1
|
Kalladeen M, Cheddie P, Akpaka PE. Group A streptococcus isolated in Guyana with reduced susceptibility to β-lactam antibiotics. Access Microbiol 2024; 6:000746.v3. [PMID: 39045256 PMCID: PMC11261736 DOI: 10.1099/acmi.0.000746.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/30/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction. Streptococcus pyogenes [group A streptococci (GAS)] is the causative agent of pharyngitis and various other syndromes involving cellulitis, streptococcal toxic shock syndrome (STSS), and necrotising fasciitis. Although the prevalence of GAS infections globally remains high, necessitating the widespread use of β-lactam antibiotics, GAS have remained largely susceptible to these agents. However, there have been several reports of GAS with reduced susceptibility harbouring mutations in genes for penicillin-binding proteins (PBPs). The objectives of this study were to examine the in vitro β-lactam susceptibility patterns of group A streptococci, determine the prevalence of drug resistance, and ascertain whether such resistance could be attributed to mutations in specific PBP genes. Methods. In this study, we sought to use Sanger sequencing to identify mutations in PBP genes of Streptococcus pyogenes isolated from patients that required inpatient and outpatient care that could confer reduced PBP affinity for penicillin and/or cephalosporin antibiotics. All isolates were screened for susceptibility to penicillin, amoxicillin, and cefazolin using E-test strips. Results. While there were no documented cases of reduced susceptibility to penicillin or amoxicillin, 13 isolates had reduced susceptibility to cefazolin. Examination of pbp1a by Sanger sequencing revealed several isolates with single amino acid substitutions, which could potentially reduce the affinity of PBP 1A for cefazolin and possibly other first-generation cephalosporins. Conclusion. Penicillin and penicillin-derived antibiotics remain effective treatment options for GAS infections, but active surveillance is needed to monitor for changes to susceptibility patterns against these and other antibiotics and understand the genetic mechanisms contributing to them.
Collapse
Affiliation(s)
- Melissa Kalladeen
- Department of Paraclinical Sciences, University of the West Indies, St Augustine, Trinidad and Tobago
| | - Paul Cheddie
- Department of Medical Laboratory Science, University of Guyana, Turkeyen, Guyana
| | - Patrick Eberechi Akpaka
- Department of Paraclinical Sciences, University of the West Indies, St Augustine, Trinidad and Tobago
| |
Collapse
|
2
|
Beta-lactam antibiotics and viridans group streptococci. Rev Argent Microbiol 2022; 54:335-343. [DOI: 10.1016/j.ram.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/04/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
|
3
|
Kalizang'oma A, Chaguza C, Gori A, Davison C, Beleza S, Antonio M, Beall B, Goldblatt D, Kwambana-Adams B, Bentley SD, Heyderman RS. Streptococcus pneumoniae serotypes that frequently colonise the human nasopharynx are common recipients of penicillin-binding protein gene fragments from Streptococcus mitis. Microb Genom 2021; 7. [PMID: 34550067 PMCID: PMC8715442 DOI: 10.1099/mgen.0.000622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is an important global pathogen that causes bacterial pneumonia, sepsis and meningitis. Beta-lactam antibiotics are the first-line treatment for pneumococcal disease, however, their effectiveness is hampered by beta-lactam resistance facilitated by horizontal genetic transfer (HGT) with closely related species. Although interspecies HGT is known to occur among the species of the genus Streptococcus, the rates and effects of HGT between Streptococcus pneumoniae and its close relatives involving the penicillin binding protein (pbp) genes remain poorly understood. Here we applied the fastGEAR tool to investigate interspecies HGT in pbp genes using a global collection of whole-genome sequences of Streptococcus mitis, Streptococcus oralis and S. pneumoniae. With these data, we established that pneumococcal serotypes 6A, 13, 14, 16F, 19A, 19F, 23F and 35B were the highest-ranking serotypes with acquired pbp fragments. S. mitis was a more frequent pneumococcal donor of pbp fragments and a source of higher pbp nucleotide diversity when compared with S. oralis. Pneumococci that acquired pbp fragments were associated with a higher minimum inhibitory concentration (MIC) for penicillin compared with pneumococci without acquired fragments. Together these data indicate that S. mitis contributes to reduced β-lactam susceptibility among commonly carried pneumococcal serotypes that are associated with long carriage duration and high recombination frequencies. As pneumococcal vaccine programmes mature, placing increasing pressure on the pneumococcal population structure, it will be important to monitor the influence of antimicrobial resistance HGT from commensal streptococci such as S. mitis.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | - Chrispin Chaguza
