1
|
Toepfer S, Lackner M, Keniya MV, Zenz LM, Friemert M, Bracher F, Monk BC. Clorgyline Analogs Synergize with Azoles against Drug Efflux in Candida auris. J Fungi (Basel) 2023; 9:663. [PMID: 37367600 DOI: 10.3390/jof9060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Concern about the global emergence of multidrug-resistant fungal pathogens led us to explore the use of combination therapy to combat azole resistance in Candida auris. Clorgyline had previously been shown to be a multi-target inhibitor of Cdr1 and Mdr1 efflux pumps of Candida albicans and Candida glabrata. A screen for antifungal sensitizers among synthetic analogs of Clorgyline detected interactions with the C. auris efflux pump azole substrates Posaconazole and Voriconazole. Of six Clorgyline analogs, M19 and M25 were identified as potential sensitizers of azole resistance. M19 and M25 were found to act synergistically with azoles against resistant C. auris clade I isolates and recombinant Saccharomyces cerevisiae strains overexpressing C. auris efflux pumps. Nile Red assays with the recombinant strains showed M19 and M25 inhibited the activity of Cdr1 and Mdr1 efflux pumps that are known to play key roles in azole resistance in C. auris clades I, III, and IV. While Clorgyline, M19 and M25 uncoupled the Oligomycin-sensitive ATPase activity of Cdr1 from C. albicans and C. auris, their mode of action is yet to be fully elucidated. The experimental combinations described herein provides a starting point to combat azole resistance dominated by overexpression of CauCdr1 in C. auris clades I and IV and CauMdr1 in C. auris clade III.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Lisa-Maria Zenz
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marianne Friemert
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Franz Bracher
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
| | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|
3
|
Todd RT, Soisangwan N, Peters S, Kemp B, Crooks T, Gerstein A, Selmecki A. Antifungal Drug Concentration Impacts the Spectrum of Adaptive Mutations in Candida albicans. Mol Biol Evol 2023; 40:6989826. [PMID: 36649220 PMCID: PMC9887641 DOI: 10.1093/molbev/msad009] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Invasive fungal infections are a leading global cause of human mortality. Only three major classes of antifungal drugs are widely used, and resistance to all three classes can arise rapidly. The most widely prescribed antifungal drug, fluconazole, disseminates rapidly and reaches a wide range of concentrations throughout the body. The impact of drug concentration on the spectrum and effect of mutations acquired during adaptation is not known for any fungal pathogen, and how the specific level of a given stress influences the distribution of beneficial mutations has been poorly explored in general. We evolved 144 lineages from three genetically distinct clinical isolates of Candida albicans to four concentrations of fluconazole (0, 1, 8, and 64 μg/ml) and performed comprehensive phenotypic and genomic comparisons of ancestral and evolved populations. Adaptation to different fluconazole concentrations resulted in distinct adaptive trajectories. In general, lineages evolved to drug concentrations close to their MIC50 (the level of drug that reduces growth by 50% in the ancestor) tended to rapidly evolve an increased MIC50 and acquired distinct segmental aneuploidies and copy number variations. By contrast, lineages evolved to drug concentrations above their ancestral MIC50 tended to acquire a different suite of mutational changes and increased in drug tolerance (the ability of a subpopulation of cells to grow slowly above their MIC50). This is the first evidence that different concentrations of drug can select for different genotypic and phenotypic outcomes in vitro and may explain observed in vivo drug response variation.
Collapse
Affiliation(s)
- Robert T Todd
- Present address: Department of Biology, Bard College, Annandale-on-Hudson, New York
| | | | - Sam Peters
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Bailey Kemp
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Taylor Crooks
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Aleeza Gerstein
- Department of Microbiology, The University of Manitoba, Winnipeg, Manitoba, Canada,Department of Statistics, The University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
4
|
Todd RT, Selmecki A. Copy Number Variation and Allele Ratio Analysis in Candida albicans Using Whole Genome Sequencing Data. Methods Mol Biol 2023; 2658:105-125. [PMID: 37024698 PMCID: PMC10676714 DOI: 10.1007/978-1-0716-3155-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Whole genome sequencing of human fungal pathogens has revolutionized the speed and accuracy in which sequence variants that cause antifungal resistance can be identified. Genome rearrangements resulting in copy number variation (CNV) are a significant source of acquired antifungal drug resistance across diverse fungal species. Some CNVs are transient in nature, while other CNVs are stable and well tolerated even in the absence of antifungal drugs. By visualizing whole genome sequencing read depth as a function of genomic location, CNVs and CNV breakpoints (genomic positions where the copy number changes occur relative to the rest of the genome) are rapidly identified. A similar analysis can be used to visualize allele ratio changes that occur across the genomes of heterozygous fungal species, both in the presence and absence of CNVs. This protocol walks through the bioinformatic analysis of CNVs and allele ratios utilizing free, open-source visualization tools. We provide code to use with an example dataset (matched antifungal drug-sensitive and drug-resistant Candida albicans isolates) and notes on how to expand this protocol to other fungal genomes.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Colabardini AC, Wang F, Dong Z, Pardeshi L, Rocha MC, Costa JH, dos Reis TF, Brown A, Jaber QZ, Fridman M, Fill T, Rokas A, Malavazi I, Wong KH, Goldman GH. Heterogeneity in the transcriptional response of the human pathogen Aspergillus fumigatus to the antifungal agent caspofungin. Genetics 2022; 220:iyab183. [PMID: 34718550 PMCID: PMC8733440 DOI: 10.1093/genetics/iyab183] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023] Open
Abstract
Aspergillus fumigatus is the main causative agent of invasive pulmonary aspergillosis (IPA), a severe disease that affects immunosuppressed patients worldwide. The fungistatic drug caspofungin (CSP) is the second line of therapy against IPA but has increasingly been used against clinical strains that are resistant to azoles, the first line antifungal therapy. In high concentrations, CSP induces a tolerance phenotype with partial reestablishment of fungal growth called CSP paradoxical effect (CPE), resulting from a change in the composition of the cell wall. An increasing number of studies has shown that different isolates of A. fumigatus exhibit phenotypic heterogeneity, including heterogeneity in their CPE response. To gain insights into the underlying molecular mechanisms of CPE response heterogeneity, we analyzed the transcriptomes of two A. fumigatus reference strains, Af293 and CEA17, exposed to low and high CSP concentrations. We found that there is a core transcriptional response that involves genes related to cell wall remodeling processes, mitochondrial function, transmembrane transport, and amino acid and ergosterol metabolism, and a variable response related to secondary metabolite (SM) biosynthesis and iron homeostasis. Specifically, we show here that the overexpression of a SM pathway that works as an iron chelator extinguishes the CPE in both backgrounds, whereas iron depletion is detrimental for the CPE in Af293 but not in CEA17. We next investigated the function of the transcription factor CrzA, whose deletion was previously shown to result in heterogeneity in the CPE response of the Af293 and CEA17 strains. We found that CrzA constitutively binds to and modulates the expression of several genes related to processes involved in CSP tolerance and that crzA deletion differentially impacts the SM production and growth of Af293 and CEA17. As opposed to the ΔcrzACEA17 mutant, the ΔcrzAAf293 mutant fails to activate cell wall remodeling genes upon CSP exposure, which most likely severely affects its macrostructure and extinguishes its CPE. This study describes how heterogeneity in the response to an antifungal agent between A. fumigatus strains stems from heterogeneity in the function of a transcription factor and its downstream target genes.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Jonas Henrique Costa
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, Institute of Translational Medicine, University of Macau, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| |
Collapse
|
6
|
Murphy SE, Bicanic T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front Cell Infect Microbiol 2022; 11:759408. [PMID: 34970504 PMCID: PMC8713075 DOI: 10.3389/fcimb.2021.759408] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.
