1
|
Sasaki Y, Matsuo T, Watanabe Y, Iwatsuki M, Inahashi Y, Nishida S, Naito M, Shoji M. Identification of nanaomycin A and its analogs by a newly established screening method for functional inhibitors of the type IX secretion system in Porphyromonas gingivalis. J Antibiot (Tokyo) 2025; 78:90-105. [PMID: 39578618 DOI: 10.1038/s41429-024-00790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is a key pathogen in chronic periodontitis. P. gingivalis has a type IX secretion system (T9SS) that secretes highly hydrolytic proteinases called gingipains for obtaining peptides as an energy source. Although most T9SS-related proteins have been identified, no specific inhibitor of T9SS has been reported. To screen T9SS inhibitors, we focused on and characterized a minimal liquid medium called mC medium that contains milk casein as the sole protein source. We found that P. gingivalis wild-type strain ATCC 33277 caused cloudiness of mC medium without growth. In mC medium, an alkylating agent, iodoacetamide (IAM) that is an inhibitor of gingipains, and a protonophore, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) that dissipates the proton motive force required for T9SS-mediated secretion, clearly inhibited the increase in turbidity. Moreover, neither the gingipain-null mutant nor the T9SS-deficient mutant caused mC medium cloudiness, suggesting that mC medium cloudiness is dependent on gingipain activity and T9SS. These results indicated that mC medium can be used to assess P. gingivalis gingipain activity and its functional T9SS. Using an assay system with mC medium, we discovered that OM-173αA and OM-173βA in the Ōmura Natural Compound Library and nanaomycin A were probable T9SS inhibitors. The compounds need to be further investigated as tools for analyzing T9SS and as potential therapeutic agents for periodontal disease.
Collapse
Affiliation(s)
- Yuko Sasaki
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Takehiro Matsuo
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuki Inahashi
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan.
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| |
Collapse
|
2
|
Gains AF, Lambert DW, Stafford GP. Identification of a Czc-like operon of the periodontal pathobiont P. gingivalis involved in metal ion efflux. Anaerobe 2023; 80:102696. [PMID: 36642290 DOI: 10.1016/j.anaerobe.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The study aimed to investigate the role of the PGN2012 gene of the periodontitis contributing pathobiont Porphyromonas gingivalis. PGN2012 is a homolgue of TolC and is a gene our group previously showed was overexpressed in hyperinvasive cells. METHODS The study used a combination of bioinformatics, knockout mutagenesis, growth experiments, biofilm assays and human cell invation assays to investigate PGN2012 function. RESULTS Bioinformatics identified that PGN2012 is part of one of four TolC containing gene loci in P. gingivalis that we predicted may encode a metal resistance RND family tripartite pump, similar to those present in other Gram-negative bacteria, but which are not well understood in anaerobic bacteria. A ΔPGN2012 deletion displayed slightly reduced growth in liquid culture but did not effect biofilm formation or human cell invasion. When metal ions were included in the medium the mutant displayed significantly increased sensitivity to the divalent metal ions Zn2+ (500 μM), Co2+ (2 mM), and Cd2+(0.1 mM) but not Cu2+. CONCLUSIONS We propose to rename the PGN2012-2014 genes czcCBA, which we suggest plays a role in intracellular stress resistance where zinc is often employed by host cells in antibacterial defence with implications for chronic infection in humans.
Collapse
Affiliation(s)
- A F Gains
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - D W Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - G P Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK.
| |
Collapse
|
3
|
Porphyromonas gingivalis resistance and virulence: An integrated functional network analysis. Gene 2022; 839:146734. [PMID: 35835406 DOI: 10.1016/j.gene.2022.146734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The gram-negative bacteria Porphyromonas gingivalis (PG) is the most prevalent cause of periodontal diseases and multidrug-resistant (MDR) infections. Periodontitis and MDR infections are severe due to PG's ability to efflux antimicrobial and virulence factors. This gives rise to colonisation, biofilm development, evasion, and modulation of the host defence system. Despite extensive studies on the MDR efflux pump in other pathogens, little is known about the efflux pump and its association with the virulence factor in PG. Prolonged infection of PG leads to complete loss of teeth and other systemic diseases. This necessitates the development of new therapeutic interventions to prevent and control MDR. OBJECTIVE The study aims to identify the most indispensable proteins that regulate both resistance and virulence in PG, which could therefore be used as a target to fight against the MDR threat to antibiotics. METHODS We have adopted a hierarchical network-based approach to construct a protein interaction network. Firstly, individual networks of four major efflux pump proteins and two virulence regulatory proteins were constructed, followed by integrating them into one. The relationship between proteins was investigated using a combination of centrality scores, k-core network decomposition, and functional annotation, to computationally identify the indispensable proteins. RESULTS Our study identified four topologically significant genes, PG_0538, PG_0539, PG_0285, and PG_1797, as potential pharmacological targets. PG_0539 and PG_1797 were identified to have significant associations between the efflux pump and virulence genes. This type of underpinning research may help in narrowing the drug spectrum used for treating periodontal diseases, and may also be exploited to look into antibiotic resistance and pathogenicity in bacteria other than PG.
