1
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
2
|
Palaniveloo K, Ong KH, Satriawan H, Abdul Razak S, Suciati S, Hung HY, Hirayama S, Rizman-Idid M, Tan JK, Yong YS, Phang SM. In vitro and in silico cholinesterase inhibitory potential of metabolites from Laurencia snackeyi (Weber-van Bosse) M. Masuda. 3 Biotech 2023; 13:337. [PMID: 37701628 PMCID: PMC10493208 DOI: 10.1007/s13205-023-03725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/14/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes deterioration in intelligence and psychological activities. Yet, till today, no cure is available for AD. The marine environment is an important sink of bioactive compounds with neuroprotective potential with reduced adverse effects. Recently, we collected the red algae Laurencia snackeyi from Terumbu Island, Malaysia which is known to be rich in halogenated metabolites making it the most sought-after red algae for pharmaceutical studies. The red alga was identified based on basic morphological characteristics, microscopic observation and chemical data from literature. The purplish-brown algae was confirmed a new record. In Malaysia, this species is poorly documented in Peninsular Malaysia as compared to its eastern continent Borneo. Thus, this study intended to investigate the diversity of secondary metabolites present in the alga and its cholinesterase inhibiting potential for AD. The extract inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 14.45 ± 0.34 μ g mL-1 and 39.59 ± 0.24 μ g mL-1, respectively. Subsequently, we isolated the synderanes, palisadin A (1), aplysistatin (2) and 5-acetoxypalisadin B (3) that was not exhibit potential. Mass spectrometry analysis detected at total of 33 additional metabolites. The computational aided molecular docking using the AChE and BChE receptors on all metabolites shortlisted 5,8,11,14-eicosatetraynoic acid (31) and 15-hydroxy-1-[2-(hydroxymethyl)-1-piperidinyl]prost-13-ene-1,9-dione (42) with best inhibitory properties, respectively with the lowest optimal combination of S-score and RMSD values. This study shows the unexplored potential of marine natural resources, however, obtaining sufficient biomass for detailed investigation is an uphill task. Regardless, there is a lot of potential for future prospects with a wide range of marine natural resources to study and the incorporation of synthetic chemistry, in vivo studies in experimental design. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03725-6.
Collapse
Affiliation(s)
- Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kuan Hung Ong
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Herland Satriawan
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shariza Abdul Razak
- School of Health Sciences, Nutrition and Dietetics Program, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Suciati Suciati
- Department of Pharmaceutical Sciences, Campus C-UNAIR, Faculty of Pharmacy, Universitas Airlangga, East Java, Surabaya, 60115 Indonesia
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Shin Hirayama
- Regional Innovation Center, Saga University, 1, Honjo, Saga, 840-8502 Japan
| | - Mohammed Rizman-Idid
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Yoong Soon Yong
- Faculty of Applied Sciences, UCSI University, 56000 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
- Faculty of Applied Sciences, UCSI University, 56000 Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Pal R, Teli G, Akhtar MJ, Matada GSP. The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis. Eur J Med Chem 2023; 258:115609. [PMID: 37421889 DOI: 10.1016/j.ejmech.2023.115609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Leishmaniasis is a parasitic disease and categorised as a neglected tropical disease (NTD). Each year, between 70,0000 and 1 million new cases are believed to occur. There are approximately 90 sandfly species which can spread the Leishmania parasites (over 20 species) causing 20,000 to 30,000 death per year. Currently, leishmaniasis has no specific therapeutic treatment available. The prescribed drugs with several drawbacks including high cost, challenging administration, toxicity, and drug resistance led to search for the alternative treatment with less toxicity and selectivity. Introducing the molecular features like that of phytoconstituents for the search of compounds with less toxicity is another promising approach. The current review