1
|
Vu H, Hayashi M, Nguyen TN, Khong DT, Tran HT, Yamamoto Y, Tanaka K. Comparison of Phenotypic and Genotypic Patterns of Antimicrobial-Resistant Bacteroides fragilis Group Isolated from Healthy Individuals in Vietnam and Japan. Infect Drug Resist 2021; 14:5313-5323. [PMID: 34924764 PMCID: PMC8674666 DOI: 10.2147/idr.s341571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Normal non-pathogenic flora can harm the host by acting as a reservoir of resistance determinants that are potentially transferable to human pathogens. This study aimed to assess the phenotypic and genotypic antimicrobial susceptibility patterns of the Bacteroides fragilis group (BFG) isolated from healthy individuals in Vietnam and Japan in order to elucidate the prevalence of antimicrobial resistance in human flora in the two economically and geographically different countries. Materials and Methods BFG was isolated from fecal samples of 80 healthy individuals in Vietnam (n=51) and Japan (n=29). Isolated strains were identified using MALDI-TOF MS, and the minimum inhibitory concentration (MIC) of 18 antibiotics was determined using the agar dilution method. Additionally, 20 antimicrobial resistance genes were detected using standard PCR. Results A total of 139 BFG strains belonging to 11 BFG species were isolated from the two countries, with diversity in the prevalence of each species. B. fragilis was not the predominant species. Isolations from Vietnam and Japan showed some similarities in terms of MIC50 values, MIC90 values, and the percentage of resistant strains. However, isolations from Vietnam showed significantly higher resistance to piperacillin, cefmetazole, clindamycin, tetracycline, and minocycline. ErmB, tet36, tetM, nim, catA, and qnrA were not found in either country. CepA was more common in B. fragilis than in non-fragilis Bacteroides. In contrast, cfiA, ermG, mefA, msrSA, tetX, tetX1, bexA, qnrB, and qnrS were found only in non-fragilis Bacteroides. There were differences in the prevalence of ermG, linA, mefA, msrSA, and qnrS between isolates from Vietnam and Japan. Conclusion This study is the first report on the antimicrobial susceptibility patterns in the BFG isolated from healthy individuals in Vietnam and Japan. Compared to isolations from Japan, isolations from Vietnam showed significantly higher resistance to antimicrobial agents. The distribution of various antibiotic resistance genes also differed between the two countries.
Collapse
Affiliation(s)
- Hanh Vu
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Masahiro Hayashi
- Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City, Gifu, Japan
| | - Thang Nam Nguyen
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Diep Thi Khong
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Hoa Thi Tran
- Center for Medical and Pharmaceutical Research and Service, Thai Binh University of Medicine and Pharmacy, Thai Binh City, Thai Binh, Vietnam
| | - Yoshimasa Yamamoto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Kaori Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan.,Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City, Gifu, Japan
| |
Collapse
|
2
|
Comparative activities of sitafloxacin against recent clinical isolates in hospitals across China. Eur J Clin Microbiol Infect Dis 2021; 40:2271-2283. [PMID: 34013453 DOI: 10.1007/s10096-021-04278-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Sitafloxacin is one of the newer generation fluoroquinolones. Considering the ever-changing antimicrobial resistance, it is necessary to monitor the activities of sitafloxacin against recent pathogenic isolates. Therefore, we determined the minimum inhibitory concentrations (MICs) of sitafloxacin and comparators by broth microdilution or agar dilution method against 1101 clinical isolates collected from 2017 to 2019 in 31 hospitals across China. Sitafloxacin was highly active against gram-positive isolates evidenced by the MICs required to inhibit the growth of 50%/90% isolates (MIC50/90): ≤ 0.03/0.25, ≤ 0.03/0.125, ≤ 0.03/2, 0.125/0.25, 0.25/2, and 0.125/0.125 mg/L for methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-susceptible coagulase-negative Staphylococcus (MSCNS), methicillin-resistant S. aureus (MRSA), methicillin-resistant CNS, Enterococcus faecalis, and Streptococcus pneumoniae, respectively. Sitafloxacin inhibited 82.8% of the MRSA strains and 97.5% of MRCNS strains. Sitafloxacin was also potent against ciprofloxacin-susceptible Escherichia coli (MIC50/90: ≤ 0.03/0.06 mg/L) and Klebsiella pneumoniae (MIC50/90: ≤ 0.03/0.125 mg/L), non-ESBL-producing E. coli (MIC50/90: ≤ 0.03/1 mg/L) and K. pneumoniae (MIC50/90: ≤ 0.03/0.5 mg/L), Haemophilus influenzae (MIC50/90: ≤0.015/0.06 mg/L), Haemophilus parainfluenzae (MIC50/90: 0.125/0.5 mg/L), Moraxella catarrhalis (MIC50/90: ≤ 0.015/≤ 0.015 mg/L), Bacteroides fragilis (MIC50/90: 0.06/2 mg/L), Peptostreptococcus (MIC50/90: 0.125/4 mg/L), and Mycoplasma pneumoniae (≤ 0.03/≤ 0.03 mg/L). However, sitafloxacin was less active for Enterococcus faecium, ciprofloxacin-resistant and/or ESBL-producing E. coli, and K. pneumoniae strains. Sitafloxacin was superior or comparable to most of the comparators in activities against the abovementioned isolates, so sitafloxacin is still highly active against most of the clinical isolates in hospitals across China, proving its utility in treatment of the abovementioned susceptible strains.