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK.,Darwin College, University of Cambridge, Silver Street, Cambridge, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrea Gori
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | - Charlotte Davison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Martin Antonio
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, World Health Organization, Collaborating Centre for New Vaccines Surveillance, Banjul, Gambia
| | - Bernard Beall
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Atlanta, GA, USA
| | - David Goldblatt
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | | | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
4
|
Commensal streptococci serve as a reservoir for β-lactam resistance genes in Streptococcus pneumoniae. Antimicrob Agents Chemother 2015; 59:3529-40. [PMID: 25845880 DOI: 10.1128/aac.00429-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, septicemia, and middle ear infections. The incidence of S. pneumoniae isolates that are not susceptible to penicillin has risen worldwide and may be above 20% in some countries. Beta-lactam antibiotic resistance in pneumococci is associated with significant sequence polymorphism in penicillin-binding proteins (PBPs). Commensal streptococci, especially S. mitis and S. oralis, have been identified as putative donors of mutated gene fragments. However, no studies have compared sequences of the involved pbp genes in large collections of commensal streptococci with those of S. pneumoniae. We therefore investigated the sequence diversity of the transpeptidase region of the three pbp genes, pbp2x, pbp2b, and pbp1a in 107, 96, and 88 susceptible and nonsusceptible strains of commensal streptococci, respectively, at the nucleotide and amino acid levels to determine to what extent homologous recombination between commensal streptococci and S. pneumoniae plays a role in the development of beta-lactam resistance in S. pneumoniae. In contrast to pneumococci, extensive sequence variation in the transpeptidase region of pbp2x, pbp2b, and pbp1a was observed in both susceptible and nonsusceptible strains of commensal streptococci, conceivably reflecting the genetic diversity of the many evolutionary lineages of commensal streptococci combined with the recombination events occurring with intra- and interspecies homologues. Our data support the notion that resistance to beta-lactam antibiotics in pneumococci is due to sequences acquired from commensal Mitis group streptococci, especially S. mitis. However, several amino acid alterations previously linked to beta-lactam resistance in pneumococci appear to represent species signatures of the donor strain rather than being causal of resistance.
Collapse
|
5
|
Teles C, Smith A, Ramage G, Lang S. Identification of clinically relevant viridans group streptococci by phenotypic and genotypic analysis. Eur J Clin Microbiol Infect Dis 2010; 30:243-50. [DOI: 10.1007/s10096-010-1076-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/21/2010] [Indexed: 11/24/2022]
|
6
|
Heinemann JA, Traavik T. Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat Biotechnol 2005; 22:1105-9. [PMID: 15340480 DOI: 10.1038/nbt1009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transgenic crops are approved for release in some countries, while many more countries are wrestling with the issue of how to conduct risk assessments. Controls on field trials often include monitoring of horizontal gene transfer (HGT) from crops to surrounding soil microorganisms. Our analysis of antibiotic-resistant bacteria and of the sensitivity of current techniques for monitoring HGT from transgenic plants to soil microorganisms has two major implications for field trial assessments of transgenic crops: first, HGT from transgenic plants to microbes could still have an environmental impact at a frequency approximately a trillion times lower than the current risk assessment literature estimates the frequency to be; and second, current methods of environmental sampling to capture genes or traits in a recombinant are too insensitive for monitoring evolution by HGT. A model for HGT involving iterative short-patch events explains how HGT can occur at high frequencies but be detected at extremely low frequencies.
Collapse
Affiliation(s)
- Jack A Heinemann
- New Zealand Institute of Gene Ecology, University of Canterbury, 8020, Private Bag 4800, Christchurch, New Zealand.