classifies the synthetic compounds according to the core rings present in the natural phytochemicals for the development of antileishmanial agents (2020-2022). Considering the toxicity and limitations of synthetic analogues, natural compounds are at the higher notch in terms of effectiveness and safety. Synthesized compounds of chalcones (Compound 8; IC50: 0.03 μM, 4.7 folds more potent than Amphotericin B; IC50: 0.14 μM), pyrimidine (compound 56; against L. tropica; 0.04 μM and L. infantum; 0.042 μM as compared to glucantime: L. tropica; 8.17 μM and L. infantum; 8.42 μM), quinazoline and (compound 72; 0.021 μM, 150 times more potent than miltefosine). The targeted delivery against DHFR have been demonstrated by one of the pyrimidine compounds 62 with an IC50 value of 0.10 μM against L. major as compared to the standard trimethoprim (IC50: 20 μM). The review covers the medicinal importance of antileishmanial agents from synthetic and natural sources such as chalcone, pyrazole, coumarins, steroids, and alkaloidal-containing drugs (indole, quinolines, pyridine, pyrimidine, carbolines, pyrrole, aurones, and quinazolines). The efforts of introducing the core rings present in the natural phytoconstituents as antileishmanial in the synthetic compounds are discussed with their structural activity relationship. The perspective will support the medicinal chemists in refining and directing the development of novel molecules phytochemicals-based antileishmanial agents.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba Bousher, Muscat, Sultanate of Oman
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| |
Collapse
|
4
|
Imran M, Khan SA, Abida, Alshrari AS, Eltahir Mudawi MM, Alshammari MK, Harshan AA, Alshammari NA. Small molecules as kinetoplastid specific proteasome inhibitors for Leishmaniasis: a patent review from 1998 to 2021. Expert Opin Ther Pat 2022; 32:591-604. [PMID: 35220857 DOI: 10.1080/13543776.2022.2045948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION : Leishmaniasis is a neglected tropical infectious disease. The available limited therapeutic options for leishmaniasis are inadequate due to their poor pharmacokinetic profile, resistance, toxicity, high cost, and compliance problems. This warrants identification of new targets for the development of safer and effective anti-Leishmania therapy. The kinetoplastid specific proteasome (KSP) is a novel validated target to develop drugs against leishmaniasis. AREA COVERED : This review focuses on all the published patent applications and granted patents related to the studied small molecules as KSP inhibitors (KSPIs) against Leishmania from 1998 to December 31, 2021. EXPERT OPINION : A little amount of work has been done on KSPIs, but the study results are quite encouraging. LXE408 and GSK3494245 are two KSPIs in different phases of clinical trials. Some other small molecules have also shown KSP inhibitory potential, but they are not in clinical trials. The KSPIs are promising next-generation orally active patient compliant drugs against kinetoplastid diseases, including leishmaniasis. However, the main challenge to discover the KSPIs will be the resistance development and their selectivity against the proteasome of eukaryotic cells.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat 130, Oman
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Subeh Alshrari
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Mohammed Kanan Alshammari
- Department of Pharmaceutical Care, Rafha Central Hospital, North Zone, Rafha 91911, Kingdom of Saudi Arabia
| | - Aishah Ali Harshan
- Department of Pharmaceutical Care, Northern Area Armed Forces Hospital, King Khalid Military City Hospital, Hafr Al-Batin, Kingdom of Saudi Arabia
| | - Noufah Aqeel Alshammari
- Department of Pharmaceutical Care, Security Forces Hospital, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Pazos M, Dibello E, Mesa JM, Sames D, Comini MA, Seoane G, Carrera I. Iboga Inspired N-Indolylethyl-Substituted Isoquinuclidines as a Bioactive Scaffold: Chemoenzymatic Synthesis and Characterization as GDNF Releasers and Antitrypanosoma Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030829. [PMID: 35164094 PMCID: PMC8839081 DOI: 10.3390/molecules27030829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels-Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1-8 μM) and two of them (compounds 6 and 14) showed a good selectivity index.
