell activation as evidenced by the inhibitory effects of pertussis toxin (G protein inhibitor), wortmanin (PI3K inhibitor), U-73122 (PLC inhibitor), and Ro-31-8220 (PKC inhibitor), respectively. We also found that human mast cells expressed the N-formyl-peptide receptor 1 (FPRL1) receptor and FPRL1-specific inhibitor affected pleurocidin-mediated activation of mast cell. Our finding that the novel CAP pleurocidin activated human mast cell through G protein-coupled receptor signaling suggests that this peptide might have immunomodulatory functions.
Collapse
|
42
|
Gomez D, Sunyer JO, Salinas I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1729-39. [PMID: 24099804 PMCID: PMC3963484 DOI: 10.1016/j.fsi.2013.09.032] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/09/2013] [Accepted: 09/23/2013] [Indexed: 05/04/2023]
Abstract
The field of mucosal immunology research has grown fast over the past few years, and our understanding on how mucosal surfaces respond to complex antigenic cocktails is expanding tremendously. With the advent of new molecular sequencing techniques, it is easier to understand how the immune system of vertebrates is, to a great extent, orchestrated by the complex microbial communities that live in symbiosis with their hosts. The commensal microbiota is now seen as the "extended self" by many scientists. Similarly, fish immunologist are devoting important research efforts to the field of mucosal immunity and commensals. Recent breakthroughs on our understanding of mucosal immune responses in teleost fish open up the potential of teleosts as animal research models for the study of human mucosal diseases. Additionally, this new knowledge places immunologists in a better position to specifically target the fish mucosal immune system while rationally designing mucosal vaccines and other immunotherapies. In this review, an updated view on how teleost skin, gills and gut immune cells and molecules, function in response to pathogens and commensals is provided. Finally, some of the future avenues that the field of fish mucosal immunity may follow in the next years are highlighted.
Collapse
Affiliation(s)
- Daniela Gomez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Irene Salinas
- Center for Theoretical and Evolutionary Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
43
|
Lee E, Jeong KW, Lee J, Shin A, Kim JK, Lee J, Lee DG, Kim Y. Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Rep 2013; 46:282-7. [PMID: 23710640 PMCID: PMC4133896 DOI: 10.5483/bmbrep.2013.46.5.252] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an α-helical structure from Lys3 to Lys21 and from Ala25 to Val35, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as Trp2 and Phe5 at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi. [BMB Reports 2013; 46(5): 282-287]
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Institute of SMART Biotechnology, Konkuk University, Seoul 143-701
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Souza ALA, Díaz-Dellavalle P, Cabrera A, Larrañaga P, Dalla-Rizza M, De-Simone SG. Antimicrobial activity of pleurocidin is retained in Plc-2, a C-terminal 12-amino acid fragment. Peptides 2013; 45:78-84. [PMID: 23603258 DOI: 10.1016/j.peptides.2013.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/23/2022]
Abstract
An analysis of a series of five peptides composed of various portions of the pleurocidin (Plc) sequence identified a l2-amino acid fragment from the C-terminus of Plc, designated Plc-2, as the smallest fragment that retained a antimicrobial activity comparable to that of the parent compound. MIC tests in vitro with low-ionic-strength medium showed that Plc-2 has potent activity against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus but not against Enterococcus faecalis. The antifungal activity of the synthetic peptides against phytopathogenic fungi, such as Fusarium oxysporum, Colletotrichum sp., Aspergillus niger and Alternaria sp., also identified Plc-2 as a biologically active peptide. Microscopy studies of fluorescently stained fungi treated with Plc-2 demonstrated that cytoplasmic and nuclear membranes were compromised in all strains of phytopathogenic fungi tested. Together, these results identify Plc-2 as a potential antimicrobial agent with similar properties to its parent compound, pleurocidin. In addition, it demonstrated that the KHVGKAALTHYL residues are critical for the antimicrobial activity described for pleurocidin.
Collapse
Affiliation(s)
- Andre L A Souza
- National Institute of Science and Technology on Innovation on Neglected Diseases (INCT-IDN)/Center for Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus. Mar Drugs 2013; 11:1836-52. [PMID: 23760014 PMCID: PMC3721208 DOI: 10.3390/md11061836] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022] Open
Abstract
Previous studies had identified novel antimicrobial peptides derived from witch flounder. In this work, we extended the search for the activity of peptide that showed antibacterial activity on clinically isolated bacterial cells and bacterial biofilm. Pseudomonas aeruginosa was obtained from otitis media and cholelithiasis patients, while Staphylococcus aureus was isolated from otitis media patients. We found that synthetic peptide NRC-16 displays antimicrobial activity and is not sensitive to salt during its bactericidal activity. Interestingly, this peptide also led to significant inhibition of biofilm formation at a concentration of 4-16 μM. NRC-16 peptide is able to block biofilm formation at concentrations just above its minimum inhibitory concentration while conventional antibiotics did not inhibit the biofilm formation except ciprofloxacin and piperacillin. It did not cause significant lysis of human RBC, and is not cytotoxic to HaCaT cells and RAW264.7 cells, thereby indicating its selective antimicrobial activity. In addition, the peptide's binding and permeation activities were assessed by tryptophan fluorescence, calcein leakage and circular dichroism using model mammalian membranes composed of phosphatidylcholine (PC), PC/cholesterol (CH) and PC/sphingomyelin (SM). These experiments confirmed that NRC-16 does not interact with any of the liposomes but the control peptide melittin did. Taken together, we found that NRC-16 has potent antimicrobial and antibiofilm activities with less cytotoxicity, and thus can be considered for treatment of microbial infection in the future.