Collapse
Affiliation(s)
- Sarah E Murphy
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom.,Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
7
|
Varahan S, Laxman S. Bend or break: how biochemically versatile molecules enable metabolic division of labor in clonal microbial communities. Genetics 2021; 219:iyab109. [PMID: 34849891 PMCID: PMC8633146 DOI: 10.1093/genetics/iyab109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
In fluctuating nutrient environments, isogenic microbial cells transition into "multicellular" communities composed of phenotypically heterogeneous cells, showing functional specialization. In fungi (such as budding yeast), phenotypic heterogeneity is often described in the context of cells switching between different morphotypes (e.g., yeast to hyphae/pseudohyphae or white/opaque transitions in Candida albicans). However, more fundamental forms of metabolic heterogeneity are seen in clonal Saccharomyces cerevisiae communities growing in nutrient-limited conditions. Cells within such communities exhibit contrasting, specialized metabolic states, and are arranged in distinct, spatially organized groups. In this study, we explain how such an organization can stem from self-organizing biochemical reactions that depend on special metabolites. These metabolites exhibit plasticity in function, wherein the same metabolites are metabolized and utilized for distinct purposes by different cells. This in turn allows cell groups to function as specialized, interdependent cross-feeding systems which support distinct metabolic processes. Exemplifying a system where cells exhibit either gluconeogenic or glycolytic states, we highlight how available metabolites can drive favored biochemical pathways to produce new, limiting resources. These new resources can themselves be consumed or utilized distinctly by cells in different metabolic states. This thereby enables cell groups to sustain contrasting, even apparently impossible metabolic states with stable transcriptional and metabolic signatures for a given environment, and divide labor in order to increase community fitness or survival. We speculate on possible evolutionary implications of such metabolic specialization and division of labor in isogenic microbial communities.
Collapse
Affiliation(s)
- Sriram Varahan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| |
Collapse
|
8
|
Abstract
Malassezia are emerging fungal pathogens causing opportunistic skin and severe systemic infection. Nosocomial outbreaks are associated with azole resistance and understanding of the underlying mechanisms are limited to knowledge from other fungal species. Herein, we identified distinct antifungal susceptibility patterns in 26 Malassezia furfur isolates derived from healthy and diseased individuals. A Y67F CYP51 mutation was identified in five isolates of M. furfur However, this mutation alone was insufficient to induce reduce azole susceptibility in the wild type strain. RNA-seq and differential gene analysis of healthy and disease derived strains exposed to clotrimazole in vitro identified several key metabolic pathways and transporter proteins which are involved in reduce azole susceptibility. The pleiotropic drug transporter PDR10 was the single most highly upregulated transporter gene in multiple strains of M. furfur after azole treatment and increased expression of PDR10 is associated with reduced azole susceptibility in some systemic disease isolates of M. furfur Deletion of PDR10 in a pathogenic M. furfur strain with reduced susceptibility reduced MIC values to the level of that in susceptible isolates. The current dearth of antifungal technologies, globally emerging multi-azole resistance, and broad agriculture and consumer care use of azoles means improved understanding of the mechanisms underlying intrinsic and acquired azole resistance in Malassezia is crucial for development of antibiotic stewardship and antifungal treatment strategies.
Collapse
|
9
|
Dynamics of in vitro development of azole resistance in Candida tropicalis. J Glob Antimicrob Resist 2020; 22:553-561. [PMID: 32339847 DOI: 10.1016/j.jgar.2020.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Increasing incidence of azole resistance in Candida tropicalis, especially to fluconazole, has been seen in Asian countries including India. Limited knowledge is available on the molecular mechanisms associated with the development of azole resistance in C. tropicalis. The present study examined the dynamics of in vitro azole resistance in C. tropicalis after prolonged treatment with fluconazole. METHODS Nine fluconazole-susceptible isolates of C. tropicalis were used in this study. Fluconazole resistance was induced experimentally in C. tropicalis isolates. The stability of induced resistance and cross-resistance to other azoles was examined. The molecular mechanisms of azole resistance were assessed by measuring the expression and mutation analysis of different genes. RESULTS Varying degrees of resistance [five with minimum inhibitory concentrations (MICs) ≤32 mg/L and four with MICs ≥128 mg/L] were noticed, and the resistance was developed in 3 months. Of the nine resistant isolates, four induced resistant isolates with MICs ≥128 mg/L presented temporal resistance stability up to 10 subcultures. These four isolates presented cross-resistance to other azoles and also an inducible overexpression of transporters (CDR1, CDR2, CDR3 and MDR1), ergosterol biosynthesis pathway genes (ERG1, ERG2, ERG3 and ERG11), transcription factors (TAC1 and UPC2) and stress-responsive genes (HSP90 and MKC1) was noticed. No mutations were seen in any of the four genes (ERG1, ERG3, ERG11 and UPC2) tested. CONCLUSIONS Candida tropicalis isolates adapt themselves in the presence of continuous drug exposure and switch back to being susceptible in the absence of the drug. The acquisition of resistance in C. tropicalis is mediated by the overexpression of different resistance-related genes without any molecular alterations.
Collapse
|
10
|
Autmizguine J, Smith PB, Prather K, Bendel C, Natarajan G, Bidegain M, Kaufman DA, Burchfield DJ, Ross AS, Pandit P, Schell WA, Gao J, Benjamin DK. Effect of fluconazole prophylaxis on Candida fluconazole susceptibility in premature infants. J Antimicrob Chemother 2018; 73:3482-3487. [PMID: 30247579 PMCID: PMC6927883 DOI: 10.1093/jac/dky353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/06/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Extremely premature infants are at high risk of developing invasive candidiasis; fluconazole prophylaxis is safe and effective for reducing invasive candidiasis in this population but further study is needed. We sought to better understand the effect of prophylactic fluconazole on a selection of fluconazole-resistant Candida species. METHODS We evaluated the susceptibility to fluconazole of Candida isolates from premature infants (<750 g birth weight) enrolled in a multicentre, randomized, placebo-controlled trial of fluconazole prophylaxis. Candida species were isolated through surveillance cultures at baseline (study day 0-7), period 1 (study day 8-28) and period 2 (study day 29-49). Fluconazole MICs were determined for all Candida isolates. RESULTS Three hundred and sixty-one infants received fluconazole (n = 188) or placebo (n = 173). After the baseline period, Candida colonization was significantly lower in the fluconazole group compared with placebo during periods 1 (5% versus 27%; P < 0.001) and 2 (3% versus 27%; P < 0.001). After the baseline period, two infants (1%) were colonized with at least one fluconazole-resistant Candida in each group. Median fluconazole MIC was similar in both treatment groups at baseline and period 1. However, in period 2, median MIC was higher in the fluconazole group compared with placebo (1.00 versus 0.50 mg/L, P = 0.01). There was no emergence of resistance observed and no patients developed invasive candidiasis with a resistant Candida isolate. CONCLUSIONS Fluconazole prophylaxis decreased Candida albicans and 'non-albicans' Candida colonization and was associated with a slightly higher fluconazole MIC for colonizing Candida isolates.
Collapse
Affiliation(s)
- Julie Autmizguine
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Canada
- Research Center, CHU Ste-Justine, Montréal, Canada
| | - P Brian Smith
- Department of Pediatrics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Kristi Prather
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | | | | | | | | | | | - Ashley S Ross
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paresh Pandit
- Children’s Hospital of Philadelphia at Vitua West Jersey Hospital Voorhees, Voorhees, NJ, USA
| | - Wiley A Schell
- Department of Medicine, Duke University, Durham, NC, USA
| | - Jamie Gao
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Daniel K Benjamin
- Department of Pediatrics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
- Corresponding author. Duke University Medical Center, Duke Clinical Research Institute, 2400 Pratt Street, Durham, NC 27705, USA. Tel:+1-919-668-7081; Fax: +1-919-668-7058; E-mail:
| |
Collapse
|
11
|
Gaining Insights from Candida Biofilm Heterogeneity: One Size Does Not Fit All. J Fungi (Basel) 2018; 4:jof4010012. [PMID: 29371505 PMCID: PMC5872315 DOI: 10.3390/jof4010012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
Despite their clinical significance and substantial human health burden, fungal infections remain relatively under-appreciated. The widespread overuse of antibiotics and the increasing requirement for indwelling medical devices provides an opportunistic potential for the overgrowth and colonization of pathogenic Candida species on both biological and inert substrates. Indeed, it is now widely recognized that biofilms are a highly important part of their virulence repertoire. Candida albicans is regarded as the primary fungal biofilm forming species, yet there is also increasing interest and growing body of evidence for non-Candida albicans species (NCAS) biofilms, and interkingdom biofilm interactions. C. albicans biofilms are heterogeneous structures by definition, existing as three-dimensional populations of yeast, pseudo-hyphae, and hyphae, embedded within a self-produced extracellular matrix. Classical molecular approaches, driven by extensive studies of laboratory strains and mutants, have enhanced our knowledge and understanding of how these complex communities develop, thrive, and cause host-mediated damage. Yet our clinical observations tell a different story, with differential patient responses potentially due to inherent biological heterogeneity from specific clinical isolates associated with their infections. This review explores some of the recent advances made in an attempt to explore the importance of working with clinical isolates, and what this has taught us.
