1
|
Krasnov VP, Andronova VL, Belyavsky AV, Borisevich SS, Galegov GA, Kandarakov OF, Gruzdev DA, Vozdvizhenskaya OA, Levit GL. Large Subunit of the Human Herpes Simplex Virus Terminase as a Promising Target in Design of Anti-Herpesvirus Agents. Molecules 2023; 28:7375. [PMID: 37959793 PMCID: PMC10649544 DOI: 10.3390/molecules28217375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is an extremely widespread pathogen characterized by recurrent infections. HSV-1 most commonly causes painful blisters or sores around the mouth or on the genitals, but it can also cause keratitis or, rarely, encephalitis. First-line and second-line antiviral drugs used to treat HSV infections, acyclovir and related compounds, as well as foscarnet and cidofovir, selectively inhibit herpesvirus DNA polymerase (DNA-pol). It has been previously found that (S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine (compound 1) exhibits selective anti-herpesvirus activity against HSV-1 in cell culture, including acyclovir-resistant mutants, so we consider it as a lead compound. In this work, the selection of HSV-1 clones resistant to the lead compound was carried out. High-throughput sequencing of resistant clones and reference HSV-1/L2 parent strain was performed to identify the genetic determinants of the virus's resistance to the lead compound. We identified a candidate mutation presumably associated with resistance to the virus, namely the T321I mutation in the UL15 gene encoding the large terminase subunit. Molecular modeling was used to evaluate the affinity and dynamics of the lead compound binding to the putative terminase binding site. The results obtained suggest that the lead compound, by binding to pUL15, affects the terminase complex. pUL15, which is directly involved in the processing and packaging of viral DNA, is one of the crucial components of the HSV terminase complex. The loss of its functional activity leads to disruption of the formation of mature virions, so it represents a promising drug target. The discovery of anti-herpesvirus agents that affect biotargets other than DNA polymerase will expand our possibilities of targeting HSV infections, including those resistant to baseline drugs.
Collapse
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Valeriya L. Andronova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Alexander V. Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | | | - George A. Galegov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Oleg F. Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| |
Collapse
|
2
|
Advances and Perspectives in the Management of Varicella-Zoster Virus Infections. Molecules 2021; 26:molecules26041132. [PMID: 33672709 PMCID: PMC7924330 DOI: 10.3390/molecules26041132] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Varicella-zoster virus (VZV), a common and ubiquitous human-restricted pathogen, causes a primary infection (varicella or chickenpox) followed by establishment of latency in sensory ganglia. The virus can reactivate, causing herpes zoster (HZ, shingles) and leading to significant morbidity but rarely mortality, although in immunocompromised hosts, VZV can cause severe disseminated and occasionally fatal disease. We discuss VZV diseases and the decrease in their incidence due to the introduction of live-attenuated vaccines to prevent varicella or HZ. We also focus on acyclovir, valacyclovir, and famciclovir (FDA approved drugs to treat VZV infections), brivudine (used in some European countries) and amenamevir (a helicase-primase inhibitor, approved in Japan) that augur the beginning of a new era of anti-VZV therapy. Valnivudine hydrochloride (FV-100) and valomaciclovir stearate (in advanced stage of development) and several new molecules potentially good as anti-VZV candidates described during the last year are examined. We reflect on the role of antiviral agents in the treatment of VZV-associated diseases, as a large percentage of the at-risk population is not immunized, and on the limitations of currently FDA-approved anti-VZV drugs. Their low efficacy in controlling HZ pain and post-herpetic neuralgia development, and the need of multiple dosing regimens requiring daily dose adaptation for patients with renal failure urges the development of novel anti-VZV drugs.