Collapse
|
4
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
5
|
Martins CHG, Abrão F, Moraes TS, Oliveira PF, Tavares DC, Magalhães LG, Galvão FC, Veneziani RCS, Ambrósio SR. Kaurenoic acid and its sodium salt derivative: antibacterial activity against Porphyromonas gingivalis and their mechanism of action. Future Microbiol 2018; 13:1585-1601. [DOI: 10.2217/fmb-2018-0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To evaluate the antibacterial activity of 12 kaurane-type diterpenes against a panel of bacteria that cause endodontic infection. Methods & materials: We conducted tests against bacteria in the planktonic or in the sessile mode, cytotoxic assays for the most promising compounds against human normal lung fibroblast cells, and Porphyromonas gingivalis (ATCC 33277) proteomic analysis. Results & conclusion: Kaurenoic acid and its salt exhibited satisfactory antibacterial action against the evaluated bacteria. Proteomic analysis suggested that these compounds might interfere in bacterial metabolism and virulence factor expression. Kaurane-type diterpenes are an important class of natural products and should be considered in the search for new irrigating solutions to treat endodontic infections.
Collapse
Affiliation(s)
- Carlos HG Martins
- Research Laboratory of Applied Microbiology, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Fariza Abrão
- Research Laboratory of Applied Microbiology, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Thaís S Moraes
- Research Laboratory of Applied Microbiology, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Pollyanna F Oliveira
- Laboratory of Mutagenesis, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Denise C Tavares
- Laboratory of Mutagenesis, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Lizandra G Magalhães
- Nucleus of Research in Sciences & Technology, University of Franca - UNIFRAN, 14404-600, São Paulo, Brazil
| | - Fábio C Galvão
- Department of Biological Sciences, São Paulo State University - UNESP, Araraquara, 14800-901, São Paulo, Brazil
| | - Rodrigo CS Veneziani
- Nucleus of Research in Sciences & Technology, University of Franca - UNIFRAN, 14404-600, São Paulo, Brazil
| | - Sérgio R Ambrósio
- Nucleus of Research in Sciences & Technology, University of Franca - UNIFRAN, 14404-600, São Paulo, Brazil
| |
Collapse
|
6
|
Sekiya M, Shimoyama Y, Ishikawa T, Sasaki M, Futai M, Nakanishi-Matsui M. Porphyromonas gingivalis is highly sensitive to inhibitors of a proton-pumping ATPase. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Fujise K, Kikuchi Y, Kokubu E, Okamoto-Shibayama K, Ishihara K. Effect of extracytoplasmic function sigma factors on autoaggregation, hemagglutination, and cell surface properties of Porphyromonas gingivalis. PLoS One 2017; 12:e0185027. [PMID: 28931045 PMCID: PMC5607195 DOI: 10.1371/journal.pone.0185027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 09/05/2017] [Indexed: 01/05/2023] Open
Abstract
Porphyromonas gingivalis is a bacterium frequently isolated from chronic periodontal lesions and is involved in the development of chronic periodontitis. To colonize the gingival crevice, P. gingivalis has to adapt to environmental stresses. Microbial gene expression is regulated by transcription factors such as those in two-component systems and extracytoplasmic function (ECF) sigma factors. ECF sigma factors are involved in the regulation of environmental stress response genes; however, the roles of individual ECF sigma factors are largely unknown. The purpose of this study was to investigate the functions, including autoaggregation, hemagglutination, gingipain activity, susceptibility to antimicrobial agents, and surface structure formation, of P. gingivalis ECF sigma factors encoded by SigP (PGN_0274), SigCH (PGN_0319), PGN_0450, PGN_0970, and SigH (PGN_1740). Various physiological aspects of the sigP mutant were affected; autoaggregation was significantly decreased at 60 min (p < 0.001), hemagglutination activity was markedly reduced, and enzymatic activities of Kgp and Rgps were significantly decreased (p < 0.001). The other mutants also showed approximately 50% reduction in Rgps activity. Kgp activity was significantly reduced in the sigH mutant (p < 0.001). No significant differences in susceptibilities to tetracycline and ofloxacin were observed in the mutants compared to those of the wild-type strain. However, the sigP mutant displayed an increased susceptibility to ampicillin, whereas the PGN_0450 and sigH mutants showed reduced susceptibility. Transmission electron microscopy images revealed increased levels of outer membrane vesicles formed at the cell surfaces of the sigP mutant. These results indicate that SigP is important for bacterial surface-associated activities, including gingipain activity, autoaggregation, hemagglutination, vesicle formation, and antimicrobial susceptibility.