Collapse
|
12
|
Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses 2017; 60:562-568. [PMID: 28660647 DOI: 10.1111/myc.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 11/27/2022]
Abstract
The concept of heteroresistance refers to the heterogeneous susceptibility to an antimicrobial drug in a microorganism population, meaning that some clones may be resistant and others are susceptible. This phenomenon has been widely studied in bacteria, but little attention has been given to its expression in fungi. We review the available literature on heteroresistance in fungi and invite the reader to recognise this phenomenon as a fungal mechanism to adapt to environmental stress, which may interfere both in resistance and virulence. Finally, heteroresistance may explain the treatment failures to eradicate mycosis in some patients treated with a seemingly appropriate antifungal.
Collapse
Affiliation(s)
- Gabriella F Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Governador Valadares, Brazil.,Departamento de Farmácia, Universidade Federal de Juiz de Fora - Campus Governador Valadares, Governador Valadares, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Governador Valadares, Brazil
| |
Collapse
|
13
|
Rocha MFG, Bandeira SP, de Alencar LP, Melo LM, Sales JA, Paiva MDAN, Teixeira CEC, Castelo-Branco DDSCM, Pereira-Neto WDA, Cordeiro RDA, Sidrim JJC, Brilhante RSN. Azole resistance in Candida albicans from animals: Highlights on efflux pump activity and gene overexpression. Mycoses 2017; 60:462-468. [PMID: 28295690 DOI: 10.1111/myc.12611] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/03/2023]
Abstract
This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole-resistant C. albicans strains from animals were tested for their antifungal susceptibility, according to document M27-A3, efflux pump activity by rhodamine 6G test, ergosterol content and expression of the genes CDR1, CDR2, MDR1, ERG11 by RT-qPCR. These strains were resistant to at least one azole derivative. Resistance to fluconazole and itraconazole was detected in 23 and 26 strains respectively. Rhodamine 6G tests showed increased activity of efflux pumps in the resistant strains, showing a possible resistance mechanism. There was no difference in ergosterol content between resistant and susceptible strains, even after fluconazole exposure. From 30 strains, 22 (73.3%) resistant animal strains overexpressed one or more genes. From this group, 40.9% (9/22) overexpressed CDR1, 18.2% (4/22) overexpressed CDR2, 59.1% (13/22) overexpressed MDR1 and 54.5% (12/22) overexpressed ERG11. Concerning gene expression, a positive correlation was observed only between CDR1 and CDR2. Thus, azole resistance in C. albicans strains from animals is a multifactorial process that involves increased efflux pump activity and the overexpression of different genes.
Collapse
Affiliation(s)
- Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil.,School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lucas Pereira de Alencar
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Luciana Magalhães Melo
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Jamille Alencar Sales
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Manoel de Araújo Neto Paiva
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Carlos Eduardo Cordeiro Teixeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Jiang L, Xu D, Chen Z, Cao Y, Gao P, Jiang Y. The putative ABC transporter encoded by the orf19.4531 plays a role in the sensitivity of Candida albicans cells to azole antifungal drugs. FEMS Yeast Res 2016; 16:fow024. [PMID: 26975389 DOI: 10.1093/femsyr/fow024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
ATP-binding cassette (ABC) transporters constitute a large superfamily of integral membrane proteins in prokaryotic and eukaryotic cells. In the human fungal pathogen Candida albicans, there are 28 genes encoding ABC transporters and many of them have not been characterized so far. The orf19.4531 (also known as IPF7530) encodes a putative ABC transporter. In this study, we have demonstrated that disruption of orf19.4531 causes C. albicans cells to become tolerant to azoles, but not to polyene antifungals and terbinafine. Therefore, the protein encoded by orf19.4531 is involved in azole sensitivity and we name it as ROA1, the regulator of azole sensitivity 1 gene. Consistently, we show that the expression of ROA1 is responsive to treatment of either fluconazole or ketoconazole inC. albicans In addition, through a GFP tagging approach, Roa1 is localized in a small punctuate compartment adjacent to the vacuolar membrane. However, ROA1 is not essential for the in vitro filamentation of C. albicans cells.
Collapse
Affiliation(s)
- Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Dayong Xu
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Chen
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongbing Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Pinghui Gao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
The development of fluconazole resistance in Candida albicans – an example of microevolution of a fungal pathogen. J Microbiol 2016; 54:192-201. [DOI: 10.1007/s12275-016-5628-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/13/2023]
|
16
|
Rocha MFG, Alencar LP, Paiva MAN, Melo LM, Bandeira SP, Ponte YB, Sales JA, Guedes GMM, Castelo-Branco DSCM, Bandeira TJ.PG, Cordeiro RA, Pereira-Neto WA, Brandine GS, Moreira JLB, Sidrim JJC, Brilhante RSN. Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school? Mycoses 2016; 59:281-90. [DOI: 10.1111/myc.12457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 12/09/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - L. P. Alencar
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - M. A. N. Paiva
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - Luciana Magalhães Melo
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - Y. B. Ponte
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - Jamille Alencar Sales
- School of Veterinary Medicine; Postgraduate Program in Veterinary Sciences; State University of Ceará; Fortaleza Ceará Brazil
| | - G. M. M. Guedes
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - D. S. C. M. Castelo-Branco
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | | | - R. A. Cordeiro
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - W. A. Pereira-Neto
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - G. S. Brandine
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - José Luciano Bezerra Moreira
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine; Postgraduate Program in Medical Microbiology; Specialized Medical Mycology Center; Federal University of Ceará; Fortaleza Ceará Brazil
| |
Collapse
|
17
|
Abstract
In the light of multidrug resistance (MDR) among pathogenic microbes and cancer cells, membrane transporters have gained profound clinical significance. Chemotherapeutic failure, by far, has been attributed mainly to the robust and diverse array of these proteins, which are omnipresent in every stratum of the living world. Candida albicans, one of the major fungal pathogens affecting immunocompromised patients, also develops MDR during the course of chemotherapy. The pivotal membrane transporters that C. albicans has exploited as one of the strategies to develop MDR belongs to either the ATP binding cassette (ABC) or the major facilitator superfamily (MFS) class of proteins. The ABC transporter Candida drug resistance 1 protein (Cdr1p) is a major player among these transporters that enables the pathogen to outplay the battery of antifungals encountered by it. The promiscuous Cdr1 protein fulfills the quintessential need of a model to study molecular mechanisms of multidrug transporter regulation and structure-function analyses of asymmetric ABC transporters. In this review, we cover the highlights of two decades of research on Cdr1p that has provided a platform to study its structure-function relationships and regulatory circuitry for a better understanding of MDR not only in yeast but also in other organisms.
Collapse
|
18
|
Gerstein AC, Berman J. Shift and adapt: the costs and benefits of karyotype variations. Curr Opin Microbiol 2015; 26:130-6. [PMID: 26321163 PMCID: PMC4577464 DOI: 10.1016/j.mib.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/06/2023]
Abstract
Variation is the spice of life or, in the case of evolution, variation is the necessary material on which selection can act to enable adaptation. Karyotypic variation in ploidy (the number of homologous chromosome sets) and aneuploidy (imbalance in the number of chromosomes) are fundamentally different than other types of genomic variants. Karyotypic variation emerges through different molecular mechanisms than other mutational events, and unlike mutations that alter the genome at the base pair level, rapid reversion to the wild type chromosome number is often possible. Although karyotypic variation has long been noted and discussed by biologists, interest in the importance of karyotypic variants in evolutionary processes has spiked in recent years, and much remains to be discovered about how karyotypic variants are produced and subsequently selected.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; Department of Molecular, Cellular, Developmental Biology and Genetics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel; Department of Molecular, Cellular, Developmental Biology and Genetics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Pereira de Sá N, Lino CI, Fonseca NC, Borelli BM, Ramos JP, Souza-Fagundes EM, Rosa CA, Santos DA, Barbosa de Oliveira R, Johann S. Thiazole compounds with activity against Cryptococcus gattii and Cryptococcus neoformans in vitro. Eur J Med Chem 2015; 102:233-42. [PMID: 26276437 DOI: 10.1016/j.ejmech.2015.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/08/2015] [Accepted: 07/16/2015] [Indexed: 11/29/2022]
Abstract
Human cryptococcosis can occur as a primary or opportunistic infection and develop as an acute, subacute, or chronic, systemic infection involving different host organs. We evaluated the antifungal activity of thirteen compounds against Cryptococcus gattii and Cryptococcus neoformans in vitro, by assessing the toxicity of the compounds showing the greatest antifungal activity in VERO cells and murine macrophages. From these results, four compounds were considered promising for further studies because they displayed low cytotoxicity and significant antifungal activity. The heterocyclic compounds 1b, 1c, 1d, and 1m have antifungal activity levels between that of amphotericin B and fluconazole in vitro. The death curve of Cryptococcus spp. treated with these four compounds was similar to the curve obtained for amphotericin B, in that we observed a significant reduction in cell viability within the first 24 h of treatment. Additionally, we found that there was no effect when these compounds were combined with amphotericin and fluconazole, except for 1c, which antagonized the effect of amphotericin B against C. gattii, also reflected in the reduction of the post-antifungal effect (PAFE); however, this interaction did not alter the ergosterol content. The results shown in this paper reveal the discovery of novel thiazole compounds, which are easy to synthesize, and with potentially exhibit antifungal activity, and display low cytotoxicity in normal mammalian cells. These compounds can be used as prototypes for the design of new antifungal drugs against C. gattii and C. neoformans.