Collapse
|
3
|
Andronova VL. MODERN ETHIOTROPIC CHEMOTHERAPY OF HERPESVIRUS INFECTIONS: ADVANCES, NEW TRENDS AND PERSPECTIVES. ALPHAHERPESVIRINAE (part I). Vopr Virusol 2018; 63:106-114. [PMID: 36494936 DOI: 10.18821/0507-4088-2018-63-3-106-114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Modern therapy of infections caused by alpha-herpesviruses is based on drugs belonging to the class of modified nucleosides (acyclovir) and their metabolic progenitors - valine ester of acyclovir and famciclovir (prodrug of penciclovir). The biological activity of these compounds is determined by the similarity of their structure to natural nucleosides: modified nucleosides compete with natural nucleosides for binding to DNA-polymerase and, due to their structural features, inhibit its activity. However, the emergence of variants of viruses resistant to the antiviral drugs available in the arsenal of modern medicine necessitates the search for new compounds able of effectively inhibiting the reproduction of viruses. These compounds should be harmless to the macroorganisms, convenient to use, and overcoming the drug resistance barrier in viruses. The search for literature in international databases (PubMed, MedLine, RINC, etc.) in order to obtain information on promising developments that open new possibilities for treating herpesvirus infection and subsequent analysis of the collected data made it possible to determine not only the main trends in the search for new antiviral agents, but also to provide information on the compounds most promising for the development of anti-herpesvirus drugs.
Collapse
Affiliation(s)
- V L Andronova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| |
Collapse
|
4
|
Pagano JS, Whitehurst CB, Andrei G. Antiviral Drugs for EBV. Cancers (Basel) 2018; 10:cancers10060197. [PMID: 29899236 PMCID: PMC6025560 DOI: 10.3390/cancers10060197] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) infects up to 95% of the adult human population, with primary infection typically occurring during childhood and usually asymptomatic. However, EBV can cause infectious mononucleosis in approximately 35–50% cases when infection occurs during adolescence and early adulthood. Epstein–Barr virus is also associated with several B-cell malignancies including Burkitt lymphoma, Hodgkin lymphoma, and post-transplant lymphoproliferative disease. A number of antiviral drugs have proven to be effective inhibitors of EBV replication, yet have resulted in limited success clinically, and none of them has been approved for treatment of EBV infections.
Collapse
Affiliation(s)
- Joseph S Pagano
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Christopher B Whitehurst
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Graciela Andrei
- Department of Microbiology and Immunology, University of Leuven, BE-3000 Leuven, Belgium.
| |
Collapse
|
5
|
Abstract
Mechanisms of neuronal infection by varicella-zoster virus (VZV) have been challenging to study due to the relatively strict human tropism of the virus and the paucity of tractable experimental models. Cellular mitogen-activated protein kinases (MAPKs) have been shown to play a role in VZV infection of nonneuronal cells, with distinct consequences for infectivity in different cell types. Here, we utilize several human neuronal culture systems to investigate the role of one such MAPK, the c-Jun N-terminal kinase (JNK), in VZV lytic infection and reactivation. We find that the JNK pathway is specifically activated following infection of human embryonic stem cell-derived neurons and that this activation of JNK is essential for efficient viral protein expression and replication. Inhibition of the JNK pathway blocked viral replication in a manner distinct from that of acyclovir, and an acyclovir-resistant VZV isolate was as sensitive to the effects of JNK inhibition as an acyclovir-sensitive VZV isolate in neurons. Moreover, in a microfluidic-based human neuronal model of viral latency and reactivation, we found that inhibition of the JNK pathway resulted in a marked reduction in reactivation of VZV. Finally, we utilized a novel technique to efficiently generate cells expressing markers of human sensory neurons from neural crest cells and established a critical role for the JNK pathway in infection of these cells. In summary, the JNK pathway plays an important role in lytic infection and reactivation of VZV in physiologically relevant cell types and may provide an alternative target for antiviral therapy.IMPORTANCE Varicella-zoster virus (VZV) has infected over 90% of people worldwide. While primary infection leads to the typically self-limiting condition of chickenpox, the virus can remain dormant in the nervous system and may reactivate later in life, leading to shingles or inflammatory diseases of the nervous system and eye with potentially severe consequences. Here, we take advantage of newer stem cell-based technologies to study the mechanisms by which VZV infects human neurons. We find that the c-Jun N-terminal kinase (JNK) pathway is activated by VZV infection and that blockade of this pathway limits lytic replication (as occurs during primary infection). In addition, JNK inhibition limits viral reactivation, exhibiting parallels with herpes simplex virus reactivation. The identification of the role of the JNK pathway in VZV infection of neurons reveals potential avenues for the development of alternate antiviral drugs.