Collapse
|
3
|
Niestępski S, Harnisz M, Ciesielski S, Korzeniewska E, Osińska A. Environmental fate of Bacteroidetes, with particular emphasis on Bacteroides fragilis group bacteria and their specific antibiotic resistance genes, in activated sludge wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122544. [PMID: 32224375 DOI: 10.1016/j.jhazmat.2020.122544] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine the effect of the activated sludge process on the abundance of anaerobic bacteria of the phylum Bacteroidetes, with special emphasis on Bacteroides fragilis group (BFG) bacteria, in twelve full-scale wastewater treatment plants. The composition of bacterial phyla and classes in wastewater samples were analyzed by next-generation sequencing. The presence of specific to BFG bacteria genes and the abundance of ARGs and genes encoding class 1 integrase in wastewater samples were determined by qPCR. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were dominant bacterial phyla in wastewater samples. Next-generation sequencing revealed similar proportions of Bacteroidia (<1.0-8.2 % of all bacteria) in wastewater influents and effluents, which suggest that these microorganisms are not completely eliminated in the activated sludge process. The average copy numbers of specific to BFG bacteria gene, were 106, and 104 copies in 1 mL of wastewater influents and effluents, respectively. The results revealed a correlation between the abundance of BFG bacteria and BFG-specific genes encoding resistance to antibiotics. The observed changes in the prevalence of BFG-specific genes and ARGs in untreated and treated wastewater indicate that the activated sludge process decreases the number of gene copies in the effluent evacuated to the environment.
Collapse
Affiliation(s)
- Sebastian Niestępski
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Adriana Osińska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
4
|
Niestępski S, Harnisz M, Korzeniewska E, Osińska A, Dziuba B. BACTEROIDES SPP. - CLINICAL SIGNIFICANCE, ANTIBIOTIC RESISTANCE AND IDENTIFICATION METHODS. POSTĘPY MIKROBIOLOGII - ADVANCEMENTS OF MICROBIOLOGY 2019. [DOI: 10.21307/pm-2017.56.1.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Ugurel E, Danis O, Mutlu O, Yuce-Dursun B, Gunduz C, Turgut-Balik D. Inhibitory effects of arylcoumarin derivatives on Bacteroides fragilisd‑lactate dehydrogenase. Int J Biol Macromol 2019; 127:197-203. [PMID: 30639654 DOI: 10.1016/j.ijbiomac.2019.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/26/2022]
Abstract
Bacteroides fragilis is an anaerobic bacterium naturally hosted in the human colon flora. B. fragilisd‑lactate dehydrogenase (Bfd‑LDH) is an important enzyme which catalyzes the conversion of d‑lactate to pyruvate and regulates anaerobic glycolysis. In this study Bfd‑LDH has been targeted for structure based drug design. B. fragilisd‑lactate dehydrogenase has been expressed, purified and inhibitory activities of 25 coumarin derivatives previously synthetize for their antioxidant activity were evaluated. Among the 25 coumarin derivatives, compound 6a, 5l, and 6b exhibited the highest inhibitory activity with IC50 values of 0,47 μM, 0,57 μM ve 0,057 μM, respectively. The results indicate that the mechanism by which 6a, 5l and 6b coumarin derivatives inhibit Bfd‑LDH by reversible non-competitive inhibition. Docking experiments were carried out to further explain the results and compare the theoretical and experimental affinity of these compounds to the Bfd‑LDH protein. According to docking results, all coumarins bind to the site occupied by pyruvate and the nicotinamide ring of NADH.
Collapse
Affiliation(s)
- Erennur Ugurel
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210/Esenler, Istanbul, Turkey
| | - Ozkan Danis
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, Goztepe Campus, 34722/Kadıkoy, Istanbul, Turkey
| | - Ozal Mutlu
- Marmara University, Faculty of Arts and Sciences, Department of Biology, Goztepe Campus, 34722/Kadikoy, Istanbul, Turkey
| | - Basak Yuce-Dursun
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, Goztepe Campus, 34722/Kadıkoy, Istanbul, Turkey
| | - Cihan Gunduz
- Manhattan College, Department of Chemistry & Biochemistry, 10471, Riverdale, New York, U.S.A
| | - Dilek Turgut-Balik
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210/Esenler, Istanbul, Turkey.
| |
Collapse
|
6
|
Niestępski S, Harnisz M, Korzeniewska E, Aguilera-Arreola MG, Contreras-Rodríguez A, Filipkowska Z, Osińska A. The emergence of antimicrobial resistance in environmental strains of the Bacteroides fragilis group. ENVIRONMENT INTERNATIONAL 2019; 124:408-419. [PMID: 30682596 DOI: 10.1016/j.envint.2018.12.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/03/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Anaerobic bacteria of the genus Bacteroides are a large group of commensal microorganisms that colonize the human and animal digestive tract. The genus Bacteroides and the closely related genus Parabacteroides include the Bacteroides fragilis group (BFG) of potentially pathogenic bacteria which are frequently isolated from patients with anaerobic infections. The aim of this study was to assess the antimicrobial resistance of environmental strains of the Bacteroides fragilis group. Strains were isolated from human feces, hospital wastewater, influent (UWW) and effluent (TWW) wastewater from a wastewater treatment plant (WWTP), and from the feces of lab rats as a negative control to monitor the entire route of transmission of BFG strains from humans to the environment. The resistance of 123 environmental BFG strains to six antibiotic groups was analyzed with the use of culture-dependent methods. Additionally, the presence of 25 genes encoding antibiotic resistance was determined by PCR. The analyzed environmental BFG strains were highly resistant to the tested antibiotics. The percentage of resistant strains differed between the analyzed antibiotics and was determined at 97.56% for ciprofloxacin, 49.59% for erythromycin, 44.71% for ampicillin, 35.77% for tetracycline, 32.52% for amoxicillin/clavulanic acid, 26.83% for chloramphenicol, 26.01% for clindamycin, 11.38% for moxifloxacin, and 8.94% for metronidazole. The highest drug-resistance levels were observed in the strains isolated from UWW and TWW samples. The mechanisms of antibiotic-resistance were determined in phenotypically resistant strains of BFG. Research has demonstrated the widespread presence of genes encoding resistance to chloramphenicol (100% of all chloramphenicol-resistant strains), tetracyclines (97.78% of all tetracycline-resistant strains), macrolides, lincosamides and streptogramins (81.97% of all erythromycin-resistant strains). Genes encoding resistance to β-lactams and fluoroquinolones were less prevalent. None of the metronidazole-resistant strains harbored the gene encoding resistance to nitroimidazoles. BFG strains isolated from UWW and TWW samples were characterized by the highest diversity of antibiotic-resistance genes and were most often drug-resistant and multidrug-resistant. The present study examines the potential negative consequences of drug-resistant and multidrug-resistant BFG strains that are evacuated with treated wastewater into the environment. The transmission of these bacteria to surface water bodies can pose potential health threats for humans and animals; therefore, the quality of treated wastewater should be strictly monitored.