Collapse
Affiliation(s)
- Nívea Pereira de Sá
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cleudiomar Inácio Lino
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia da UFMG, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nayara Cristina Fonseca
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia da UFMG, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz Martins Borelli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jonas Pereira Ramos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elaine Maria Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia da UFMG, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
20
|
Inhibitors of the Candida albicans Major Facilitator Superfamily Transporter Mdr1p Responsible for Fluconazole Resistance. PLoS One 2015; 10:e0126350. [PMID: 25951180 PMCID: PMC4423874 DOI: 10.1371/journal.pone.0126350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/01/2015] [Indexed: 01/11/2023] Open
Abstract
Objective To identify a novel class of inhibitors of fungal transporters involved in drug resistance. Methods A series of structurally-related low molecular mass compounds was synthesized using combinatorial chemistry of a cyclobutene-dione (squarile) core. These compounds were screened for their inhibition of plasma membrane Major Facilitator Superfamily (MFS) and ATP-binding cassette (ABC) transporters responsible for efflux pump-mediated drug resistance in the fungal pathogen Candida albicans. Strains of Saccharomyces cerevisiae that specifically overexpress the MFS pump CaMdr1p or the ABC transporter CaCdr1p were used in primary screens and counterscreens, respectively, and to detect inhibition of glucose-dependent Nile Red efflux. Efflux pump inhibition, activity as pump substrates and antifungal activity against yeast and clinical isolates expressing efflux pumps were determined using agarose diffusion susceptibility assays and checkerboard liquid chemosensitization assays with fluconazole. Results The screen identified five structurally-related compounds which inhibited CaMdr1p. Two compounds, A and B, specifically chemosensitized AD/CaMDR1 to FLC in a pH-dependent fashion and acted synergistically with FLC in checkerboard liquid MIC assays but compound B had limited solubility. Compound A chemosensitized to FLC the azole-resistant C. albicans strain FR2, which over-expresses CaMdr1p, inhibited Nile Red efflux mediated by CaMdr1p but not CaCdr1p and was not toxic to cultured human cells. A minor growth-inhibitory effect of B on AD/CaMDR1, but not on AD/CaCDR1 and AD/CaCDR2, indicated that compound B may be a substrate of these transporters. The related compound F was found to have antifungal activity against the three pump over-expressing strains used in the study. Conclusions Compound A is a ‘first in class’ small molecule inhibitor of MFS efflux pump CaMdr1p.
Collapse
|
21
|
Abstract
Invasive fungal infections remain a major source of global morbidity and mortality, especially among patients with underlying immune suppression. Successful patient management requires antifungal therapy. Yet, treatment choices are restricted due to limited classes of antifungal agents and the emergence of antifungal drug resistance. In some settings, the evolution of multidrug-resistant strains insensitive to several classes of antifungal agents is a major concern. The resistance mechanisms responsible for acquired resistance are well characterized and include changes in drug target affinity and abundance, and reduction in the intracellular level of drug by biofilms and efflux pumps. The development of high-level and multidrug resistance occurs through a stepwise evolution of diverse mechanisms. The genetic factors that influence these mechanisms are emerging and they form a complex symphony of cellular interactions that enable the cell to adapt and/or overcome drug-induced stress. Drivers of resistance involve a complex blend of host and microbial factors. Understanding these mechanisms will facilitate development of better diagnostics and therapeutic strategies to overcome and prevent antifungal resistance.
Collapse
Affiliation(s)
- David S Perlin
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Erika Shor
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Yanan Zhao
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| |
Collapse
|
22
|
Pippi B, Lana A, Moraes R, Güez C, Machado M, de Oliveira L, Lino von Poser G, Fuentefria A. In vitro
evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on Candida
spp. J Appl Microbiol 2015; 118:839-50. [DOI: 10.1111/jam.12746] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/09/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Affiliation(s)
- B. Pippi
- Programa de Pós Graduação em Microbiologia Agrícola e do Ambiente; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - A.J.D. Lana
- Programa de Pós Graduação em Ciências Farmacêuticas; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - R.C. Moraes
- Programa de Pós Graduação em Ciências Farmacêuticas; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - C.M. Güez
- Programa de Pós Graduação em Ciências Farmacêuticas; Universidade Federal do Pampa; Uruguaiana Brazil
| | - M. Machado
- Programa de Pós Graduação em Ciências Farmacêuticas; Universidade Federal do Pampa; Uruguaiana Brazil
| | - L.F.S. de Oliveira
- Programa de Pós Graduação em Ciências Farmacêuticas; Universidade Federal do Pampa; Uruguaiana Brazil
| | - G. Lino von Poser
- Programa de Pós Graduação em Ciências Farmacêuticas; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - A.M. Fuentefria
- Programa de Pós Graduação em Microbiologia Agrícola e do Ambiente; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
23
|
Santos JRA, Holanda RA, Frases S, Bravim M, Araujo GDS, Santos PC, Costa MC, Ribeiro MJA, Ferreira GF, Baltazar LM, Miranda AS, Oliveira DB, Santos CMA, Fontes ACL, Gouveia LF, Resende-Stoianoff MA, Abrahão JS, Teixeira AL, Paixão TA, Souza DG, Santos DA. Fluconazole alters the polysaccharide capsule of Cryptococcus gattii and leads to distinct behaviors in murine Cryptococcosis. PLoS One 2014; 9:e112669. [PMID: 25392951 PMCID: PMC4231059 DOI: 10.1371/journal.pone.0112669] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus gattii is an emergent human pathogen. Fluconazole is commonly used for treatment of cryptococcosis, but the emergence of less susceptible strains to this azole is a global problem and also the data regarding fluconazole-resistant cryptococcosis are scarce. We evaluate the influence of fluconazole on murine cryptococcosis and whether this azole alters the polysaccharide (PS) from cryptococcal cells. L27/01 strain of C. gattii was cultivated in high fluconazole concentrations and developed decreased drug susceptibility. This phenotype was named L27/01F, that was less virulent than L27/01 in mice. The physical, structural and electrophoretic properties of the PS capsule of L27/01F were altered by fluconazole. L27/01F presented lower antiphagocytic properties and reduced survival inside macrophages. The L27/01F did not affect the central nervous system, while the effect in brain caused by L27/01 strain began after only 12 hours. Mice infected with L27/01F presented lower production of the pro-inflammatory cytokines, with increased cellular recruitment in the lungs and severe pulmonary disease. The behavioral alterations were affected by L27/01, but no effects were detected after infection with L27/01F. Our results suggest that stress to fluconazole alters the capsule of C. gattii and influences the clinical manifestations of cryptococcosis.