Collapse
Affiliation(s)
- Mariana Pazos
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Estefania Dibello
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Juan Manuel Mesa
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA;
| | - Marcelo Alberto Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
- Correspondence: ; Tel.: +598-2-9247-881
| |
Collapse
|
6
|
Brígido HPC, Correa-Barbosa J, da Silva-Silva JV, Costa EVS, Percário S, Dolabela MF. Antileishmanial activity of Annona species (Annonaceae). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Lavaud C, Massiot G. The Iboga Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 105:89-136. [PMID: 28194562 DOI: 10.1007/978-3-319-49712-9_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Iboga alkaloids are a particular class of indolomonoterpenes most often characterized by an isoquinuclidine nucleus. Their first occurrence was detected in the roots of Tabernanthe iboga, a sacred plant to the people of Gabon, which made it cult object. Ibogaine is the main representative of this class of alkaloids and its psychoactive properties are well documented. It has been proposed as a drug cessation treatment and has a wide range of activities in targeting opioids, cocaine, and alcohol. The purpose of this chapter is to provide a background on this molecule and related compounds and to update knowledge on the most recent advances made. Difficulties linked to the status of ibogaine as a drug in several countries have hampered its development, but 18-methoxycoronaridine is currently under evaluation for the same purposes and for the treatment of leishmaniasis. The chapter is divided into six parts: an introduction aiming at defining what is called an iboga alkaloid, and this is followed by current knowledge on their biosynthesis, which unfortunately remains a "black box" as far as the key construction step is concerned. Many of these alkaloids are still being discovered and the third and fourth parts of the chapter discuss the analytical tools in use for this purpose and give lists of new monomeric and dimeric alkaloids belonging to this class. When necessary, the structures are discussed especially with regard to absolute configuration determinations, which remain a point of weakness in their assignments. Part V gives an account of progress made in the synthesis, partial and total, which the authors believe is key to providing solid solutions to the industrial development of the most promising molecules. The last part of the chapter is devoted to the biological properties of iboga alkaloids, with particular emphasis on ibogaine and 18-methoxycoronaridine.
Collapse
Affiliation(s)
- Catherine Lavaud
- Faculty of Pharmacy, Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Case postale 44, UFR des Sciences Exactes et Naturelles, BP 1039, 51687, Reims, Cedex 2, France.
| | - Georges Massiot
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Case postale 44, UFR des Sciences Exactes et Naturelles, BP 1039, 51687, Reims, Cedex 2, France
| |
Collapse
|
8
|
Silveira D, de Melo AF, Magalhães P, Fonseca-Bazzo Y. Tabernaemontana Species: Promising Sources of New Useful Drugs. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00007-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Passos CLA, Ferreira C, Soares DC, Saraiva EM. Leishmanicidal Effect of Synthetic trans-Resveratrol Analogs. PLoS One 2015; 10:e0141778. [PMID: 26517558 PMCID: PMC4627731 DOI: 10.1371/journal.pone.0141778] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/13/2015] [Indexed: 01/09/2023] Open
Abstract
Background Stilbene-based compounds show antitumoral, antioxidant, antihistaminic, anti-inflammatory and antimicrobial activities. Here, we evaluated the effect of the trans-resveratrol analogs, pterostilbene, piceatannol, polydatin and oxyresveratrol, against Leishmania amazonensis. Methodology/Principal Findings Our results demonstrated a low murine macrophage cytotoxicity of all four analogs. Moreover, pterostilbene, piceatannol, polydatin and oxyresveratrol showed an anti-L. amazonensis activity with IC50 values of 18 μM, 65 μM, 95 μM and 65 μM for promastigotes, respectively. For intracellular amastigotes, the IC50 values of the analogs were 33.2 μM, 45 μM, 29 μM and 30.5 μM, respectively. Among the analogs assayed only piceatannol altered the cell cycle of the parasite, increasing 5-fold the cells in the Sub-G0 phase and decreasing 1.7-fold the cells in the G0-G1 phase. Piceatannol also changed the parasite mitochondrial membrane potential (ΔΨm) and increased the number of annexin-V positive promastigotes, which suggests incidental death. Conclusion/Significance Among the analogs tested, piceatannol, which is a metabolite of resveratrol, was the more promising candidate for future studies regarding treatment of leishmaniasis.