Collapse
Affiliation(s)
- Sebastian Niestępski
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Ma Guadalupe Aguilera-Arreola
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Araceli Contreras-Rodríguez
- Department of Microbiology, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Zofia Filipkowska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Adriana Osińska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| |
Collapse
|
7
|
Zhanel GG, Fontaine S, Adam H, Schurek K, Mayer M, Noreddin AM, Gin AS, Rubinstein E, Hoban DJ. A Review of New Fluoroquinolones : Focus on their Use in Respiratory Tract Infections. ACTA ACUST UNITED AC 2016; 5:437-65. [PMID: 17154673 DOI: 10.2165/00151829-200605060-00009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The new respiratory fluoroquinolones (gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, and on the horizon, garenoxacin) offer many improved qualities over older agents such as ciprofloxacin. These include retaining excellent activity against Gram-negative bacilli, with improved Gram-positive activity (including Streptococcus pneumoniae and Staphylococcus aureus). In addition, gatifloxacin, moxifloxacin and garenoxacin all demonstrate increased anaerobic activity (including activity against Bacteroides fragilis). The new fluoroquinolones possess greater bioavailability and longer serum half-lives compared with ciprofloxacin. The new fluoroquinolones allow for once-daily administration, which may improve patient adherence. The high bioavailability allows for rapid step down from intravenous administration to oral therapy, minimizing unnecessary hospitalization, which may decrease costs and improve quality of life of patients. Clinical trials involving the treatment of community-acquired respiratory infections (acute exacerbations of chronic bronchitis, acute sinusitis, and community-acquired pneumonia) demonstrate high bacterial eradication rates and clinical cure rates. In the treatment of community-acquired respiratory tract infections, the various new fluoroquinolones appear to be comparable to each other, but may be more effective than macrolide or cephalosporin-based regimens. However, additional data are required before it can be emphatically stated that the new fluoroquinolones as a class are responsible for better outcomes than comparators in community-acquired respiratory infections. Gemifloxacin (except for higher rates of hypersensitivity), levofloxacin, and moxifloxacin have relatively mild adverse effects that are more or less comparable to ciprofloxacin. In our opinion, gatifloxacin should not be used, due to glucose alterations which may be serious. Although all new fluoroquinolones react with metal ion-containing drugs (antacids), other drug interactions are relatively mild compared with ciprofloxacin. The new fluoroquinolones gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin have much to offer in terms of bacterial eradication, including activity against resistant respiratory pathogens such as penicillin-resistant, macrolide-resistant, and multidrug-resistant S. pneumoniae. However, ciprofloxacin-resistant organisms, including ciprofloxacin-resistant S. pneumoniae, are becoming more prevalent, thus prudent use must be exercised when prescribing these valuable agents.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, CanadaDepartment of Clinical Microbiology, Health Sciences Centre, Winnipeg, Manitoba, CanadaDepartment of Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Efficacy of moxifloxacin monotherapy versusgatifloxacin monotherapy, piperacillin-tazobactam combination therapy, and lindamycin plus gentamicin combination therapy: An experimental study in a rat model of intra-abdominal sepsis induced by fluoroquinolone-resistant Bacteroides fragilis. Curr Ther Res Clin Exp 2014; 66:222-9. [PMID: 24672125 DOI: 10.1016/j.curtheres.2005.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2005] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In intra-abdominal infections, the activity of antimicrobial agents against Bacteroides fragilis and phenotypically related organisms, and the increasing resistance of these organisms, are of particular importance and concern to surgeons. In vitro data suggest that moxifloxacin is more active than other quinolones against obligately anaerobic organisms, including Bacteroides spp. OBJECTIVE The aim of this study was to compare the efficacy of moxifloxacin monotherapy versus gatifloxacin monotherapy and 2 combination therapies (piperacillin-tazobactam and clindamycin plus gentamicin) in a rat model of intra-abdominal sepsis. The end point was marked by the incidence of mortality and intra-abdominal abscesses at necropsy 7 days after bacterial challenge. METHODS Three different strains of B fragilis with different degrees of resistanceto moxifloxacin (minimum inhibitory concentrations [MICs]: 4, 8, and 16 pg/mL) were added to the challenge inoculum in 3 separate experiments. Groups of 20 animals were used in each experiment. Group 1 served as saline-treated controls; group 2 received moxifloxacin 15 mg QD; group 3 received gatifloxacin 25 mg QD; group 4 received piperacillin-tazobactam 93 mg (-83 mg of piperacillin) QD; and group 5 received a combination of clindamycin 15 mg TID plus gentamicin 2 mg TID. All treatments were given intramuscularly. For all antimicrobials, dose was based on peak and trough serum drug concentrations determined by prior testing, with animal doses adjusted based on the ratio of body surface area to body weight, and comparing these doses and levels with studies in humans. RESULTS In all 3 experiments, the mortality rate with moxifloxacin was significantlylower or statistically similar compared with antibiotic active comparators (P ≤ 0.024). In addition, there were no significant differences in the incidence of abscess with moxifloxacin versus its comparators or between the 3 moxifloxacin groups across experiments. The best results for moxifloxacin were found in the experiment in which the B fragilis strain with MIC 16 μg/mL was added to the inoculum. CONCLUSION The results of this study in an animal model of intra-abdominalsepsis induced by fluoroquinolone-resistant B fragilis suggest that moxifloxacin monotherapy performs as well as combination regimens such as piperacillin-tazobactam and clindamycin plus gentamicin, and is as effective as other fluoroquinolones with antianaerobic activity, such as gatifloxacin.