Collapse
|
46
|
Peng KC, Lee SH, Hour AL, Pan CY, Lee LH, Chen JY. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS One 2012; 7:e50263. [PMID: 23226256 PMCID: PMC3511469 DOI: 10.1371/journal.pone.0050263] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/17/2012] [Indexed: 11/21/2022] Open
Abstract
Piscidins are antimicrobial peptides (AMPs) that play important roles in helping fish resist pathogenic infections. Through comparisons of tilapia EST clones, the coding sequences of five piscidin-like AMPs (named TP1∼5) of Nile tilapia, Oreochromis niloticus, were determined. The complete piscidin coding sequences of TP1, -2, -3, -4, and -5 were respectively composed of 207, 234, 231, 270, and 195 bases, and each contained a translated region of 68, 77, 76, 89, and 64 amino acids. The tissue-specific, Vibrio vulnificus stimulation-specific, and Streptococcus agalactiae stimulation-specific expressions of TP2, -3, and -4 mRNA were determined by a comparative RT-PCR. Results of the tissue distribution analysis revealed high expression levels of TP2 mRNA in the skin, head kidneys, liver, and spleen. To study bacterial stimulation, S. agalactiae (SA47) was injected, and the TP4 transcript was upregulated by >13-fold (compared to the wild-type (WT) control, without injection) and was 60-fold upregulated (compared to the WT control, without injection) 24 h after the S. agalactiae (SA47) injection in the spleen and gills. Synthesized TP3 and TP4 peptides showed antimicrobial activities against several bacteria in this study, while the synthesized TP1, -2, and -5 peptides did not. The synthesized TP2, -3, and -4 peptides showed hemolytic activities and synthesized TP3 and TP4 peptides inhibited tilapia ovary cell proliferation with a dose-dependent effect. In summary, the amphiphilic α-helical cationic peptides of TP3 and TP4 may represent novel and potential antimicrobial agents for further peptide drug development.
Collapse
Affiliation(s)
- Kuan-Chieh Peng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Shu-Hua Lee
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Ai-Ling Hour
- Department of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | - Chieh-Yu Pan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Lin-Han Lee
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Potamotrygon cf. henlei stingray mucus: Biochemical features of a novel antimicrobial protein. Toxicon 2012; 60:821-9. [DOI: 10.1016/j.toxicon.2012.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/04/2012] [Accepted: 05/24/2012] [Indexed: 11/23/2022]
|
48
|
Affiliation(s)
- Vijay K. Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038;
| | | | - Xianghe Yan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038;
| |
Collapse
|
49
|
Wang KF, Nagarajan R, Mello CM, Camesano TA. Characterization of Supported Lipid Bilayer Disruption By Chrysophsin-3 Using QCM-D. J Phys Chem B 2011; 115:15228-35. [DOI: 10.1021/jp209658y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kathleen F. Wang
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Ramanathan Nagarajan
- Natick Soldier Research, Development and Engineering Center, Molecular Sciences and Engineering Team, Natick, Massachusetts 01760, United States
| | - Charlene M. Mello
- Natick Soldier Research, Development and Engineering Center, Molecular Sciences and Engineering Team, Natick, Massachusetts 01760, United States
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
50
|
Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, Kim SH, Lee J, Kim SR, Lee DG, Hwang JS, Kim Y. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus. J Biol Chem 2011; 286:41296-41311. [PMID: 21965682 PMCID: PMC3308842 DOI: 10.1074/jbc.m111.269225] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/29/2011] [Indexed: 02/02/2023] Open
Abstract
Papiliocin is a novel 37-residue cecropin-like peptide isolated recently from the swallowtail butterfly, Papilio xuthus. With the aim of identifying a potent antimicrobial peptide, we tested papiliocin in a variety of biological and biophysical assays, demonstrating that the peptide possesses very low cytotoxicity against mammalian cells and high bacterial cell selectivity, particularly against Gram-negative bacteria as well as high anti-inflammatory activity. Using LPS-stimulated macrophage RAW264.7 cells, we found that papiliocin exerted its anti-inflammatory activities by inhibiting nitric oxide (NO) production and secretion of tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2, producing effects comparable with those of the antimicrobial peptide LL-37. We also showed that the innate defense response mechanisms engaged by papiliocin involve Toll-like receptor pathways that culminate in the nuclear translocation of NF-κB. Fluorescent dye leakage experiments showed that papiliocin targets the bacterial cell membrane. To understand structure-activity relationships, we determined the three-dimensional structure of papiliocin in 300 mm dodecylphosphocholine micelles by NMR spectroscopy, showing that papiliocin has an α-helical structure from Lys(3) to Lys(21) and from Ala(25) to Val(36), linked by a hinge region. Interactions between the papiliocin and LPS studied using tryptophan blue-shift data, and saturation transfer difference-NMR experiments revealed that Trp(2) and Phe(5) at the N-terminal helix play an important role in attracting papiliocin to the cell membrane of Gram-negative bacteria. In conclusion, we have demonstrated that papiliocin is a potent peptide antibiotic with both anti-inflammatory and antibacterial activities, and we have laid the groundwork for future studies of its mechanism of action.
Collapse
Affiliation(s)
- Jin-Kyoung Kim
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Eunjung Lee
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Soyoung Shin
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Ki-Woong Jeong
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Jee-Young Lee
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Su-Young Bae
- Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, College of Medicine, Konkuk University, Seoul 143-701
| | - Soo-Hyun Kim
- Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, College of Medicine, Konkuk University, Seoul 143-701
| | - Juneyoung Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701
| | - Seong Ryul Kim
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-100, South Korea
| | - Dong Gun Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701
| | - Jae-Sam Hwang
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-100, South Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701.
| |
Collapse
|