Collapse
Affiliation(s)
- Carlos Luan Alves Passos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christian Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elvira Maria Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
10
|
Nikmehr B, Ghaznavi H, Rahbar A, Sadr S, Mehrzadi S. In vitro anti-leishmanial activity of methanolic extracts of Calendula officinalis flowers, Datura stramonium seeds, and Salvia officinalis leaves. Chin J Nat Med 2015; 12:423-7. [PMID: 24969522 DOI: 10.1016/s1875-5364(14)60066-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 10/25/2022]
Abstract
AIM The anti-leishmanial activity of methanolic extracts of Calendula officinalis flowers, Datura stramonium seeds, and Salvia officinalis leaves against extracellular (promastigote) and intracellular (amastigote) forms of Leishmania major were evaluated in this study. METHOD In the first stage, promastigote forms of L. major, were treated with different doses of the plant extracts in a 96-well tissue-culture microplate and IC50 values for each extract were measured with colorimetric MTT assay. In the second stage, macrophage cells were infected with L. major promastigotes. Infected macrophages were treated with plant extracts. Then the macrophages were stained with Gimsa and the number of infected macrophages and amastigotes were counted with a light microscope. RESULTS The results indicated that the plant extracts inhibited the growth of promastigotes and amastigotes of L. major. Inhibitory concentrations (IC50) for promastigote assay were 108.19, 155.15, and 184.32 μgmL(-1) for C. officinalis flowers, D. stramonium seeds and S. officinalis, respectively. The extracts also reduced the number of amastigotes in macrophage cells from 264 for control group to 88, 97, and 102 for test groups. Although the anti-leishmanial activity of the extracts were not comparable with the standard drug, miltefosine; but they showed significant efficiency in reducing the number of amastigotes in macrophages, in comparison with the control group (P < 0.001). These plant extracts had lower toxicity compared with miltefosine. CONCLUSION This study demonstrates the potential efficacy of the methanolic extracts of C. officinalis flowers, D. stramonium seeds, and S. officinalis leaves to control of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Banafsheh Nikmehr
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Rahbar
- Department of Pathobiology, Veterinary Faculty, Shahid Chamran University, Ahwaz, Iran
| | - Samira Sadr
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Core Facilities, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Herraiz-Cobo J, Albericio F, Álvarez M. The Larock Reaction in the Synthesis of Heterocyclic Compounds. ADVANCES IN HETEROCYCLIC CHEMISTRY 2015. [DOI: 10.1016/bs.aihch.2015.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Resveratrol is active against Leishmania amazonensis: in vitro effect of its association with Amphotericin B. Antimicrob Agents Chemother 2014; 58:6197-208. [PMID: 25114129 DOI: 10.1128/aac.00093-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resveratrol is a polyphenol found in black grapes and red wine and has many biological activities. In this study, we evaluated the effect of resveratrol alone and in association with amphotericin B (AMB) against Leishmania amazonensis. Our results demonstrate that resveratrol possesses both antipromastigote and antiamastigote effects, with 50% inhibitory concentrations (IC50s) of 27 and 42 μM, respectively. The association of resveratrol with AMB showed synergy for L. amazonensis amastigotes, as demonstrated by the mean sums of fractional inhibitory index concentration (mean ΣFIC) of 0.483, although for promastigotes, this association was indifferent. Treatment with resveratrol increased the percentage of promastigotes in the sub-G0/G1 phase of the cell cycle, reduced the mitochondrial potential, and showed an elevated choline peak and CH2-to-CH3 ratio in the nuclear magnetic resonance (NMR) spectroscopy analysis; all these features indicate parasite death. Resveratrol also decreased the activity of the enzyme arginase in uninfected and infected macrophages with and without stimulation with interleukin-4 (IL-4), also implicating arginase inhibition in parasite death. The anti-Leishmania effect of resveratrol and its potential synergistic association with AMB indicate that these compounds should be subjected to further studies of drug association therapy in vivo.
Collapse
|
13
|
Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK. Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 2013; 22:18-45. [PMID: 24355247 DOI: 10.1016/j.bmc.2013.11.048] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 11/16/2022]
Abstract
The growing incidence of parasitic resistance against generic pentavalent antimonials, specifically for visceral disease in Indian subcontinent, is a serious issue in Leishmania control. Notwithstanding the two treatment alternatives, that is amphotericin B and miltefosine are being effectively used but their high cost and therapeutic complications limit their use in endemic areas. In the absence of a vaccine candidate, identification, and characterization of novel drugs and targets is a major requirement of leishmanial research. This review describes current drug regimens, putative drug targets, numerous natural products that have shown promising antileishmanial activity alongwith some key issues and strategies for future research to control leishmaniasis worldwide.