Collapse
Affiliation(s)
- Kazutaka Fujise
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | | | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
8
|
Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria. Antibiotics (Basel) 2015; 4:379-96. [PMID: 27025630 PMCID: PMC4790292 DOI: 10.3390/antibiotics4030379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections.
Collapse
|
9
|
Nagano K, Murakami Y, Nishikawa K, Sakakibara J, Shimozato K, Yoshimura F. Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J Med Microbiol 2007; 56:1536-1548. [DOI: 10.1099/jmm.0.47289-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major outer-membrane proteins RagA and RagB ofPorphyromonas gingivalisare considered to form a receptor complex functionally linked to TonB. In this study,P.gingivalismutants withragA,ragBor both deleted were constructed from strain W83 as the parent to examine the physiological and pathological functions of RagA and RagB. The double-deletion mutant completely lacked both RagA and RagB, whereas the ΔragAmutant reduced RagB expression considerably and the ΔragBmutant produced degraded RagA. Growth of the three mutants in a nutrient-rich medium and synthetic media containing digested protein as a unique nutrient source was similar to that of the parental strain; however, both the ΔragAand ΔragABmutants exhibited very slow growth in a synthetic medium containing undigested, native protein, and the two mutants tended to lose their viability during experiments, although gingipain (protease) activities were unchanged in the mutants. A mouse model showed that the ΔragBmutant had reduced virulence. Cell-surface labelling with biotin and dextran revealed that both RagA and RagB localized on the outermost cell surface. A cross-linking experiment using wild-typeP. gingivalisshowed that RagA and RagB were closely associated with each other. Furthermore, co-immunoprecipitation confirmed that RagA and RagB formed a protein–protein complex. These results suggest that physically associated RagA and RagB may stabilize themselves on the cell surface and function as active transporters of large degradation products of protein and in part as a virulence factor.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Kiyoshi Nishikawa
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Junpei Sakakibara
- Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Kazuo Shimozato
- Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
10
|
Hernandez-Mendoza A, Quinto C, Segovia L, Perez-Rueda E. Ligand-binding prediction in the resistance-nodulation-cell division (RND) proteins. Comput Biol Chem 2007; 31:115-23. [PMID: 17416336 DOI: 10.1016/j.compbiolchem.2007.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 11/25/2022]
Abstract
The resistance-nodulation-cell division (RND) protein family is a ubiquitous group of proteins primarily present in bacteria. These proteins, involved in the transport of multiple drugs across the cell envelope in bacteria, exhibit broad substrate specificity and act like efflux pumps. In this work, a protein belonging to the RND protein family, AcrB of Escherichia coli was used as a working model to predict in silico the compounds transported by 47 RND proteins. From AcrB we extracted and clustered 14 amino acids directly involved in substrate interactions. This clustering provides enough information to identify 16 groups that correlates with the ligand they extrude, such as proteins expelling aromatic hydrocarbons (SrpB cluster) or proteins expelling heavy metals (CnrA cluster). The relationship between conserved, cluster-specific and variable residues indicates that although the ligand-binding domain is conserved in structure, it has enough flexibility to recognize specifically a diversity of molecules.