Collapse
|
9
|
Goldstein EJC, Solomkin JS, Citron DM, Alder JD. Clinical Efficacy and Correlation of Clinical Outcomes With In Vitro Susceptibility for Anaerobic Bacteria in Patients With Complicated Intra-abdominal Infections Treated With Moxifloxacin. Clin Infect Dis 2011; 53:1074-80. [DOI: 10.1093/cid/cir664] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
10
|
Abstract
Moxifloxacin is a recent addition to the fluoroquinolone class, differing from ciprofloxacin and other older agents in having much better in vitro activity against Gram-positive aerobes while retaining potent activity against Gram-negative aerobes. It is also active against the pathogens of human and animal bite wounds and those species of atypical mycobacteria associated with dermatologic infections. Its activity against anaerobes is quite variable. Moxifloxacin penetrates well into inflammatory blister fluid and muscle and subcutaneous adipose tissues. Moxifloxacin should thus be a reasonable option for the treatment of skin and skin structure infections (SSSIs). In 3 randomized controlled trials (RCTs), oral moxifloxacin was as effective as cephalexin in the treatment of uncomplicated SSSIs in adults while in 2 RCTs, intravenous/oral moxifloxacin was as effective as intravenous/oral β-lactam/β-lactamase inhibitor therapy in the treatment of complicated SSSIs in adults. Moxifloxacin does not inhibit cytochrome P450 enzymes and thus interact with warfarin or methylxanthines. However, multivalent cations can reduce its oral bioavailability substantially. Dosage adjustment is not required in the presence of renal or hepatic impairment. The clinical relevance of its electrophysiologic effects (QTc prolongation) remains unresolved.
Collapse
Affiliation(s)
- David Rp Guay
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
11
|
Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJC, Baron EJ, O'Neill PJ, Chow AW, Dellinger EP, Eachempati SR, Gorbach S, Hilfiker M, May AK, Nathens AB, Sawyer RG, Bartlett JG. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg Infect (Larchmt) 2010; 11:79-109. [PMID: 20163262 DOI: 10.1089/sur.2009.9930] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence-based guidelines for managing patients with intra-abdominal infection were prepared by an Expert Panel of the Surgical Infection Society and the Infectious Diseases Society of America. These updated guidelines replace those previously published in 2002 and 2003. The guidelines are intended for treating patients who either have these infections or may be at risk for them. New information, based on publications from the period 2003-2008, is incorporated into this guideline document. The panel has also added recommendations for managing intra-abdominal infection in children, particularly where such management differs from that of adults; for appendicitis in patients of all ages; and for necrotizing enterocolitis in neonates.
Collapse
Affiliation(s)
- Joseph S Solomkin
- Department of Surgery, the University of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Cincinnati, OH 45267-0558, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJ, Baron EJ, O'Neill PJ, Chow AW, Dellinger EP, Eachempati SR, Gorbach S, Hilfiker M, May AK, Nathens AB, Sawyer RG, Bartlett JG. Diagnosis and Management of Complicated Intra-abdominal Infection in Adults and Children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis 2010; 50:133-64. [PMID: 20034345 DOI: 10.1086/649554] [Citation(s) in RCA: 974] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Evidence-based guidelines for managing patients with intra-abdominal infection were prepared by an Expert Panel of the Surgical Infection Society and the Infectious Diseases Society of America. These updated guidelines replace those previously published in 2002 and 2003. The guidelines are intended for treating patients who either have these infections or may be at risk for them. New information, based on publications from the period 2003–2008, is incorporated into this guideline document. The panel has also added recommendations for managing intra-abdominal infection in children, particularly where such management differs from that of adults; for appendicitis in patients of all ages; and for necrotizing enterocolitis in neonates.
Collapse
Affiliation(s)
- Joseph S. Solomkin
- Department of Surgery, the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - John E. Mazuski
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | | | - Keith A Rodvold
- Department of Pharmacy Practice, Chicago
- Department of Medicine, University of Illinois at Chicago, Chicago
| | - Ellie J.C. Goldstein
- R. M. Alden Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles
| | - Ellen J. Baron
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Patrick J. O'Neill
- Department of Surgery, The Trauma Center at Maricopa Medical Center, Phoenix, Arizona
| | - Anthony W. Chow
- Department of Medicine, University of British Columbia, Vancouver, British Columbia
| | | | | | - Sherwood Gorbach
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| | - Mary Hilfiker
- Department of Surgery, Rady Children's Hospital of San Diego, San Diego
| | - Addison K. May
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - John G. Bartlett
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Solomkin JS, Mazuski J. Intra-abdominal Sepsis: Newer Interventional and Antimicrobial Therapies. Infect Dis Clin North Am 2009; 23:593-608. [DOI: 10.1016/j.idc.2009.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
In vitro activities of doripenem, a new broad-spectrum carbapenem, against recently collected clinical anaerobic isolates, with emphasis on the Bacteroides fragilis group. Antimicrob Agents Chemother 2008; 52:4492-6. [PMID: 18838581 DOI: 10.1128/aac.00696-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Doripenem was evaluated against 527 recent clinical isolates, i.e., 404 Bacteroides fragilis isolates and 123 gram-positive anaerobe isolates. Against B. fragilis, doripenem was as active as imipenem, meropenem, and piperacillin-tazobactam and more active than ertapenem or ampicillin-sulbactam. Doripenem was active against isolates resistant to ertapenem, ampicillin-sulbactam, cefoxitin, clindamycin, and moxifloxacin. All of the gram-positive isolates tested were susceptible to doripenem.