Collapse
Affiliation(s)
- Julliana Ribeiro Alves Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Rodrigo Assunção Holanda
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia (LABIO), Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Rio de Janeiro, Brazil
| | - Mayara Bravim
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauber de S. Araujo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia (LABIO), Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Rio de Janeiro, Brazil
| | - Patrícia Campi Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maira Juliana Andrade Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Gabriella Freitas Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Ludmila Matos Baltazar
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Aline Silva Miranda
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danilo Bretas Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Carolina Maria Araújo Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Alide Caroline Lima Fontes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Ludmila Ferreira Gouveia
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Jonatas Santos Abrahão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Antônio Lúcio Teixeira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Danielle G. Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
24
|
Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med 2014; 5:a019752. [PMID: 25384768 DOI: 10.1101/cshperspect.a019752] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
Collapse
Affiliation(s)
- Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dominique Sanglard
- University of Lausanne and University Hospital Center, Institute of Microbiology, 1011 Lausanne, Switzerland
| | - Susan J Howard
- University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - P David Rogers
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
25
|
Hryncewicz-Gwóźdź A, Kalinowska K, Plomer-Niezgoda E, Bielecki J, Jagielski T. Increase in resistance to fluconazole and itraconazole in Trichophyton rubrum clinical isolates by sequential passages in vitro under drug pressure. Mycopathologia 2013; 176:49-55. [PMID: 23595653 DOI: 10.1007/s11046-013-9655-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/10/2013] [Indexed: 11/24/2022]
Abstract
Trichophyton rubrum, an anthropophilic dermatophyte fungus, is the predominant causative agent of superficial skin infections in human population. There are only scanty reports on drug susceptibility profiling of T. rubrum. Neither mechanisms for drug resistance development nor correlation between in vitro drug susceptibility and in vivo response to treatment is known for that species. In this study, changes in the in vitro susceptibilities to fluconazole (FLZ) and itraconazole (ITZ) among thirty T. rubrum clinical strains subjected to sequential passages in the presence or absence of the azoles were investigated. Each strain was passaged 12 times at 4-week intervals as three parallel cultures, maintained on a drug-free medium (1), and a medium containing FLZ (2) or ITZ (3) at subinhibitory concentrations. Susceptibility to FLZ and ITZ of the original strain and its 3 subcultures was determined by microdilution method. The MIC values of the two azoles remained unaltered for all T. rubrum strains tested, after 12 passages on a drug-free medium. Among the strains grown with FLZ, an increase in the MICs of FLZ and ITZ was noted in 17 (56.7 %) and 19 (63.3 %) strains, respectively. Increased MICs of ITZ and FLZ were demonstrated for 24 (80 %) and 20 (66.7 %) strains that were propagated with ITZ. The results indicate the capacity of T. rubrum to develop resistance toward the azoles after prolonged exposure to these drugs. Resistance of T. rubrum to azoles plays an important role in therapy failures and consequently contributes to persistence and chronicity of the infections.
Collapse
Affiliation(s)
- Anita Hryncewicz-Gwóźdź
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| | | | | | | | | |
Collapse
|
26
|
Chaves GM, Santos FP, Colombo AL. The persistence of multifocal colonisation by a single ABC genotype of Candida albicans may predict the transition from commensalism to infection. Mem Inst Oswaldo Cruz 2013; 107:198-204. [PMID: 22415258 DOI: 10.1590/s0074-02762012000200008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022] Open
Abstract
Candida albicans is a common member of the human microbiota and may cause invasive disease in susceptible populations. Several risk factors have been proposed for candidaemia acquisition. Previous Candida multifocal colonisation among hospitalised patients may be crucial for the successful establishment of candidaemia. Nevertheless, it is still not clear whether the persistence or replacement of a single clone of C. albicans in multiple anatomical sites of the organism may represent an additional risk for candidaemia acquisition. Therefore, we prospectively evaluated the dynamics of the colonising strains of C. albicans for two groups of seven critically ill patients: group I included patients colonised by C. albicans in multiple sites who did not develop candidaemia and group II included patients who were colonised and who developed candidaemia. ABC and microsatellite genotyping of 51 strains of C. albicans revealed that patients who did not develop candidaemia were multiply colonised by at least two ABC genotypes of C. albicans, whereas candidaemic patients had highly related microsatellites and the same ABC genotype in colonising and bloodstream isolates that were probably present in different body sites before the onset of candidaemia.
Collapse
Affiliation(s)
- Guilherme Maranhão Chaves
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | | | | |
Collapse
|
27
|
Morrow CA, Fraser JA. Ploidy variation as an adaptive mechanism in human pathogenic fungi. Semin Cell Dev Biol 2013; 24:339-46. [PMID: 23380396 DOI: 10.1016/j.semcdb.2013.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Changes in ploidy have a profound and usually negative influence on cellular viability and proliferation, yet the vast majority of cancers and tumours exhibit an aneuploid karyotype. Whether this genomic plasticity is a cause or consequence of malignant transformation remains uncertain. Systemic fungal pathogens regularly develop aneuploidies in a similar manner during human infection, often far in excess of the natural rate of chromosome nondisjunction. As both processes fundamentally represent cells evolving under selective pressures, this suggests that changes in chromosome number may be a concerted mechanism to adapt to the hostile host environment. Here, we examine the mechanisms by which aneuploidy and polyploidy are generated in the fungal pathogens Candida albicans and Cryptococcus neoformans and investigate whether these represent an adaptive strategy under severe stress through the rapid generation of large-scale mutations. Insights into fungal ploidy changes, strategies for tolerating aneuploidies and proliferation during infection may yield novel targets for both antifungal and anticancer therapies.
Collapse
Affiliation(s)
- Carl A Morrow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
28
|
Sasse C, Dunkel N, Schäfer T, Schneider S, Dierolf F, Ohlsen K, Morschhäuser J. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol Microbiol 2012; 86:539-56. [PMID: 22924823 DOI: 10.1111/j.1365-2958.2012.08210.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2012] [Indexed: 01/12/2023]
Abstract
The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1, Tac1 and Upc2, which result in constitutive overexpression of multidrug efflux pumps and ergosterol biosynthesis genes respectively. It is not known how the permanently changed gene expression program in resistant strains affects their fitness in the absence of drug selection pressure. We have systematically investigated the effects of activating mutations in Mrr1, Tac1 and Upc2, individually and in all possible combinations, on the degree of fluconazole resistance and on the fitness of C. albicans in an isogenic strain background. All combinations of different resistance mechanisms resulted in a stepwise increase in drug resistance, culminating in 500-fold increased fluconazole resistance in strains possessing mutations in the three transcription factors and an additional resistance mutation in the drug target enzyme Erg11. The acquisition of resistance mutations was associated with reduced fitness under non-selective conditions in vitro as well as in vivo during colonization of a mammalian host. Therefore, without compensatory mutations, the inability to appropriately regulate gene expression results in a loss of competitive fitness of drug-resistant C. albicans strains.
Collapse
Affiliation(s)
- Christoph Sasse
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis. PLoS One 2012; 7:e35750. [PMID: 22563396 PMCID: PMC3338533 DOI: 10.1371/journal.pone.0035750] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/24/2012] [Indexed: 01/09/2023] Open
Abstract
Candida orthopsilosis is closely related to the fungal pathogen Candida parapsilosis. However, whereas C. parapsilosis is a major cause of disease in immunosuppressed individuals and in premature neonates, C. orthopsilosis is more rarely associated with infection. We sequenced the C. orthopsilosis genome to facilitate the identification of genes associated with virulence. Here, we report the de novo assembly and annotation of the genome of a Type 2 isolate of C. orthopsilosis. The sequence was obtained by combining data from next generation sequencing (454 Life Sciences and Illumina) with paired-end Sanger reads from a fosmid library. The final assembly contains 12.6 Mb on 8 chromosomes. The genome was annotated using an automated pipeline based on comparative analysis of genomes of Candida species, together with manual identification of introns. We identified 5700 protein-coding genes in C. orthopsilosis, of which 5570 have an ortholog in C. parapsilosis. The time of divergence between C. orthopsilosis and C. parapsilosis is estimated to be twice as great as that between Candida albicans and Candida dubliniensis. There has been an expansion of the Hyr/Iff family of cell wall genes and the JEN family of monocarboxylic transporters in C. parapsilosis relative to C. orthopsilosis. We identified one gene from a Maltose/Galactoside O-acetyltransferase family that originated by horizontal gene transfer from a bacterium to the common ancestor of C. orthopsilosis and C. parapsilosis. We report that TFB3, a component of the general transcription factor TFIIH, undergoes alternative splicing by intron retention in multiple Candida species. We also show that an intein in the vacuolar ATPase gene VMA1 is present in C. orthopsilosis but not C. parapsilosis, and has a patchy distribution in Candida species. Our results suggest that the difference in virulence between C. parapsilosis and C. orthopsilosis may be associated with expansion of gene families.