| | | |
Collapse
|
7
|
Sanbongi Y, Ida T, Ishikawa M, Osaki Y, Kataoka H, Suzuki T, Kondo K, Ohsawa F, Yonezawa M. Complete sequences of six penicillin-binding protein genes from 40 Streptococcus pneumoniae clinical isolates collected in Japan. Antimicrob Agents Chemother 2004; 48:2244-50. [PMID: 15155228 PMCID: PMC415593 DOI: 10.1128/aac.48.6.2244-2250.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 11/20/2003] [Accepted: 02/21/2004] [Indexed: 11/20/2022] Open
Abstract
All six penicillin-binding protein (PBP) genes, namely, pbp1a, pbp1b, pbp2a, pbp2b, pbp2x, and pbp3, of 40 Streptococcus pneumoniae clinical isolates, including penicillin-resistant S. pneumoniae isolates collected in Japan, were completely sequenced. The MICs of penicillin for these strains varied between 0.015 and 8 microg/ml. In PBP 2X, the Thr550Ala mutation close to the KSG motif was observed in only 1 of 40 strains, whereas the Met339Phe mutation in the STMK motif was observed in six strains. These six strains were highly resistant (MICs >/= 2 microg/ml) to cefotaxime. The MICs of cefotaxime for 27 strains bearing the Thr338Ala mutation tended to increase, but the His394Leu mutation next to the SSN motif did not exist in these strains. In PBP 2B, the Thr451Ala/Phe/Ser and Glu481Gly mutations close to the SSN motif were observed in 24 strains, which showed penicillin resistance and intermediate resistance, and the Thr624Gly mutation close to the KTG motif was observed in 2 strains for which the imipenem MIC (0.5 microg/ml) was the highest imipenem MIC detected. In PBP 1A, the Thr371Ser/Ala mutation in the STMK motif was observed in all 13 strains for which the penicillin MICs were >/=1 microg/ml. In PBP 2A, the Thr411Ala mutation in the STIK motif was observed in one strain for which with the cefotaxime MIC (8 microg/ml) was the highest cefotaxime MIC detected. On the other hand, in PBPs 1B and 3, no mutations associated with resistance were observed. The results obtained here support the concept that alterations in PBPs 2B, 2X, and 1A are mainly involved in S. pneumoniae resistance to beta-lactam antibiotics. Our findings also suggest that the Thr411Ala mutation in PBP 2A may be associated with beta-lactam resistance.
Collapse
Affiliation(s)
- Yumiko Sanbongi
- Pharmaceutical Research Department, Meiji Seika Kaisha Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Usui H, Takao A, Nakayama A, Nagashima H, Sasaki F, Maeda N, Ishibashi K. Detection of penicillin-binding protein 2b gene alteration in Streptococcus mitis by polymerase chain reaction. J Infect Chemother 2004; 10:19-24. [PMID: 14991513 DOI: 10.1007/s10156-003-0291-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
Three isolates of beta-lactam-resistant streptococci from the saliva of healthy adults were identified as Streptococcus mitis. Minimum inhibitory concentrations (MICs) were 2 to 4 micro g/ml for ampicillin (ABPC) and 64 to more than 128 micro g/ml for cefaclor (CCL). To determine the position of base alterations of the penicillin-binding protein 2b ( pbp2b) gene, upstream primers containing possible mutation points were designed, and used for polymerase chain reaction (PCR), together with a downstream primer. Alterations adjacent to the conserved motifs of the pbp2b gene were apparent. DNA sequencing data indicated replacements in deduced amino acid sequences in all resistant isolates: from threonine to alanine just after the serine-serine-asparagine (SSN) motif, and from alanine to glycine two residues downstream of the lysine-threonine-glycine (KTG) motif. These changes were the same as those in penicillin-resistant Streptococcus pneumoniae (PRSP), suggesting importance for the enzymatic activity of the protein. Thus, Beta-lactam susceptibility of S. mitis may be partially predicted by PCR using our primer set for pbp2b.
Collapse
Affiliation(s)
- Hiroyuki Usui
- Second Department of Oral and Maxillofacial Surgery, Tsurumi University School of Dental Medicine, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Nakayama A, Takao A. Beta-lactam resistance in Streptococcus mitis isolated from saliva of healthy subjects. J Infect Chemother 2004; 9:321-7. [PMID: 14691653 DOI: 10.1007/s10156-003-0286-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 10/06/2003] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to examine the percentage of Beta-lactam-resistant streptococcal carriers in healthy adults, and to investigate the relationships among minimum inhibitory concentrations (MICs) of Beta-lactams, alterations in the penicillin-binding protein genes ( pbp genes), and the affinity of penicillin-binding proteins (PBPs) for ampicillin (ABPC) in Streptococcus mitis. We also compared numbers of surviving bacteria at various ABPC concentrations in both ABPC-susceptible and -resistant S. mitis strains. The percentages of subjects carrying ABPC- and cefaclor (CCL)-resistant streptococci were 52% (27 of 52 subjects) and 100%, respectively. S. mitis, including both antibiotic-susceptible and -resistant strains, were classified into five groups according to the pbp gene mutations that resulted in alterations of the deduced amino-acid sequence in the homology boxes of PBPs. All ABPC-resistant strains showed alterations in PBP1A, 2X, and 2B, while no or only PBP2X alterations were detected in the susceptible strains. These results suggest that the accumulation of pbp gene mutations is strongly related to the MIC of ABPC for S. mitis. In the resistant strains, the affinity of PBPs for ABPC was reduced in comparison with that in the susceptible strains, and the bactericidal effect of ABPC was also reduced. Therefore, we should be aware of conditions such as infective endocarditis that are caused by Beta-lactam-nonsusceptible streptococci in the normal oral flora.