Collapse
Affiliation(s)
- Nisha Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surabhi Bajpai
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh K Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Vinod K Tiwari
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Bharate SB, Yadav RR, Khan SI, Tekwani BL, Jacob MR, Khan IA, Vishwakarma RA. Meridianin G and its analogs as antimalarial agents. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00097d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
|
16
|
Jana GK, Sinha S. Reductive Heck coupling: an efficient approach toward the iboga alkaloids. Synthesis of ibogamine, epiibogamine and iboga analogs. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.01.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Ferreira C, Soares DC, Barreto-Junior CB, Nascimento MT, Freire-de-Lima L, Delorenzi JC, Lima MEF, Atella GC, Folly E, Carvalho TMU, Saraiva EM, Pinto-da-Silva LH. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. PHYTOCHEMISTRY 2011; 72:2155-2164. [PMID: 21885074 DOI: 10.1016/j.phytochem.2011.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/22/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Leishmaniasis is a tropical disease caused by protozoan parasites of the genus Leishmania which affects 12 million people worldwide. The discovery of drugs for the treatment of leishmaniasis is a pressing concern in global health programs. The aim of this study aim was to evaluate the leishmanicidal effect of piperine and its derivatives/analogues on Leishmania amazonensis. Our results showed that piperine and phenylamide are active against promastigotes and amastigotes in infected macrophages. Both drugs induced mitochondrial swelling, loose kinetoplast DNA, and led to loss of mitochondrial membrane potential. The promastigote cell cycle was also affected with an increase in the G1 phase cells and a decrease in the S-phase cells, respectively, after piperine and phenylamide treatment. Lipid analysis of promastigotes showed that piperine reduced triglyceride, diacylglycerol, and monoacylglycerol contents, whereas phenylamide only reduced diacylglycerol levels. Both drugs were deemed non toxic to macrophages at 50 μM as assessed by XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt), Trypan blue exclusion, and phagocytosis assays, whereas low toxicity was noted at concentrations higher than 150 μM. None of the drugs induced nitric oxide (NO) production. By contrast, piperine reduced NO production in activated macrophages. The isobologram analysis showed that piperine and phenylamide acted synergistically on the parasites suggesting that they affect different target mechanisms. These results indicate that piperine and its phenylamide analogue are candidates for development of drugs for cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- C Ferreira
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jana GK, Paul S, Sinha S. Progress in the Synthesis of Iboga-alkaloids and their Congeners. ORG PREP PROCED INT 2011. [DOI: 10.1080/00304948.2011.629563] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Soares DC, Andrade AL, Delorenzi JC, Silva JR, Freire-de-Lima L, Falcão CA, Pinto AC, Rossi-Bergmann B, Saraiva EM. Leishmanicidal activity of Himatanthus sucuuba latex against Leishmania amazonensis. Parasitol Int 2010; 59:173-7. [DOI: 10.1016/j.parint.2010.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/23/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
20
|
Jana GK, Sinha S. A concise route to iboga-analogues via the formation of suitably substituted-2-indoles. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Jana GK, Sinha S. Synthesis of iboga alkaloids by Pd-catalyzed heteroannulation of 2-iodoaniline with an internal alkyne as the key step. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Danelli MGM, Soares DC, Abreu HS, Peçanha LMT, Saraiva EM. Leishmanicidal effect of LLD-3 (1), a nor-triterpene isolated from Lophanthera lactescens. PHYTOCHEMISTRY 2009; 70:608-614. [PMID: 19359020 DOI: 10.1016/j.phytochem.2009.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/23/2009] [Accepted: 03/09/2009] [Indexed: 05/27/2023]
Abstract
Leishmanicidal activity of 6alpha, 7alpha, 15beta, 16beta, 24-pentacetoxy-22alpha-carbometoxy-21beta,22beta-epoxy-18beta-hydroxy-27,30-bisnor-3,4-secofriedela-1,20 (29)-dien-3,4 R-olide (LLD-3 (1)) isolated from Lophanthera lactescens Ducke, a member of the Malpighiaceae, was demonstrated against intramacrophage amastigote forms (IC(50) of 0.41mug/mL). The in vitro leishmanicidal effect of Glucantime, the first choice drug for leishmaniasis treatment, was increased by LLD-3 (1) association. The leishmanicidal effect of LLD-3 (1) was not due to stimulation of nitric oxide production by macrophages. LLD-3 (1) was also not cytotoxic for mouse peritoneal macrophages or B cells as assessed by the XTT and Trypan blue exclusion assays. LLD-3 (1) was unable to affect proliferation of naïve or activated B and T cells, as well as the B cells immunoglobulin synthesis. Cellularity of different tissues, liver and kidney functions were not altered in mice treated with LLD-3 (1), as well as the histology pattern of different organs. Our results add LLD-3 (1) as a potential drug candidate for treatment of leishmaniasis.