Collapse
|
6
|
Abad CL, Razonable RR. Treatment of alpha and beta herpesvirus infections in solid organ transplant recipients. Expert Rev Anti Infect Ther 2016; 15:93-110. [PMID: 27911112 DOI: 10.1080/14787210.2017.1266253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Human herpesviruses frequently cause infections in solid organ transplant (SOT) recipients. Areas covered: We provide an overview of the clinical impact of alpha and beta herpesviruses and highlight the mechanisms of action, pharmacokinetics, clinical indications, and adverse effects of antiviral drugs for the management of herpes simplex virus, varicella zoster virus and cytomegalovirus. We comprehensively evaluated key clinical trials that led to drug approval, and served as the foundation for management guidelines. We further provide an update on investigational antiviral agents for alpha and beta herpesvirus infections after SOT. Expert commentary: The therapeutic armamentarium for herpes infections is limited by the emergence of drug resistance. There have been major efforts for discovery of new drugs against these viruses, but the results of early-phase clinical trials have been less than encouraging. We believe, however, that more antiviral drug options are needed given the adverse side effects associated with current antiviral agents, and the emergence of drug-resistant virus populations in SOT recipients. Likewise, optimized use and strategies are needed for existing and novel antiviral drugs against alpha and beta-herpesviruses in SOT recipients.
Collapse
Affiliation(s)
- C L Abad
- a Division of Infectious Diseases, Department of Medicine , Mayo Clinic , Rochester , MN , USA.,b Department of Medicine, Section of Infectious Diseases , University of the Philippines - Philippine General Hospital , Manila , Philippines
| | - R R Razonable
- a Division of Infectious Diseases, Department of Medicine , Mayo Clinic , Rochester , MN , USA.,c The William J. Von Liebig Center for Transplantation and Clinical Regeneration , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
7
|
Perrier M, Désiré N, Deback C, Agut H, Boutolleau D, Burrel S. Complementary assays for monitoring susceptibility of varicella-zoster virus resistance to antivirals. J Virol Methods 2016; 233:10-4. [DOI: 10.1016/j.jviromet.2016.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
|
8
|
Ford BE, Sun B, Carpino J, Chapler ES, Ching J, Choi Y, Jhun K, Kim JD, Lallos GG, Morgenstern R, Singh S, Theja S, Dennehy JJ. Frequency and fitness consequences of bacteriophage φ6 host range mutations. PLoS One 2014; 9:e113078. [PMID: 25409341 PMCID: PMC4237377 DOI: 10.1371/journal.pone.0113078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Φ6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Φ6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage's host attachment protein opposite a putative hydrophobic anchoring domain.
Collapse
Affiliation(s)
- Brian E. Ford
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
- The Graduate Center of the City University of New York, New York, New York, United States of America
| | - Bruce Sun
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - James Carpino
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Elizabeth S. Chapler
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Jane Ching
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Yoon Choi
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Kevin Jhun
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Jung D. Kim
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Gregory G. Lallos
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Rachelle Morgenstern
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Shalini Singh
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Sai Theja
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - John J. Dennehy
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
James SH, Prichard MN. Current and future therapies for herpes simplex virus infections: mechanism of action and drug resistance. Curr Opin Virol 2014; 8:54-61. [PMID: 25036916 DOI: 10.1016/j.coviro.2014.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 01/09/2023]
Abstract
Forty years after the discovery of acyclovir (ACV), it remains the mainstay of therapy for herpes simplex virus (HSV) infections. Since then, other antiviral agents have also been added to the armamentarium for these infections but ACV remains the therapy of choice. As the efficacy of ACV is reassessed, however, it is apparent that a therapy with increased efficacy, reduced potential for resistance, and improved pharmacokinetics would improve clinical outcome, particularly in high risk patients. Inhibitors of viral targets other than the DNA polymerase, such as the helicase primase complex, are of particular interest and will be valuable as new therapeutic approaches are conceived. This review focuses on currently approved HSV therapies as well as new systemic therapies in development.