Collapse
|
15
|
Abstract
SUMMARY Bacteroides species are significant clinical pathogens and are found in most anaerobic infections, with an associated mortality of more than 19%. The bacteria maintain a complex and generally beneficial relationship with the host when retained in the gut, but when they escape this environment they can cause significant pathology, including bacteremia and abscess formation in multiple body sites. Genomic and proteomic analyses have vastly added to our understanding of the manner in which Bacteroides species adapt to, and thrive in, the human gut. A few examples are (i) complex systems to sense and adapt to nutrient availability, (ii) multiple pump systems to expel toxic substances, and (iii) the ability to influence the host immune system so that it controls other (competing) pathogens. B. fragilis, which accounts for only 0.5% of the human colonic flora, is the most commonly isolated anaerobic pathogen due, in part, to its potent virulence factors. Species of the genus Bacteroides have the most antibiotic resistance mechanisms and the highest resistance rates of all anaerobic pathogens. Clinically, Bacteroides species have exhibited increasing resistance to many antibiotics, including cefoxitin, clindamycin, metronidazole, carbapenems, and fluoroquinolones (e.g., gatifloxacin, levofloxacin, and moxifloxacin).
Collapse
|
16
|
Lynch JP, File TM, Zhanel GG. Levofloxacin for the treatment of community-acquired pneumonia. Expert Rev Anti Infect Ther 2007; 4:725-42. [PMID: 17140350 DOI: 10.1586/14787210.4.5.725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
New respiratory fluoroquinolones (FQs), such as levofloxacin, offer many improved qualities over older agents, such as ciprofloxacin. These include retaining excellent Gram-negative bacilli activity, with improved Gram-positive activity. New FQ-like levofloxacin possesses greater bioavailabilty and a longer serum half-life compared with ciprofloxacin, allowing for once-daily dosing, which may improve patient adherence. The high bioavailability of levofloxacin allows for rapid step-down from intravenous administration to oral therapy, minimizing unnecessary hospitalization, which may decrease costs and improve patient quality of life. Levofloxacin has been evaluated for the treatment of community-acquired pneumonia (CAP) in numerous randomized clinical trials. Most published studies have used the 500 mg dose, although more recent studies have investigated the 750 mg dose once daily. These trials demonstrate that levofloxacin is effective and safe for the treatment of CAP, displaying relatively mild adverse effects that are more or less comparable with ciprofloxacin. Levofloxacin has much to offer in terms of bacterial eradication, including for resistant respiratory pathogens. However, ciprofloxacin-resistant organisms are becoming more prevalent so prudence must be exercised when prescribing this agent.
Collapse
Affiliation(s)
- Joseph P Lynch
- University of California, Los Angeles, Division of Pulmonary, Critical Care Medicine & Hospitalists, The David Geffen School of Medicine, Los Angeles, CA, USA.
| | | | | |
Collapse
|
17
|
Tanaka K, Mikamo H, Nakao K, Watanabe K. In vitro antianaerobic activity of DX-619, a new des-fluoro(6) quinolone. Antimicrob Agents Chemother 2006; 50:3908-13. [PMID: 17065629 PMCID: PMC1635190 DOI: 10.1128/aac.00639-06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of DX-619, a new des-F(6) quinolone, against anaerobic bacteria was evaluated. DX-619 showed potent activity against Bacteroides, Prevotella, Fusobacterium, Micromonas, Actinomyces, and Clostridium spp., with MIC(50)s/MIC(90)s of </=0.03 to 0.25/</=0.03 to 1 microg/ml, respectively. DX-619 was also active against imipenem-resistant Bacteroides spp., with MIC(50)s/MIC(90)s of 0.25/1 microg/ml, respectively.
Collapse
Affiliation(s)
- Kaori Tanaka
- Division of Anaerobe Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
18
|
Miragliotta G, Del Gaudio T, Tajani E, Mosca A. Bacteroides thetaiotaomicron in posthysterectomy infection. Anaerobe 2006; 12:276-8. [PMID: 16965924 DOI: 10.1016/j.anaerobe.2006.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/05/2006] [Accepted: 07/24/2006] [Indexed: 11/21/2022]
Abstract
We report a patient with clinically significant vaginal posthysterectomy infection due to Bacteroides thetaiotaomicron. The microorganism isolated from the vaginal cuff abscess was beta-lactamase producer and the antibiotic susceptibility pattern showed its resistance to piperacillin-tazobactam and cefoxitin, while the susceptibility to amoxicillin associated with clavulanic acid, metronidazole, and the newer fluoroquinolone moxifloxacin was confirmed.
Collapse
Affiliation(s)
- Giuseppe Miragliotta
- Section of Microbiology, Department MIDIM, University of Bari, Policlinico Piazza Giulio Cesare, 70124 Bari, Italy.
| | | | | | | |
Collapse
|
19
|
Stein GE, Goldstein EJC. Fluoroquinolones and Anaerobes. Clin Infect Dis 2006; 42:1598-607. [PMID: 16652318 DOI: 10.1086/503907] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 02/18/2006] [Indexed: 11/03/2022] Open
Abstract
The usefulness of fluoroquinolones for the treatment of mixed aerobic and anaerobic infections has been investigated since these agents started being used in clinical practice. Newer compounds have increased in vitro activity against anaerobes, but clinically relevant susceptibility breakpoints for these bacteria have not been established. Pharmacodynamic analyses and corroboration by new data from clinical trials have enhanced our knowledge concerning the use of fluoroquinolones to treat selective anaerobic pathogens. These studies suggest that newer agents could be useful in the treatment of several types of mixed aerobic and anaerobic infections, including skin and soft-tissue, intra-abdominal, and respiratory infections. The major concerns with expanding the use of fluoroquinolones to treat anaerobic infections have been reports of increasing resistance in Bacteroides group isolates and the impact of these antibiotics on the incidence of Clostridium difficile-associated disease.