Collapse
Affiliation(s)
- M G M Danelli
- Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, RJ 23890-000, Brazil
| | | | | | | | | |
Collapse
|
23
|
Alper KR, Lotsof HS, Kaplan CD. The ibogaine medical subculture. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:9-24. [PMID: 18029124 DOI: 10.1016/j.jep.2007.08.034] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 05/25/2023]
Abstract
AIM OF THE STUDY Ibogaine is a naturally occurring psychoactive indole alkaloid that is used to treat substance-related disorders in a global medical subculture, and is of interest as an ethnopharmacological prototype for experimental investigation and possible rational pharmaceutical development. The subculture is also significant for risks due to the lack of clinical and pharmaceutical standards. This study describes the ibogaine medical subculture and presents quantitative data regarding treatment and the purpose for which individuals have taken ibogaine. MATERIALS AND METHODS All identified ibogaine "scenes" (defined as a provider in an associated setting) apart from the Bwiti religion in Africa were studied with intensive interviewing, review of the grey literature including the Internet, and the systematic collection of quantitative data. RESULTS Analysis of ethnographic data yielded a typology of ibogaine scenes, "medical model", "lay provider/treatment guide", "activist/self-help", and "religious/spiritual". An estimated 3414 individuals had taken ibogaine as of February 2006, a fourfold increase relative to 5 years earlier, with 68% of the total having taken it for the treatment of a substance-related disorder, and 53% specifically for opioid withdrawal. CONCLUSIONS Opioid withdrawal is the most common reason for which individuals took ibogaine. The focus on opioid withdrawal in the ibogaine subculture distinguishes ibogaine from other agents commonly termed "psychedelics", and is consistent with experimental research and case series evidence indicating a significant pharmacologically mediated effect of ibogaine in opioid withdrawal.
Collapse
Affiliation(s)
- Kenneth R Alper
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
24
|
Osorio EJ, Robledo SM, Bastida J. Alkaloids with antiprotozoal activity. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2008; 66:113-90. [PMID: 19025098 DOI: 10.1016/s1099-4831(08)00202-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Edison J Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Química-Farmacéutica, Universidad de Antioquia, A. A. 1226, Medellín, Colombia.
| | | | | |
Collapse
|
25
|
Soares DC, Pereira CG, Meireles MAA, Saraiva EM. Leishmanicidal activity of a supercritical fluid fraction obtained from Tabernaemontana catharinensis. Parasitol Int 2007; 56:135-9. [PMID: 17306614 DOI: 10.1016/j.parint.2007.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 01/11/2007] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
The branches and leaves of Tabernaemontana catharinensis were extracted with supercritical fluid using a mixture of CO(2) plus ethanol (SFE), and the indole alkaloid enriched fraction (AF3) was selected for anti-Leishmania activity studies. We found that AF3 exhibits a potent effect against intracellular amastigotes of Leishmania amazonensis, a causative agent of New World cutaneous leishmaniasis. AF3 inhibits Leishmania survival in a dose-dependent manner, and reached 88% inhibition of amastigote growth at 100 microg/mL. The anti-parasite effect was independent of nitric oxide (NO), since AF3 was able to inhibit NO production induced by IFN-gamma plus LPS. In addition, AF3 inhibited TGF-beta production, which could have facilitated AF3-mediated parasite killing. The AF3 fraction obtained from SFE was nontoxic for host macrophages, as assessed by plasma membrane integrity and mitochondrial activity. We conclude that SFE is an efficient method for obtaining bioactive indole alkaloids from plant extracts. Importantly, this method preserved the alkaloid properties associated with inhibition of Leishmania growth in macrophages without toxicity to host cells.
Collapse
Affiliation(s)
- Deivid Costa Soares
- Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | | | | | | |
Collapse
|
26
|
Brand GD, Leite JRSA, de Sá Mandel SM, Mesquita DA, Silva LP, Prates MV, Barbosa EA, Vinecky F, Martins GR, Galasso JH, Kuckelhaus SAS, Sampaio RNR, Furtado JR, Andrade AC, Bloch C. Novel dermaseptins from Phyllomedusa hypochondrialis (Amphibia). Biochem Biophys Res Commun 2006; 347:739-46. [PMID: 16844081 DOI: 10.1016/j.bbrc.2006.06.168] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 06/27/2006] [Indexed: 11/22/2022]
Abstract
Six new antimicrobial peptides structurally related to the dermaseptin family have been isolated from the skin secretion of the amphibian Phyllomedusa hypochondrialis. The primary structures of these molecules named as DShypo 01, 02, 03, 04, 06, and 07 were determined by de novo MS/MS experiments, Edman degradation, and cDNA sequencing. The fifth peptide was found to be precisely the same DS 01 from Phyllomedusa oreades previously described by our group. The majority of the peptides purified from the crude skin secretion could be directly localized and mapped onto a freshly dissected dorsal skin fragment using mass spectrometry-imaging techniques. Comparisons between peptides and commercial drugs on their antibacterial and anti-Leishmania amazonensis efficiencies, associated with peptide lytic effects on mammalian blood cells and surface plasmon resonance interaction studies on immobilized DMPC vesicles, were also performed.