Collapse
Affiliation(s)
- Scott H James
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mark N Prichard
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
10
|
Skoreński M, Sieńczyk M. Anti-herpesvirus agents: a patent and literature review (2003 to present). Expert Opin Ther Pat 2014; 24:925-41. [PMID: 25010889 DOI: 10.1517/13543776.2014.927442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The standard therapy used to treat herpesvirus infections is based on the application of DNA polymerase inhibitors such as ganciclovir or aciclovir. Unfortunately, all of these compounds exhibit relatively high toxicity and the mutation of herpesviruses results in the appearance of new drug-resistant strains. Consequently, there is a great need for the development of new, effective and safe anti-herpesvirus agents that employ different patterns of therapeutic action at various stages of the virus life cycle. AREAS COVERED Patents and patent applications concerning the development of anti-herpesvirus agents displaying different mechanisms of action that have been published since 2003 are reviewed. In addition, major discoveries in this field that have been published in academic papers have also been included. EXPERT OPINION Among all the anti-herpesvirus agents described in this article, the inhibitors of viral serine protease seem to present one of the most effective/promising therapeutics. Unfortunately, the practical application of these antiviral agents has not yet been proven in any clinical trials. Nevertheless, the dynamic and extensive work on this subject gives hope that a new class of anti-herpesvirus agents aimed at the enzymatic activity of herpesvirus serine protease may be developed.
Collapse
Affiliation(s)
- Marcin Skoreński
- Wroclaw University of Technology, Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry , Wybrzeze Wyspianskiego 27, 50-370 Wroclaw , Poland +48 71 320 24 39 ; +48 71 320 24 27 ;
| | | |
Collapse
|
11
|
Andrei G, Snoeck R. Advances in the treatment of varicella-zoster virus infections. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:107-68. [PMID: 23886000 DOI: 10.1016/b978-0-12-405880-4.00004-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Varicella-zoster virus (VZV) causes two distinct diseases, varicella (chickenpox) and shingles (herpes zoster). Chickenpox occurs subsequent to primary infection, while herpes zoster (usually associated with aging and immunosuppression) appears as a consequence of reactivation of latent virus. The major complication of shingles is postherpetic neuralgia. Vaccination strategies to prevent varicella or shingles and the current status of antivirals against VZV will be discussed in this chapter. Varivax®, a live-attenuated vaccine, is available for pediatric varicella. Zostavax® is used to boost VZV-specific cell-mediated immunity in adults older than 50 years, which results in a decrease in the burden of herpes zoster and pain related to postherpetic neuralgia. Regardless of the availability of a vaccine, new antiviral agents are necessary for treatment of VZV infections. Current drugs approved for therapy of VZV infections include nucleoside analogues that target the viral DNA polymerase and depend on the viral thymidine kinase for their activation. Novel anti-VZV drugs have recently been evaluated in clinical trials, including the bicyclic nucleoside analogue FV-100, the helicase-primase inhibitor ASP2151, and valomaciclovir (prodrug of the acyclic guanosine derivative H2G). Different candidate VZV drugs have been described in recent years. New anti-VZV drugs should be as safe as and more effective than current gold standards for the treatment of VZV, that is, acyclovir and its prodrug valacyclovir.
Collapse
Affiliation(s)
- G Andrei
- Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
12
|
Tyring SK, Plunkett S, Scribner AR, Broker RE, Herrod JN, Handke LT, Wise JM, Martin PA. Valomaciclovir versus valacyclovir for the treatment of acute herpes zoster in immunocompetent adults: a randomized, double-blind, active-controlled trial. J Med Virol 2012; 84:1224-32. [PMID: 22711350 DOI: 10.1002/jmv.23329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpes zoster is a common infectious disease that can result in significant acute and chronic morbidity. The safety and efficacy of once-daily oral valomaciclovir (EPB-348) was evaluated for non-inferiority to 3-times daily valacyclovir, an approved therapy. In this study, 373 immunocompetent adults with onset of a herpes zoster rash within the preceding 72 hr were randomly assigned to receive one of four treatments for 7 days: (1) EPB-348 1,000 mg once-daily; (2) EPB-348 2,000 mg once-daily; (3) EPB-348 3,000 mg once-daily; or (4) valacyclovir 1,000 mg 3-times daily. A 20% margin was the reference for non-inferiority assessment. For the primary efficacy measure of time to complete crusting of the zoster rash by Day 28, non-inferiority criteria were met for once-daily EPB-348 2,000 mg and once-daily EPB-348 3,000 mg compared to 3-times daily valacyclovir. Additionally, EPB-348 3,000 mg significantly shortened the time to complete rash crusting by Day 28 compared to valacyclovir. For secondary efficacy measures, non-inferiority was achieved for the EPB-348 1,000 and 2,000 mg groups compared to the valacyclovir group for time to rash resolution by Day 28. No EPB-348 group was non-inferior to valacyclovir for time to cessation of new lesion formation or time to cessation of pain by Day 120, though no significant differences occurred between treatment groups. Nausea, headache, and vomiting were the most common adverse events. Based on these results, additional studies are warranted to define further EPB-348's potential as an effective and safe therapy for acute herpes zoster.