Collapse
Affiliation(s)
- Gary E Stein
- Department of Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
20
|
Goldstein EJC, Citron DM, Warren YA, Tyrrell KL, Merriam CV, Fernandez H. In vitro activity of moxifloxacin against 923 anaerobes isolated from human intra-abdominal infections. Antimicrob Agents Chemother 2006; 50:148-55. [PMID: 16377680 PMCID: PMC1346786 DOI: 10.1128/aac.50.1.148-155.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of moxifloxacin against 923 recent anaerobic isolates obtained from pretreatment cultures in patients with complicated intra-abdominal infections was studied using the CLSI M11-A-6 agar dilution method. Moxifloxacin was active against 87% (96 of 110) Bacteroides fragilis strains at < or = 1 microg/ml and 87% (79 of 90) B. thetaiotaomicron strains at < or = 2 microg/ml. Species variation was seen, with B. uniformis, B. vulgatus, Clostridium clostridioforme, and C. symbiosum being least susceptible and accounting for most of the resistant isolates; excluding the aforementioned four resistant species, 86% (303 of 363) of Bacteroides species isolates and 94% (417 of 450) of all other genera and species were susceptible to < or = 2 microg/ml of moxifloxacin. Overall, moxifloxacin was active against 763 of 923 (83%) of strains at < or = 2 microg/ml, supporting its use as a monotherapy for some community-acquired intra-abdominal infections.
Collapse
Affiliation(s)
- Ellie J C Goldstein
- R. M. Alden Research Laboratory, 2021 Santa Monica Blvd., Suite #740 East, Santa Monica, California 90404, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Betriu C, Rodríguez-Avial I, Gómez M, Culebras E, Picazo JJ. Changing patterns of fluoroquinolone resistance among Bacteroides fragilis group organisms over a 6-year period (1997-2002). Diagn Microbiol Infect Dis 2005; 53:221-3. [PMID: 16243476 DOI: 10.1016/j.diagmicrobio.2005.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 06/17/2005] [Indexed: 11/23/2022]
Abstract
The evolution of susceptibility to the newer fluoroquinolones, moxifloxacin and trovafloxacin, of Bacteroides fragilis group organisms isolated in our hospital from 1997 to 2002 was studied. A total of 927 strains were included in the study. Trovafloxacin was more active than moxifloxacin against the various species of the group. During the study period, an increase in resistance to both quinolones was observed. Rates of resistance to moxifloxacin at a breakpoint of 8 microg/mL remained stable at around 6% during the period 1997-1998 and increased to 11.4% in 2000 and to 16.5% in 2001-2002 (P<0.005). Resistance to trovafloxacin rose significantly from 0.6% in 1998 to 6.8% in 1999 (P<0.05) and did not change appreciably over the last 3 years studied. This study confirms the increasing resistance of B. fragilis group organisms to trovafloxacin and moxifloxacin and emphasizes the need to perform periodic antimicrobial susceptibility tests to guide the selection of appropriate antimicrobial therapy.
Collapse
Affiliation(s)
- Carmen Betriu
- Department of Clinical Microbiology, Hospital Clínico San Carlos, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
22
|
Edmiston CE, Krepel CJ, Kehl KS, Seabrook GR, Somberg LB, Almassi GH, Smith TL, Loehrl TA, Brown KR, Lewis BD, Towne JB. Comparative in vitro antimicrobial activity of a novel quinolone, garenoxacin, against aerobic and anaerobic microbial isolates recovered from general, vascular, cardiothoracic and otolaryngologic surgical patients. J Antimicrob Chemother 2005; 56:872-8. [PMID: 16186167 DOI: 10.1093/jac/dki348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The aim of the study was to analyse the susceptibility of unique and non-duplicate aerobic and anaerobic isolates from surgical patients to a novel des-F(6)-quinolone (garenoxacin) and other selected antimicrobial agents. METHODS Eleven hundred and eighty-five aerobic and anaerobic isolates from general, vascular, cardiothoracic and otolaryngologic surgical patients were tested for susceptibility to garenoxacin and seven other antibiotics (ciprofloxacin, moxifloxacin, levofloxacin, piperacillin/tazobactam, imipenem, clindamycin and metronidazole) using the referenced microbroth and agar-dilution method. RESULTS Garenoxacin exhibited greater antimicrobial activity than comparator quinolones such as ciprofloxacin, levofloxacin and other antimicrobials when tested against selected gram-positive organisms. The in vitro aerobic and anaerobic activity of garenoxacin was similar to that of moxifloxacin. All fluoroquinolones tested were effective against most gram-negative facultative anaerobes including Escherichia coli. Garenoxacin and moxifloxacin demonstrated similar in vitro antimicrobial activity against selected anaerobic gram-positive and gram-negative anaerobic bacteria such as members of the Bacteroides fragilis group. Overall, the in vitro activity of the advanced spectrum quinolones against anaerobic surgical isolates compared favourably with selected comparator agents, metronidazole, imipenem and piperacillin/tazobactam. CONCLUSIONS These findings suggest that 82.4% of aerobic surgical isolates were susceptible to a concentration of garenoxacin < or = 1.0 mg/L, whereas 84.5% of the anaerobic isolates were susceptible to a garenoxacin concentration < or = 1.0 mg/L. Garenoxacin may be a valuable surgical anti-infective for treatment of serious head and neck, soft tissue, intra-abdominal and diabetic foot infections.