Collapse
Affiliation(s)
- Guilherme D Brand
- Laboratório de Espectrometria de Massa, EMBRAPA-Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ribeiro TS, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Heise N, de Lima MEF. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorg Med Chem Lett 2005; 14:3555-8. [PMID: 15177472 DOI: 10.1016/j.bmcl.2004.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/07/2004] [Accepted: 04/10/2004] [Indexed: 11/20/2022]
Abstract
We describe herein an evaluation of trypanocidal effects of the natural alkaloid piperine and twelve synthetic derivatives against epimastigote and amastigote forms of the protozoan parasite Trypanosoma cruzi, the causative agent of the incurable human disease, Chagas' disease. The results obtained point to piperine as a suitable template for the development of new drugs with trypanocidal activity.
Collapse
Affiliation(s)
- Tatiana Santana Ribeiro
- Universidade Federal Rural do Rio de Janeiro, Instituto de Ciências Exatas, Departamento de Química, Km 7, BR 465 CEP: 23.890-000, Seropédica, RJ Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Savoia D, Avanzini C, Allice T, Callone E, Guella G, Dini F. Antimicrobial activity of euplotin C, the sesquiterpene taxonomic marker from the marine ciliate Euplotes crassus. Antimicrob Agents Chemother 2004; 48:3828-33. [PMID: 15388442 PMCID: PMC521918 DOI: 10.1128/aac.48.10.3828-3833.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of the marine ciliate protist Euplotes crassus produce exclusive terpenoids called euplotins that play an ecological role. Among these derivatives, euplotin C is the main of four secondary metabolites isolated from cultures of this protozoon and represents the sesquiterpene taxonomic marker from E. crassus. Because different terpenoid metabolites of plant origin showed a certain antimicrobial activity, we assessed the compound euplotin C, purified by high-pressure liquid chromatography and solubilized in two solubility enhancers, against the protozoa Leishmania major and Leishmani infantum, the fungus Candida albicans, and nine strains of gram-positive and gram-negative microorganisms. An activity of euplotin C against Leishmania promastigotes was demonstrated (50% lethal doses were 4.6 or 8.1 microg/ml depending on the agent used to solubilize the compound), while the effect was less evident on Candida and nearly absent on bacteria. A nonsignificant cytotoxicity (50% lethal dose, >200 microg/ml) against the J774 cell line was observed. A leishmanicidal activity was also shown by the living, euplotin-producing cells of E. crassus cultured together with promastigotes; this activity increased with time from 10 min to 6 h of incubation. This study provides an initial rationale for the evaluation of euplotin C and other similar natural products as alternative or possibly synergistic compounds for current antiprotozoon chemotherapeutics.
Collapse
Affiliation(s)
- Dianella Savoia
- University of Turin, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, Orbassano (TO) 10043, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Monzote Fidalgo L, Montalvo Alvarez AM, Geigel LF, Pérez Pineiro R, Suárez Navarro M, Rodríguez Cabrera H. Effect of thiadiazine derivatives on intracellular amastigotes of Leishmania amazonensis. Mem Inst Oswaldo Cruz 2004; 99:329-30. [PMID: 15273809 DOI: 10.1590/s0074-02762004000300016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current therapy for leishmaniasis is not satisfactory. We describe the in vitro antiproliferative effects of new thiadiazine derivatives against Leishmania amazonensis. The compounds were found to be active against the amastigote form of the parasite, inhibiting parasite growing, from 10 to 89%, at a concentration of 100 ng/ml. This activity suggests that thiadiazine derivatives could be considered as potential antileishmanial compounds.
Collapse
Affiliation(s)
- Lianet Monzote Fidalgo
- Departamento de Parasitología, Instituto de Medicina Tropical Pedro Kourí, Ciudad de la Habana, Cuba.
| | | | | | | | | | | |
Collapse
|