Collapse
Affiliation(s)
- Stephen K Tyring
- Departments of Dermatology, Microbiology and Molecular Genetics, and Internal Medicine, University of Texas Health Science Center, Houston, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Resurgent interest in antiviral drugs for the treatment of herpesvirus has led to the development of new compounds that are progressing through clinical trials. This is important because there are few therapeutic options for resistant infections and some viruses such as human cytomegalovirus remain underserved. New compounds include conventional DNA polymerase inhibitors such as valomaciclovir and cyclopropavir, as well as CMX001 that has a broad spectrum of antiviral activity that includes all the herpesviruses. It also includes compounds with new molecular targets such as maribavir (MBV), FV-100, AIC361, and AIC246. Recent advances with each of these compounds will be reviewed including their virus specificity, mechanism of action, and stage of development. The potential of these new compounds to improve clinical outcome will also be discussed.
Collapse
Affiliation(s)
- Nathan B. Price
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711 USA
| | - Mark N. Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711 USA
| |
Collapse
|
14
|
Abstract
INTRODUCTION Varicella-zoster virus (VZV) is the etiological agent of two distinct diseases, varicella (chickenpox) and shingles (herpes zoster). Chickenpox occurs following primary infection, while herpes zoster (usually associated with ageing and immunosuppression) is the consequence of reactivation of the latent virus. Post-herpetic neuralgia is the major complication of shingles. AREAS COVERED This review will discuss vaccination strategies and the current status of antivirals against VZV. A live attenuated vaccine, Varivax, is available for pediatric varicella while Zostavax was developed to boost VZV-specific cell-mediated immunity in adults older than 60 years and, via this mechanism, to decrease the burden of herpes zoster and pain associated with post-herpetic neuralgia. Despite the availability of a vaccine, there is a need for new antiviral agents. Current drugs approved for the treatment of VZV infections include nucleoside analogs that target the viral DNA polymerase and depend on the viral thymidine kinase. Novel anti-VZV drugs have recently been evaluated in clinical trials, including the bicyclic nucleoside analog FV-100, the helicase-primase inhibitor ASP2151 and valomaciclovir (prodrug of the acyclic guanosine derivative H2G). EXPERT OPINION New anti-VZV drugs should be as safe as and more effective than acyclovir and its prodrug valacyclovir (current gold standard for the treatment of VZV).
Collapse
Affiliation(s)
- Graciela Andrei
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, K.U.Leuven, Belgium.