Collapse
|
30
|
Hayama K, Ishibashi H, Ishijima SA, Niimi K, Tansho S, Ono Y, Monk BC, Holmes AR, Harding DRK, Cannon RD, Abe S. A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiol Lett 2012; 328:130-7. [PMID: 22211961 DOI: 10.1111/j.1574-6968.2011.02490.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 11/26/2022] Open
Abstract
Clinical management of patients undergoing treatment of oropharyngeal candidiasis with azole antifungals can be impaired by azole resistance. High-level azole resistance is often caused by the overexpression of Candida albicans efflux pump Cdr1p. Inhibition of this pump therefore represents a target for combination therapies that reverse azole resistance. We assessed the therapeutic potential of the D-octapeptide derivative RC21v3, a Cdr1p inhibitor, in the treatment of murine oral candidiasis caused by either the azole-resistant C. albicans clinical isolate MML611 or its azole-susceptible parental strain MML610. RC21v3, fluconazole (FLC), or a combination of both drugs were administered orally to immunosuppressed ICR mice at 3, 24, and 27 h after oral inoculation with C. albicans. FLC protected the mice inoculated with MML610 from oral candidiasis, but was only partially effective in MML611-infected mice. The co-application of RC21v3 (0.02 μmol per dose) potentiated the therapeutic performance of FLC for mice infected with either strain. It caused a statistically significant decrease in C. albicans cfu isolated from the oral cavity of the infected mice and reduced oral lesions. RC21v3 also enhanced the therapeutic activity of itraconazole against MML611 infection. These results indicate that RC21v3 in combination with azoles has potential as a therapy against azole-resistant oral candidiasis.
Collapse
Affiliation(s)
- Kazumi Hayama
- Teikyo University Institute of Medical Mycology, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother 2011; 56:1508-15. [PMID: 22203607 DOI: 10.1128/aac.05706-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Resistance to the commonly used azole antifungal fluconazole (FLC) can develop due to overexpression of ATP-binding cassette (ABC) and major facilitator superfamily (MFS) plasma membrane transporters. An approach to overcoming this resistance is to identify inhibitors of these efflux pumps. We have developed a pump assay suitable for high-throughput screening (HTS) that uses recombinant Saccharomyces cerevisiae strains hyperexpressing individual transporters from the opportunistic fungal pathogen Candida albicans. The recombinant strains possess greater resistance to azoles and other pump substrates than the parental host strain. A flow cytometry-based HTS, which measured increased intracellular retention of the fluorescent pump substrate rhodamine 6G (R6G) within yeast cells, was used to screen the Prestwick Chemical Library (PCL) of 1,200 marketed drugs. Nine compounds were identified as hits, and the monoamine oxidase A inhibitor (MAOI) clorgyline was identified as an inhibitor of two C. albicans ABC efflux pumps, CaCdr1p and CaCdr2p. Secondary in vitro assays confirmed inhibition of pump-mediated efflux by clorgyline. Clorgyline also reversed the FLC resistance of S. cerevisiae strains expressing other individual fungal ABC transporters (Candida glabrata Cdr1p or Candida krusei Abc1p) or the C. albicans MFS transporter Mdr1p. Recombinant strains were also chemosensitized by clorgyline to other azoles (itraconazole and miconazole). Importantly, clorgyline showed synergy with FLC against FLC-resistant C. albicans clinical isolates and a C. glabrata strain and inhibited R6G efflux from a FLC-resistant C. albicans clinical isolate. Clorgyline is a novel broad-spectrum inhibitor of two classes of fungal efflux pumps that acts synergistically with azoles against azole-resistant C. albicans and C. glabrata strains.
Collapse
|
32
|
Hu G, Wang J, Choi J, Jung WH, Liu I, Litvintseva AP, Bicanic T, Aurora R, Mitchell TG, Perfect JR, Kronstad JW. Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics 2011; 12:526. [PMID: 22032296 PMCID: PMC3221739 DOI: 10.1186/1471-2164-12-526] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/27/2011] [Indexed: 11/25/2022] Open
Abstract
Background The adaptation of pathogenic fungi to the host environment via large-scale genomic changes is a poorly characterized phenomenon. Cryptococcus neoformans is the leading cause of fungal meningoencephalitis in HIV/AIDS patients, and we recently discovered clinical strains of the fungus that are disomic for chromosome 13. Here, we examined the genome plasticity and phenotypes of monosomic and disomic strains, and compared their virulence in a mouse model of cryptococcosis Results In an initial set of strains, melanin production was correlated with monosomy at chromosome 13, and disomic variants were less melanized and attenuated for virulence in mice. After growth in culture or passage through mice, subsequent strains were identified that varied in melanin formation and exhibited copy number changes for other chromosomes. The correlation between melanin and disomy at chromosome 13 was observed for some but not all strains. A survey of environmental and clinical isolates maintained in culture revealed few occurrences of disomic chromosomes. However, an examination of isolates that were freshly collected from the cerebrospinal fluid of AIDS patients and minimally cultured provided evidence for infections with multiple strains and copy number variation. Conclusions Overall, these results suggest that the genome of C. neoformans exhibits a greater degree of plasticity than previously appreciated. Furthermore, the expression of an essential virulence factor and the severity of disease are associated with genome variation. The occurrence of chromosomal variation in isolates from AIDS patients, combined with the observed influence of disomy on virulence, indicates that genome plasticity may have clinical relevance.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ishijima SA, Hayama K, Takahashi M, Holmes AR, Cannon RD, Abe S. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis. Med Mycol 2011; 50:252-8. [PMID: 21859389 DOI: 10.3109/13693786.2011.598194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The amino sugar N-acetylglucosamine (GlcNAc) is an in vitro inducer of the hyphal mode of growth of the opportunistic pathogen Candida albicans. The development of hyphae by C. albicans is considered to contribute to the pathogenesis of mucosal oral candidiasis. GlcNAc is also a commonly used nutritional supplement for the self-treatment of conditions such as arthritis. To date, no study has investigated whether ingestion of GlcNAc has an effect on the in vivo growth of C. albicans or the pathogenesis of a C. albicans infection. Using a murine model of oral candidiasis, we have found that administration of GlcNAc, but not glucose, increased oral symptoms of candidiasis and fungal burden. Groups of mice were given GlcNAc in either water or in a viscous carrier, i.e., 1% methylcellulose. There was a dose-dependent relationship between GlcNAc concentration and the severity of oral symptoms. Mice given the highest dose of GlcNAc, 45.2 mM, also showed a significant increase in fungal burden, and increased histological evidence of infection compared to controls given water alone. We propose that ingestion of GlcNAc, as a nutritional supplement, may have an impact on oral health in people susceptible to oral candidiasis.
Collapse
Affiliation(s)
- Sanae A Ishijima
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Transcriptional profiling of azole-resistant Candida parapsilosis strains. Antimicrob Agents Chemother 2011; 55:3546-56. [PMID: 21518843 DOI: 10.1128/aac.01127-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Herein we describe the changes in the gene expression profile of Candida parapsilosis associated with the acquisition of experimentally induced resistance to azole antifungal drugs. Three resistant strains of C. parapsilosis were obtained following prolonged in vitro exposure of a susceptible clinical isolate to constant concentrations of fluconazole, voriconazole, or posaconazole. We found that after incubation with fluconazole or voriconazole, strains became resistant to both azoles but not to posaconazole, although susceptibility to this azole decreased, whereas the strain incubated with posaconazole displayed resistance to the three azoles. The resistant strains obtained after exposure to fluconazole and to voriconazole have increased expression of the transcription factor MRR1, the major facilitator transporter MDR1, and several reductases and oxidoreductases. Interestingly, and similarly to what has been described in C. albicans, upregulation of MRR1 and MDR1 is correlated with point mutations in MRR1 in the resistant strains. The resistant strain obtained after exposure to posaconazole shows upregulation of two transcription factors (UPC2 and NDT80) and increased expression of 13 genes involved in ergosterol biosynthesis. This is the first study addressing global molecular mechanisms underlying azole resistance in C. parapsilosis; the results suggest that similarly to C. albicans, tolerance to azoles involves the activation of efflux pumps and/or increased ergosterol synthesis.