Collapse
Affiliation(s)
- Charles E Edmiston
- Division of Vascular Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schaumann R, Goldstein EJ, Forberg J, Rodloff AC. Activity of moxifloxacin against Bacteroides fragilis and Escherichia coli in an in vitro pharmacokinetic/pharmacodynamic model employing pure and mixed cultures. J Med Microbiol 2005; 54:749-753. [PMID: 16014428 DOI: 10.1099/jmm.0.45994-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to determine the pharmacodynamic (PD) activity of moxifloxacin against four selected Bacteroides fragilis strains (three strains with low MICs and one strain with a high MIC) and two Escherichia coli strains (one strain with a low MIC and one strain with a high MIC) in a pharmacokinetic (PK) in vitro model in pure cultures as well as in mixed cultures. PK/PD assays of moxifloxacin were carried out with an initial maximum concentration of 4.0 mg l-1 and a half-life of 13 h. The E. coli strain with the low MIC was rapidly killed in both pure and mixed cultures in the in vitro PK/PD model, while the E. coli strain with the high MIC was not killed. None of the B. fragilis strains were rapidly killed in pure or mixed cultures. The bacterial numbers of the B. fragilis strains with low MICs were reduced by about one to two logs after 12 h in pure cultures. The presence of an E. coli strain with a low or a high MIC in the mixed culture reduced this effect even further.
Collapse
Affiliation(s)
- Reiner Schaumann
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany 2R. M. Alden Research Laboratories, Santa Monica, CA 90404, USA 3Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Ellie Jc Goldstein
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany 2R. M. Alden Research Laboratories, Santa Monica, CA 90404, USA 3Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Jochen Forberg
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany 2R. M. Alden Research Laboratories, Santa Monica, CA 90404, USA 3Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Arne C Rodloff
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany 2R. M. Alden Research Laboratories, Santa Monica, CA 90404, USA 3Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Snydman DR, Jacobus NV, McDermott LA. Evaluation of the in vitro activity of NVP-LMB415 against clinical anaerobic isolates with emphasis on the Bacteroides fragilis group. J Antimicrob Chemother 2005; 55:1024-8. [PMID: 15824092 DOI: 10.1093/jac/dki107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To compare the in vitro activity of NVP-LMB415 (formerly referred to as NVP-PDF 713) with that of other agents with anti-anaerobe activity against clinical anaerobic isolates, with emphasis on the Bacteroides fragilis group. METHODS The MICs for 405 B. fragilis group and 102 Gram-positive anaerobic isolates were determined using NCCLS-recommended procedures. The activity of NVP-LMB415 was compared with that of cefoxitin, clindamycin, imipenem, garenoxacin, linezolid, moxifloxacin and tigecycline. Vancomycin was included in the evaluation of the Gram-positive organisms. RESULTS NVP-LMB415 showed excellent in vitro activity against all the species of the B. fragilis group isolates (MIC range < or = 0.03-0.5 mg/L and MIC(90) 0.5 mg/L). NVP-LMB415 was active against B. fragilis group strains resistant to beta-lactams, quinolones or clindamycin, and the MICs were much lower than those of newer agents such as linezolid, tigecycline and garenoxacin. The MICs of NVP-LMB415 ( > or = 4 mg/L) for Clostridium species were higher than the MICs for other anaerobes. CONCLUSIONS Given the frequency of isolation of anaerobic bacteria and their increasing resistance to all classes of antibiotics, NVP-LMB415 is an ideal agent for potential use against mixed infections caused by resistant anaerobic pathogens such as of B. fragilis and Gram-positive aerobic strains such as methicillin-resistant staphylococci, streptococci and enterococci.
Collapse
|
25
|
Hermsen ED, Hovde LB, Sprandel KA, Rodvold KA, Rotschafer JC. Levofloxacin plus metronidazole administered once daily versus moxifloxacin monotherapy against a mixed infection of Escherichia coli and Bacteroides fragilis in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2005; 49:685-9. [PMID: 15673752 PMCID: PMC547281 DOI: 10.1128/aac.49.2.685-689.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moxifloxacin has been suggested as an option for monotherapy of intra-abdominal infections. Recent data support the use of a once-daily metronidazole regimen. The purpose of this study was to investigate the activity of levofloxacin (750 mg every 24 h [q24h]) plus metronidazole (1,500 mg q24h) compared with that of moxifloxacin (400 mg q24h) monotherapy in a mixed-infection model. By using an in vitro pharmacodynamic model in duplicate, Escherichia coli and Bacteroides fragilis were exposed to peak concentrations of 8.5 mg of levofloxacin/liter q24h, 32 mg of metronidazole/liter q24h, and 2 mg for moxifloxacin/liter q24h for 24 h. The activities of levofloxacin, metronidazole, moxifloxacin, and levofloxacin plus metronidazole were evaluated against E. coli, B. fragilis, and E. coli plus B. fragilis. The targeted half-lives of levofloxacin, metronidazole, and moxifloxacin were 8, 8, and 12 h, respectively. Time-kill curves were analyzed for time to 3-log killing, slope, and regrowth. Pre- and postexposure MICs were determined. The preexposure levofloxacin, metronidazole, and moxifloxacin MICs for E. coli and B. fragilis were 0.5 and 1, >64 and 0.5, and 1 and 0.25 mg/liter, respectively. Levofloxacin and moxifloxacin achieved a 3-log killing against E. coli and B. fragilis in all experiments, as did metronidazole against B. fragilis. Metronidazole did not decrease the starting inoculum of E. coli. The area under the concentration-time curve/MIC ratios for E. coli and B. fragilis were 171.7 and 85.9, respectively, for levofloxacin and 26 and 103.9, respectively, for moxifloxacin. Levofloxacin plus metronidazole exhibited the fastest rates of killing. The levofloxacin and moxifloxacin MICs for B. fragilis increased 8- to 16-fold after the organism was exposed to moxifloxacin. No other changes in the postexposure MICs were found. Levofloxacin plus metronidazole administered once daily exhibited activity similar to that of moxifloxacin against the mixed E. coli and B. fragilis infection. A once-daily regimen of levofloxacin plus metronidazole looks promising for the treatment of intra-abdominal infections.