Collapse
Affiliation(s)
- Ayako Nakayama
- The Second Department of Oral and Maxillofacial Surgery, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, 230-8501 Yokohama, Japan.
| | | |
Collapse
|
10
|
Gianninò V, Santagati M, Guardo G, Cascone C, Rappazzo G, Stefani S. Conservation of the mosaic structure of the four internal transcribed spacers and localisation of the rrn operons on the Streptococcus pneumoniae genome. FEMS Microbiol Lett 2003; 223:245-52. [PMID: 12829294 DOI: 10.1016/s0378-1097(03)00376-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The detection of heterogeneity of the 16S-23S ribosomal intergenic transcribed spacer (ITS) region has become rather common over the past years for identification and typing purposes of bacteria. The ITS not only varies in sequence and length, but also in number of alleles per genome and in their position on the chromosome together with the ribosomal clusters. The ITS characterisation has allowed discrimination of several species within a genus and variation in ITS sequences between the multiple rrn operons present within a genome may be as high or greater than between strains of the same species or subspecies. It is important to understand the variability of ITS sequences in a given genome to gain insights into bacterial physiology and taxonomy. The present study describes the possibility to type Streptococcus pneumoniae by PCR-ribotyping of the spacer region, the determination of the molecular structure of the ITS, and the determination of the number and localisation of rrn operons in this microorganism. Our results show that the genome of S. pneumoniae contains four ribosomal operons, showing the same genomic organisation among strains, each containing a single ITS allele of 270 bp. The ITS sequence presents a mosaic organisation of blocks highly conserved intra- and inter-species within the genus Streptococcus, giving no possibility for variations to arise.
Collapse
Affiliation(s)
- Viviana Gianninò
- Department of Microbiological and Gynaecological Sciences, University of Catania, Via Androne 81, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Goffin C, Ghuysen JM. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 2002; 66:702-38, table of contents. [PMID: 12456788 PMCID: PMC134655 DOI: 10.1128/mmbr.66.4.702-738.2002] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial acyltransferases of the SxxK superfamily vary enormously in sequence and function, with conservation of particular amino acid groups and all-alpha and alpha/beta folds. They occur as independent entities (free-standing polypeptides) and as modules linked to other polypeptides (protein fusions). They can be classified into three groups. The group I SxxK D,D-acyltransferases are ubiquitous in the bacterial world. They invariably bear the motifs SxxK, SxN(D), and KT(S)G. Anchored in the plasma membrane with the bulk of the polypeptide chain exposed on the outer face of it, they are implicated in the synthesis of wall peptidoglycans of the most frequently encountered (4-->3) type. They are inactivated by penicillin and other beta-lactam antibiotics acting as suicide carbonyl donors in the form of penicillin-binding proteins (PBPs). They are components of a morphogenetic apparatus which, as a whole, controls multiple parameters such as shape and size and allows the bacterial cells to enlarge and duplicate their particular pattern. Class A PBP fusions comprise a glycosyltransferase module fused to an SxxK acyltransferase of class A. Class B PBP fusions comprise a linker, i.e., protein recognition, module fused to an SxxK acyltransferase of class B. They ensure the remodeling of the (4-->3) peptidoglycans in a cell cycle-dependent manner. The free-standing PBPs hydrolyze D,D peptide bonds. The group II SxxK acyltransferases frequently have a partially modified bar code, but the SxxK motif is invariant. They react with penicillin in various ways and illustrate the great plasticity of the catalytic centers. The secreted free-standing PBPs, the serine beta-lactamases, and the penicillin sensors of several penicillin sensory transducers help the D,D-acyltransferases of group I escape penicillin action. The group III SxxK acyltransferases are indistinguishable from the PBP fusion proteins of group I in motifs and membrane topology, but they resist penicillin. They are referred to as Pen(r) protein fusions. Plausible hypotheses are put forward on the roles that the Pen(r) protein fusions, acting as L,D-acyltransferases, may play in the (3-->3) peptidoglycan-synthesizing molecular machines. Shifting the wall peptidoglycan from the (4-->3) type to the (3-->3) type could help Mycobacterium tuberculosis and Mycobacterium leprae survive by making them penicillin resistant.
Collapse
Affiliation(s)
- Colette Goffin
- Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | | |
Collapse
|