Collapse
Affiliation(s)
- Armando Hernandez-Mendoza
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, A.P. 565-A Cuernavaca, Morelos 62210, Mexico
| | | | | | | |
Collapse
|
11
|
Ueda O, Wexler HM, Hirai K, Shibata Y, Yoshimura F, Fujimura S. Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis. Antimicrob Agents Chemother 2005; 49:2807-15. [PMID: 15980353 PMCID: PMC1168660 DOI: 10.1128/aac.49.7.2807-2815.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sixteen homologs of multidrug resistance efflux pump operons of the resistance-nodulation-cell division (RND) family were found in the Bacteroides fragilis genome sequence by homology searches. Disruption mutants were made to the mexB homologs of the four genes most similar to Pseudomonas aeruginosa mexB. Reverse transcription-PCR was conducted and indicated that the genes were transcribed in a polycistronic fashion and that the promoter was upstream of bmeA (the mexA homolog). One of these disruption mutants (in bmeB, the mexB homolog) was more susceptible than the parental strain to certain cephems, polypeptide antibiotics, fusidic acid, novobiocin, and puromycin. The gene for this homolog and the adjacent upstream gene, bmeA, were cloned in a hypersensitive Escherichia coli host. The resultant transformants carrying B. fragilis bmeAB were more resistant to certain agents; these agents also had lower MICs for the B. fragilis bmeB disruption mutants than for the parental strain. The putative efflux pump operon is composed of bmeA, bmeB, and bmeC (a putative outer membrane channel protein homologous with OprM). Addition of the efflux pump inhibitors, carbonyl cyanide m-chlorophenylhydrazone (a proton conductor that eliminates the energy source) and Phe-Arg beta-naphthylamide (MC-207,110) (the first specific inhibitor described for RND pumps in P. aeruginosa), resulted in lowered MICs in the parental strain but not in the bmeB disruption mutant, indicating that the bmeB pump is affected by these inhibitors. This is the first description of RND type pumps in the genus Bacteroides.
Collapse
Affiliation(s)
- Ohmi Ueda
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka Shiojiri, Nagano 399-0781, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
13
|
Nagano K, Read EK, Murakami Y, Masuda T, Noguchi T, Yoshimura F. Trimeric structure of major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis. J Bacteriol 2005; 187:902-11. [PMID: 15659668 PMCID: PMC545718 DOI: 10.1128/jb.187.3.902-911.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major outer membrane proteins Pgm6 (41 kDa) and Pgm7 (40 kDa) of Porphyromonas gingivalis ATCC 33277 are encoded by open reading frames pg0695 and pg0694, respectively, which form a single operon. Pgm6 and Pgm7 (Pgm6/7) have a high degree of similarity to Escherichia coli OmpA in the C-terminal region and are predicted to form eight-stranded beta-barrels in the N-terminal region. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Pgm6/7 appear as bands with apparent molecular masses of 40 and 120 kDa, with and without a reducing agent, suggesting a monomer and trimer, respectively. To verify the predicted trimeric structure and function of Pgm6/7, we constructed three mutants with pg0695, pg0694, or both deleted. The double mutant produced no Pgm6/7. The single-deletion mutants appeared to contain less Pgm7 and Pgm6 and to form homotrimers that migrated slightly faster (115 kDa) and slower (130 kDa), respectively, than wild-type Pgm6/7 under nonreducing conditions. N-terminal amino acid sequencing and mass spectrometry analysis of partially digested Pgm6/7 detected only fragments from Pgm6 and Pgm7. Two-dimensional, diagonal electrophoresis and chemical cross-linking experiments with or without a reducing agent clearly showed that Pgm6/7 mainly form stable heterotrimers via intermolecular disulfide bonds. Furthermore, growth retardation and arrest of the three mutants and increased permeability of their outer membranes indicated that Pgm6/7 play an important role in outer membrane integrity. Based on results of liposome swelling experiments, these proteins are likely to function as a stabilizer of the cell wall rather than as a major porin in this organism.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
15
|
Abstract
Multiresistance in Gram-negative pathogens, particularly Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter spp. and the Enterobacteriaceae, is a significant problem in medicine today. While multiple mechanisms often contribute to multiresistance, a broadly distributed family of three-component multidrug efflux systems is an increasingly recognised determinant of both intrinsic and acquired multiresistance in these organisms. Homologues of these efflux systems are also readily identifiable in the genome sequences of a wide range of Gram-negative organisms, pathogens and non-pathogens alike, where they probably promote efflux-mediated resistance to multiple antimicrobials. Significantly, these systems often accommodate biocides, raising the spectre of biocide-mediated selection of multiresistance in Gram-negative pathogens. While there is some debate as to the natural function of these efflux systems, only some of which are inducible by their antimicrobial substrates, their contribution to resistance in a variety of pathogens nonetheless makes them reasonable targets for therapeutic intervention. Indeed, given the incredible chemical diversity of substrates accommodated by these efflux systems, it is likely that many novel or yet to be discovered antimicrobials will themselves be efflux substrates and, as such, efflux inhibitors may become an important component of Gram-negative antimicrobial therapy.
Collapse
Affiliation(s)
- K Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
16
|
Abstract
Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.
Collapse
Affiliation(s)
- H Oh
- Department of Laboratory Medicine, Division of Clinical Bacteriology, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | |
Collapse
|
17
|
Abstract
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.
Collapse
Affiliation(s)
- Dietrich H Nies
- Institute of Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle/Saale, Germany.
| |
Collapse
|
18
|
|