| | | |
Collapse
|
15
|
Ng TI, Mo H, Pilot-Matias T, He Y, Koev G, Krishnan P, Mondal R, Pithawalla R, He W, Dekhtyar T, Packer J, Schurdak M, Molla A. Identification of host genes involved in hepatitis C virus replication by small interfering RNA technology. Hepatology 2007; 45:1413-21. [PMID: 17518369 DOI: 10.1002/hep.21608] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) replication is highly dependent on host cell factors. Identification of these host factors not only facilitates understanding of the biology of HCV infection but also enables the discovery of novel targets for anti-HCV therapy. To identify host genes important for HCV RNA replication, we screened a library of small interfering RNA (siRNA) that targets approximately 4,000 human genes in Huh7-derived EN5-3 cells harboring an HCV subgenomic replicon with the nonstructural region NS3-NS5B from the 1b-N strain. Nine cellular genes that potentially regulate HCV replication were identified in this screen. Silencing of these genes resulted in inhibition of HCV replication by more than 60% and exhibited minimal toxicity. Knockdown of host gene expression by these siRNAs was confirmed at the RNA level and, in some instances, at the protein level. The level of siRNA silencing of these host genes correlated well with inhibition of HCV. These genes included those that encoded a G-protein coupled receptor (TBXA2R), a membrane protein (LTbeta), an adapter protein (TRAF2), 2 transcription factors (RelA and NFkappaB2), 2 protein kinases (MKK7 and SNARK), and 2 closely related transporter proteins (SLC12A4 and SLC12A5). Of interest, some of these genes are members of the tumor necrosis factor/lymphotoxin signaling pathway. CONCLUSION Findings of this study may provide important information for understanding HCV replication. In addition, these cellular genes may constitute a novel set of targets for HCV antiviral therapy.
Collapse
Affiliation(s)
- Teresa I Ng
- Global Pharmaceutical Research and Development, Antiviral Research, Abbott Laboratories, 200 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
De Clercq E, Field HJ. Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol 2006; 147:1-11. [PMID: 16284630 PMCID: PMC1615839 DOI: 10.1038/sj.bjp.0706446] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Following the discovery of the first effective antiviral compound (idoxuridine) in 1959, nucleoside analogues, especially acyclovir (ACV) for the treatment of herpesvirus infections, have dominated antiviral therapy for several decades. However, ACV and similar acyclic nucleosides suffer from low aqueous solubility and low bioavailability following oral administration. Derivatives of acyclic nucleosides, typically esters, were developed to overcome this problem and valaciclovir, the valine ester of ACV, was among the first of a new series of compounds that were readily metabolized upon oral administration to produce the antiviral nucleoside in vivo, thus increasing the bioavailility by several fold. Concurrently, famciclovir was developed as an oral formulation of penciclovir. These antiviral 'prodrugs' thus established a principle that has led to many successful drugs including both nucleoside and nucleotide analogues for the control of several virus infections, notably those caused by herpes-, retro- and hepatitisviruses. This review will chart the origins and development of the most important of the antiviral prodrugs to date.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | |
Collapse
|
17
|
Grose C, Tyler S, Peters G, Hiebert J, Stephens GM, Ruyechan WT, Jackson W, Storlie J, Tipples GA. Complete DNA sequence analyses of the first two varicella-zoster virus glycoprotein E (D150N) mutant viruses found in North America: evolution of genotypes with an accelerated cell spread phenotype. J Virol 2004; 78:6799-807. [PMID: 15194755 PMCID: PMC421634 DOI: 10.1128/jvi.78.13.6799-6807.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is considered to be one of the most genetically stable of all the herpesviruses. Yet two VZV strains with a D150N missense mutation within the gE glycoprotein were isolated in North America in 1998 and 2002. The mutant strains have an accelerated cell spread phenotype, which distinguishes them from all wild-type and laboratory viruses. Since the VZV genome contains 70 additional open reading frames (ORFs), the possibility existed that the phenotypic change was actually due to an as-yet-undiscovered mutation or deletion elsewhere in the genome. To exclude this hypothesis, the entire genomes of the two mutant viruses were sequenced and found to contain 124,883 (VZV-MSP) and 125,459 (VZV-BC) nucleotides. Coding single-nucleotide polymorphisms (SNPs) were identified in 14 ORFs. One missense mutation was discovered in gH, but none was found in gB, gI, gL, or gK. There were no coding SNPs in the major regulatory protein ORF 62. One polymorphism was discovered which could never have been anticipated based on current knowledge of herpesvirus genomics, namely, the origins of replication differed from those in the prototype strain but not in a manner expected to affect cell spread. When the two complete mutant VZV sequences were surveyed in their entirety, the most reasonable conclusion was that the increased cell spread phenotype was dependent substantially or solely on the single D150N polymorphism in glycoprotein gE. The genomic results also expanded the evolutionary database by identifying which VZV ORFs were more likely to mutate over time.
Collapse
Affiliation(s)
- Charles Grose
- Department of Pediatrics, University of Iowa, Iowa City, 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|