Collapse
|
35
|
Rogers TR, Slavin MA, Donnelly JP. Antifungal prophylaxis during treatment for haematological malignancies: are we there yet? Br J Haematol 2011; 153:681-97. [PMID: 21504422 DOI: 10.1111/j.1365-2141.2011.08650.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antifungal prophylaxis during treatment for haematological malignancies has been studied for 50 years, yet it has not been wholly effective even when using antifungal drugs that exhibit potent activity in vitro against a broad range of fungal pathogens. Trials have demonstrated that it can reduce the incidence of invasive fungal diseases (IFD) and fungal deaths, but only two studies have had an impact on overall mortality. Furthermore, it has not significantly reduced the need for empirical antifungal therapy. Posaconazole was effective in preventing invasive aspergillosis in two studies of high-risk patients, and consensus guidelines grade it as a suitable choice for antifungal prophylaxis of invasive mould disease; however, its bioavailability was compromised by vomiting or diarrhoea so that an alternative parenteral antifungal drug was required. A recent trial of voriconazole prophylaxis after allogeneic stem cell transplantation failed to show superiority over fluconazole. With more accurate definitions of IFD, that utilize fungal biomarkers, such as galactomannan, together with computerized tomographic imaging, there is growing interest in a diagnostic-driven strategy, which could prove to be a more efficacious approach.
Collapse
Affiliation(s)
- Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| | | | | |
Collapse
|
36
|
Fu Z, Lu H, Zhu Z, Yan L, Jiang Y, Cao Y. Combination of Baicalein and Amphotericin B Accelerates Candida albicans Apoptosis. Biol Pharm Bull 2011; 34:214-8. [DOI: 10.1248/bpb.34.214] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- ZiJin Fu
- School of Pharmacy, Second Military Medical University, P.R. China
| | - Hui Lu
- School of Pharmacy, Second Military Medical University, P.R. China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University, P.R. China
| | - Lan Yan
- School of Pharmacy, Second Military Medical University, P.R. China
| | - YuanYing Jiang
- School of Pharmacy, Second Military Medical University, P.R. China
| | - YingYing Cao
- School of Pharmacy, Second Military Medical University, P.R. China
| |
Collapse
|
37
|
Kourkoumpetis TK, Velmahos GC, Ziakas PD, Tampakakis E, Manolakaki D, Coleman JJ, Mylonakis E. The effect of cumulative length of hospital stay on the antifungal resistance of Candida strains isolated from critically ill surgical patients. Mycopathologia 2010; 171:85-91. [PMID: 20927595 DOI: 10.1007/s11046-010-9369-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/19/2010] [Indexed: 11/30/2022]
Abstract
Fluconazole is the first line of therapy for the management of candidiasis. However, fluconazole-resistant strains pose an emerging challenge in everyday clinical practice. In this study, we sought to determine whether cumulative length of hospital stay (CLOS) is a predictive factor for the acquisition of non-susceptible Candida strains to fluconazole. Thirty-three critically ill emergency surgery patients with 56 Candida isolates were enrolled in this prospective study. We divided our isolates according to their minimum inhibitory concentration (MIC) to fluconazole using 8 mcg/ml as a cutoff. We then compared the two groups with respect to basic demographics, antifungal agents prescribed, number of wide-spectrum antibiotics, duration of central venous catheter placement, elapsed time to positive culture, duration of prior hospital stay, and length of hospital stay. Non-susceptible fluconazole samples belonged to patients with a significantly longer prior hospital stay and a longer CLOS (P = 0.02 and 0.01, respectively). The difference between the 2 groups regarding non-albicans strains was statistically significant (P < 0.001). By fitting a non-parametric receiver-operating characteristics (ROC) curve into our analysis, a CLOS ≥ 29 days predicted the occurrence of non-susceptible strains with 90% sensitivity and 79.6% specificity (correct classification 81.5%). A CLOS ≥ 29 days is a strong predictor for the isolation of non-susceptible Candida isolates to fluconazole among critically ill emergency surgery patients. Clinicians should consider the duration of previous hospital stay when deciding on empiric antifungal therapy.
Collapse
Affiliation(s)
- Themistoklis K Kourkoumpetis
- Department of Medicine, Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Gray-Jackson 504, 55 Fruit St, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2010; 9:991-1008. [PMID: 20495058 PMCID: PMC2901674 DOI: 10.1128/ec.00060-10] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
39
|
Abstract
We analyzed 71 clinical and environmental Cryptococcus gattii strains that had been isolated before or after the advent of azole antifungals to determine their level of heteroresistance to fluconazole (LHF). All strains of C. gattii manifested heteroresistance, with LHFs that ranged between 4 microg/ml and 32 microg/ml. A considerably higher proportion of the C. gattii strains (86%) than Cryptococcus neoformans strains (46%) exhibited LHFs that were > or =16 microg/ml. No significant correlation was observed between the molecular type or serotypes of strains and their respective LHF. The strains which expressed a higher LHF were also more resistant to xenobiotics than the strains with a low LHF, and the level of resistance to xenobiotics was significantly higher than that reported for C. neoformans. The heteroresistant subpopulation, whose level of drug resistance had been raised in a stepwise manner to 64 microg/ml, reverted to the original LHF upon daily transfers in drug-free medium. Importantly, the strains with high LHFs were significantly more virulent than those with low LHFs. Since all the clinical isolates that had not been exposed to azole drugs as well as the environmental strains manifested heteroresistance to fluconazole, heteroresistance of C. gattii to azoles is an intrinsic mechanism as in C. neoformans and is associated with the strain's virulence.
Collapse
|
40
|
Maschmeyer G, Calandra T, Singh N, Wiley J, Perfect J. Invasive mould infections: a multi-disciplinary update. Med Mycol 2010; 47:571-83. [PMID: 19444698 DOI: 10.1080/13693780902946559] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Systemic fungal infections remain a significant cause of mortality in neutropenic and immunocompromised patients, despite advances in their diagnosis and treatment. The incidence of such infections is rising due to the use of intensive chemotherapy regimens in patients with solid tumours or haematological cancers, the increasing numbers of allogeneic haematopoietic stem cell and solid organ transplants, and the use of potent immunosuppressive therapy in patients with autoimmune disorders. In addition, the epidemiology of systemic fungal infections is changing, with atypical species such as Aspergillus terreus and zygomycetes becoming more common. Treatment has traditionally focused on empirical therapy, but targeted pre-emptive therapy in high-risk patients and prophylactic antifungal treatment are increasingly being adopted. New treatments, including lipid formulations of amphotericin B, second-generation broad-spectrum azoles, and echinocandins, offer effective antifungal activity with improved tolerability compared with older agents; the potential impact of these treatments is reflected in their inclusion in current treatment and prophylaxis guidelines. New treatment strategies, such as aerosolized lipid formulations of amphotericin B, may also reduce the burden of mortality associated with systemic fungal infections. The challenge is to identify ways of coupling potentially effective treatments with early and reliable identification of patients at highest risk of infection.
Collapse
Affiliation(s)
- Georg Maschmeyer
- Department of Haematology and Oncology, Center for Haematology, Oncology and Radiotherapy, Klinikum Ernst von Bergmann, Potsdam, Germany.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Candida albicans, a diploid yeast commensal and opportunist pathogen, has evolved unusual mechanisms for maintenance of genetic diversity in the absence of a complete sexual cycle. These include chromosomal polymorphisms, mitotic recombination events, and gains and losses of heterozygosity, superimposed on a fundamentally clonal mode of reproduction. Molecular typing of C. albicans strains shows geographical evolutionary associations but these have become partially blurred, probably as a result of extensive human travel. Individual patients usually carry a single C. albicans strain type, but this may undergo microvariation leading to detection of mixtures of closely related types. Associations have been found between clade 1, the most common multilocus sequence typing cluster of related C. albicans strains, and resistance to flucytosine and terbinafine. There are also clade-related associations with lengths of tandem repeats in some cell-surface proteins, but not with virulence or type of infection.