Collapse
Affiliation(s)
- Elizabeth D Hermsen
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, 9-157 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Newer fluoroquinolones such as levofloxacin, moxifloxacin, gatifloxacin and gemifloxacin have several attributes that make them excellent choices for the therapy of lower respiratory tract infections. In particular, they have excellent intrinsic activity against Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and the atypical respiratory pathogens. Fluoroquinolones may be used as monotherapy to treat high-risk patients with acute exacerbation of chronic bronchitis, and for patients with community-acquired pneumonia requiring hospitalisation, but not admission to intensive care. Overall, the newer fluoroquinolones often achieve clinical cure rates in > or =90% of these patients. However, rates may be lower in hospital-acquired pneumonia, and this infection should be treated on the basis of anticipated organisms and evaluation of risk factors for specific pathogens such as Pseudomonas aeruginosa. In this setting, an antipseudomonal fluoroquinolone may be used in combination with an antipseudomonalbeta-lactam. Concerns are now being raised about the widespread use, and possibly misuse, of fluoroquinolones and the emergence of resistance among S. pneumoniae, Enterobacteriaceae and P. aeruginosa. A number of pharmacokinetic parameters such as the peak concentration of the antibacterial after a dose (C(max)), and the 24-hour area under the concentration-time curve (AUC24) and their relationship to pharmacodynamic parameters such as the minimum inhibitory and the mutant prevention concentrations (MIC and MPC, respectively) have been proposed to predict the effect of fluoroquinolones on bacterial killing and the emergence of resistance. Higher C(max)/MIC or AUC24/MIC and C(max)/MPC or AUC24/MPC ratios, either as a result of dose administration or the susceptibility of the organism, may lead to a better clinical outcome and decrease the emergence of resistance, respectively. Pharmacokinetic profiles that are optimised to target low-level resistant minor subpopulations of bacteria that often exist in infections may help preserve fluoroquinolones as a class. To this end, optimising the AUC24/MPC or C(max)/MPC ratios is important, particularly against S. pneumoniae, in the setting of lower respiratory tract infections. Agents such as moxifloxacin and gemifloxacin with high ratios against this organism are preferred, and agents such as ciprofloxacin with low ratios should be avoided. For agents such as levofloxacin and gatifloxacin, with intermediate ratios against S. pneumoniae, it may be worthwhile considering alternative dose administration strategies, such as using higher dosages, to eradicate low-level resistant variants. This must, of course, be balanced against the potential of toxicity. Innovative approaches to the use of fluoroquinolones are worth testing in further in vitro experiments as well as in clinical trials.
Collapse
Affiliation(s)
- Wael E. Shams
- Division of Infectious Diseases, Department of Internal Medicine, University of Kentucky School of Medicine, Room MN 672, 800 Rose Street, Lexington, Kentucky 40536 USA
- Department of Internal Medicine, University of Alexandria Faculty of Medicine, Alexandria, Egypt
- Division of Infectious Diseases, Department of Internal Medicine, East Tennessee State University, Johnson City, Tennessee USA
| | - Martin E. Evans
- Division of Infectious Diseases, Department of Internal Medicine, University of Kentucky School of Medicine, Room MN 672, 800 Rose Street, Lexington, Kentucky 40536 USA
| |
Collapse
|
27
|
Edmiston CE, Krepel CJ, Seabrook GR, Somberg LR, Nakeeb A, Cambria RA, Towne JB. In vitro activities of moxifloxacin against 900 aerobic and anaerobic surgical isolates from patients with intra-abdominal and diabetic foot infections. Antimicrob Agents Chemother 2004; 48:1012-6. [PMID: 14982797 PMCID: PMC353113 DOI: 10.1128/aac.48.3.1012-1016.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro activities of moxifloxacin, ciprofloxacin, levofloxacin, gatifloxacin, imipenem, piperacillin-tazobactam, clindamycin, and metronidazole against 900 surgical isolates were determined using NCCLS testing methods. Moxifloxacin exhibited good to excellent antimicrobial activity against most aerobic (90.8%) and anaerobic (97.1%) microorganisms, suggesting that it may be effective for the treatment of polymicrobial surgical infections.
Collapse
Affiliation(s)
- Charles E Edmiston
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Jacobus NV, McDermott LA, Ruthazer R, Snydman DR. In vitro activities of tigecycline against the Bacteroides fragilis group. Antimicrob Agents Chemother 2004; 48:1034-6. [PMID: 14982803 PMCID: PMC353084 DOI: 10.1128/aac.48.3.1034-1036.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro activities of tigecycline were tested against 831 isolates of the Bacteroides fragilis group representing all of the species within the group. On a weight-to-weight basis (8 microg/ml), tigecycline was more active than clindamycin, minocycline, trovafloxacin, and cefoxitin and less active than imipenem or piperacillin-tazobactam against all isolates of the B. fragilis group. Tigecycline geometric mean MICs were statistically higher against B. distasonis than other Bacteroides species (P value of 0.0001).
Collapse
Affiliation(s)
- N V Jacobus
- Department of Medicine, Tufts-New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Hundreds of bacterial species make up human gut flora. Of these, 99% are anaerobic bacteria. Although anaerobes are part of the normal commensal flora, they can become opportunistic pathogens, causing serious, sometimes fatal infections if they escape from the colonic milieu. Most often, this escape occurs as a result of perforation, surgery, diverticulitis or cancer. Infections involving anaerobic bacteria are often difficult to treat because antibiotic resistance is increasing among the genera, mediated primarily through horizontal transfer of a plethora of mobile DNA transfer factors. Some of these transfer factors can also be transmitted to aerobic bacteria. It is becoming increasingly clear that antibiotic resistance trends have to be carefully monitored, and the transfer factors and mechanisms of transfer understood at a molecular level to avoid negative clinical outcomes when infections involve anaerobic bacteria.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | |
Collapse
|
30
|
Abstract
Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.
Collapse
Affiliation(s)
- H Oh
- Department of Laboratory Medicine, Division of Clinical Bacteriology, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | |
Collapse
|
31
|
|