Collapse
Affiliation(s)
- Frank C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
42
|
Morschhäuser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 2010; 47:94-106. [DOI: 10.1016/j.fgb.2009.08.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/21/2009] [Accepted: 08/02/2009] [Indexed: 12/21/2022]
|
43
|
Arechavala AI, Ochiuzzi ME, Borgnia MD, Santiso GM. Fluconazole and amphotericin B susceptibility testing of Cryptococcus neoformans: Results of minimal inhibitory concentrations against 265 isolates from HIV-positive patients before and after two or more months of antifungal therapy. Rev Iberoam Micol 2009; 26:194-7. [DOI: 10.1016/j.riam.2009.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 02/24/2009] [Indexed: 10/20/2022] Open
|
44
|
Braga-Silva L, Mesquita D, Ribeiro M, Carvalho S, Fracalanzza S, Santos A. Trailing end-point phenotype antibiotic-sensitive strains of Candida albicans produce different amounts of aspartyl peptidases. Braz J Med Biol Res 2009; 42:765-70. [DOI: 10.1590/s0100-879x2009000800013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 07/06/2009] [Indexed: 11/22/2022] Open
Affiliation(s)
- L.A. Braga-Silva
- Universidade Federal do Rio de Janeiro; Universidade Federal do Rio de Janeiro, Brasil
| | | | - M.D. Ribeiro
- Universidade Federal do Rio de Janeiro, Brasil; HEMORIO, Brasil
| | | | | | - A.L.S. Santos
- Universidade Federal do Rio de Janeiro; Universidade Federal do Rio de Janeiro, Brasil
| |
Collapse
|
45
|
Pinto e Silva AT, Costa-de-Oliveira S, Silva-Dias A, Pina-Vaz C, Rodrigues AG. Dynamics ofin vitroâacquisition of resistance byCandida parapsilosisto different azoles. FEMS Yeast Res 2009; 9:626-33. [DOI: 10.1111/j.1567-1364.2009.00508.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother 2009; 53:2804-15. [PMID: 19414582 DOI: 10.1128/aac.00295-09] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1999, heteroresistance to triazoles was reported in Cryptococcus neoformans strains isolated from an azole therapy failure case of cryptococcosis in an AIDS patient and in a diagnostic strain from a non-AIDS patient. In this study, we analyzed 130 strains of C. neoformans isolated from clinical and environmental sources before 1979, prior to the advent of triazoles, and 16 fluconazole (FLC)-resistant strains isolated from AIDS patients undergoing FLC maintenance therapy during 1990 to 2000. All strains isolated prior to 1979 manifested heteroresistance (subset of a population that grows in the presence of FLC) at concentrations between 4 and 64 microg/ml, and all 16 FLC-resistant AIDS isolates manifested heteroresistance at concentrations between 16 and 128 microg/ml. Upon exposure to stepwise increases in the concentration of FLC, subpopulations that could grow at higher concentrations emerged. Repeated transfer on drug-free media caused the highly resistant subpopulations to revert to the original level of heteroresistance. The reversion pattern fell into four categories based on the number of transfers required. The strains heteroresistant at > or =32 microg/ml were significantly more resistant to other xenobiotics and were also more virulent in mice than were those heteroresistant at < or =8 microg/ml. During FLC treatment of mice infected by strains with low levels of heteroresistance, subpopulations exhibiting higher levels of heteroresistance emerged after a certain period of time. The ABC transporter AFR1, known to efflux FLC, was unrelated to the heteroresistance mechanism. Our study showed that heteroresistance to azole is universal and suggests that heteroresistance contributes to relapse of cryptococcosis during azole maintenance therapy.
Collapse
|
47
|
Huang S, Cao YY, Dai BD, Sun XR, Zhu ZY, Cao YB, Wang Y, Gao PH, Jiang YY. In vitro synergism of fluconazole and baicalein against clinical isolates of Candida albicans resistant to fluconazole. Biol Pharm Bull 2009; 31:2234-6. [PMID: 19043205 DOI: 10.1248/bpb.31.2234] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro interaction of fluconazole and baicalein (BE) was investigated against 30 fluconazole-resistant clinical isolates of Candida albicans. Synergistic activities were determined using the checkerboard microdilution assay based on the fractional inhibitory concentration indices. Organisms were also tested against the 2 drugs singly and in combination using time-kill methods. Both fluconazole and BE showed weak antifungal activity when tested alone. However, the combination of fluconazole and BE showed strong antifungal activity against most of the fluconazole-resistant isolates tested. The findings of time-kill curves confirmed the interaction. Yeast cells grown in the presence of BE exhibited a reduced extrusion of Rhodamine 6G, which indicates the inhibition of efflux pumps by BE. This novel synergism of fluconazole and BE that can overcome drug-resistance in yeast may prove useful in combined treatment of fungal infections.
Collapse
Affiliation(s)
- Shan Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang YL, Cheng MF, Chang YW, Young TG, Chi H, Lee SC, Cheung BMH, Tseng FC, Chen TC, Ho YH, Shi ZY, Chan CHH, Lin JY, Lo HJ. Host factors do not influence the colonization or infection by fluconazole resistant Candida species in hospitalized patients. J Negat Results Biomed 2008; 7:12. [PMID: 19087319 PMCID: PMC2621115 DOI: 10.1186/1477-5751-7-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/16/2008] [Indexed: 11/26/2022] Open
Abstract
Nosocomial yeast infections have significantly increased during the past two decades in industrialized countries, including Taiwan. This has been associated with the emergence of resistance to fluconazole and other antifungal drugs. The medical records of 88 patients, colonized or infected with Candida species, from nine of the 22 hospitals that provided clinical isolates to the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) program in 1999 were reviewed. A total of 35 patients contributed fluconazole resistant strains [minimum inhibitory concentrations (MICs) ≧ 64 mg/l], while the remaining 53 patients contributed susceptible ones (MICs ≦ 8 mg/l). Fluconazole resistance was more frequent among isolates of Candida tropicalis (46.5%) than either C. albicans (36.8%) or C. glabrata (30.8%). There was no significant difference in demographic characteristics or underlying diseases among patients contributing strains different in drug susceptibility.
Collapse
Affiliation(s)
- Yun-Liang Yang
- Division of Clinical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 2008; 52:3851-62. [PMID: 18710914 DOI: 10.1128/aac.00463-08] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluconazole (FLC) remains the antifungal drug of choice for non-life-threatening Candida infections, but drug-resistant strains have been isolated during long-term therapy with azoles. Drug efflux, mediated by plasma membrane transporters, is a major resistance mechanism, and clinically significant resistance in Candida albicans is accompanied by increased transcription of the genes CDR1 and CDR2, encoding plasma membrane ABC-type transporters Cdr1p and Cdr2p. The relative importance of each transporter protein for efflux-mediated resistance in C. albicans, however, is unknown; neither the relative amounts of each polypeptide in resistant isolates nor their contributions to efflux function have been determined. We have exploited the pump-specific properties of two antibody preparations, and specific pump inhibitors, to determine the relative expression and functions of Cdr1p and Cdr2p in 18 clinical C. albicans isolates. The antibodies and inhibitors were standardized using recombinant Saccharomyces cerevisiae strains that hyper-express either protein in a host strain with a reduced endogenous pump background. In all 18 C. albicans strains, including 13 strains with reduced FLC susceptibilities, Cdr1p was present in greater amounts (2- to 20-fold) than Cdr2p. Compounds that inhibited Cdr1p-mediated function, but had no effect on Cdr2p efflux activity, significantly decreased the resistance to FLC of seven representative C. albicans isolates, whereas three other compounds that inhibited both pumps did not cause increased chemosensitization of these strains to FLC. We conclude that Cdr1p expression makes a greater functional contribution than does Cdr2p to FLC resistance in C. albicans.
Collapse
|
50
|
Silver PM, Oliver BG, White TC. Characterization of caspofungin susceptibilities by broth and agar in Candida albicans clinical isolates with characterized mechanisms of azole resistance. Med Mycol 2008; 46:231-9. [PMID: 18404551 DOI: 10.1080/13693780701816557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Caspofungin (CSP) susceptibilities of Candida albicans, as determined by broth microdilution methods, have not been found to be related to azole susceptibilities or resistance. In contrast, it has been observed that azole-resistant clinical isolates that overexpress the efflux pump gene CDR2 are less susceptible to CSP when tested using an agar dilution method commonly employed with Saccharomyces cerevisiae. The goal of this study was to further understand the effects of azole resistance mechanisms on CSP susceptibility testing. A collection of 69 isolates exhibiting known mechanisms of azole resistance and resistance-associated phenotypes were analyzed by broth microdilution methods to determine standard minimum inhibitory concentrations (MICs) for CSP. The same isolates were then analyzed as to their MIC to CSP by Etest strips, an agar-based method that has been shown generally to be comparable to broth methods. The MICs found with both methods were not significantly different. However, a collection of strains overexpressing the efflux pump CDR2 did exhibit a spectrum of CSP susceptibilities when examined by agar dilution susceptibility tests, ranging from standard to reduced susceptibilities. This work demonstrated that a change in CSP susceptibility with CDR2 overexpressing cells in agar dilution studies is a variable phenotype and it is not the result of growth conditions (i.e., broth versus agar).
Collapse
Affiliation(s)
- Peter M Silver
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington and Seattle Biomedical Research Institute, Seattle, Washington 98109-5219, USA
| | | | | |
Collapse
|