1
|
Blindauer CA, Holý A, Sigel A, Operschall BP, Griesser R, Sigel H. Acid–base properties of an antivirally active acyclic nucleoside phosphonate: ( S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA). NEW J CHEM 2022. [DOI: 10.1039/d2nj00543c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protonation equilibria for the parent compound of three highly potent antivirals have been studied by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, 16610 Prague, Czech Republic
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Blindauer CA, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Metal Ion‐Coordinating Properties in Aqueous Solutions of the Antivirally Active Nucleotide Analogue (
S
)‐9‐[3‐Hydroxy‐2‐(phosphonomethoxy)propyl]adenine (HPMPA) – Quantification of Complex Isomeric Equilibria. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Department of Chemistry Inorganic Chemistry University of Warwick Coventry CV4 7AL UK
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry Centre of Novel Antivirals and Antineoplastics Academy of Sciences 16610 Prague Czech Republic
| | - Bert P. Operschall
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Astrid Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Bin Song
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Centre of Novel Antivirals and Antineoplastics Vertex Pharmaceuticals Inc. 02210 Boston MA USA
| | - Helmut Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| |
Collapse
|
3
|
Abou El Dahab MM, Shahat SM, Mahmoud SSM, Mahana NA. In vitro effect of curcumin on Schistosoma species viability, tegument ultrastructure and egg hatchability. Exp Parasitol 2019; 199:1-8. [PMID: 30790572 DOI: 10.1016/j.exppara.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/01/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Schistosomiasis remains a severe problem of public health in developing countries. The development of resistance to praziquantel (PZQ) has justified the search for new alternative chemotherapies with new formulations, more effective, and without adverse effects. Curcumin (CUR), the major phenolic compound present in rhizome of turmeric (Curcuma longa L.), has been traditionally used against various diseases including parasitic infections. Here, the antischistosomal activity of CUR (50-500 μM), evaluated in parallel against S. mansoni and S. haematobium adult worms, appeared significant (P < 0.05 to < 0.0001) in a time- and dose-dependent manner. Two h incubation with CUR (500 μM) caused 100% irreversible killing of both schistosomal species. CUR (250 μM) caused the death of S. haematobium and S. mansoni worms after 2 h and 4 h, respectively. As CUR concentration decreases (50 μM), all coupled adult worms were separated into individual male and female but the worms remained viable up to 4 h. Scanning and transmission electron microscopy revealed that S. haematobium are more sensitive than S. mansoni to CUR schistosomicidal effects. In support, CUR was found to affect the antigenicity of surface membrane molecules of S. haematobium, but not S. mansoni. Of importance, CUR significantly (P < 0.05 to < 0.0001) affected S. mansoni eggs hatchability and viability, a ground for its use in chemotherapy of schistosomiasis mansoni and japonicum because of its increased bioavailability in the gastrointestinal tract. The data together emphasize that CUR is a promising potential schistosomicidal drug.
Collapse
MESH Headings
- Animals
- Antigens, Helminth/immunology
- Antigens, Helminth/isolation & purification
- Antigens, Surface/immunology
- Antigens, Surface/isolation & purification
- Cricetinae
- Curcumin/pharmacology
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Female
- Intestine, Small/parasitology
- Liver/parasitology
- Male
- Mesocricetus
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Ovum/drug effects
- Ovum/physiology
- Schistosoma haematobium/drug effects
- Schistosoma haematobium/immunology
- Schistosoma haematobium/physiology
- Schistosoma haematobium/ultrastructure
- Schistosoma mansoni/drug effects
- Schistosoma mansoni/immunology
- Schistosoma mansoni/physiology
- Schistosoma mansoni/ultrastructure
- Schistosomicides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Marwa M Abou El Dahab
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt; Zoology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sondos M Shahat
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
4
|
Blindauer CA, Griesser R, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Intramolecular π-stacks in mixed-ligand copper(II) complexes formed by heteroaromatic amines and antivirally active acyclic nucleotide analogs carrying a hydroxy-2-(phosphonomethoxy)propyl residue ‡. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1490019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, Prague, Czech Republic
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Bin Song
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Vertex Pharmaceuticals Inc., Boston, MA, USA
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Epiisopilosine alkaloid has activity against Schistosoma mansoni in mice without acute toxicity. PLoS One 2018; 13:e0196667. [PMID: 29750792 PMCID: PMC5947907 DOI: 10.1371/journal.pone.0196667] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis is a disease caused by parasites of the genus Schistosoma, currently affecting more than 200 million people. Among the various species of this parasite that infect humans, S. mansoni is the most common. Pharmacological treatment is limited to the use of a single drug, praziquantel (PZQ), despite reports of parasite resistance and low efficacy. It is therefore necessary to investigate new potential schistosomicidal compounds. In this study, we tested the efficacy of epiisopilosine (EPIIS) in a murine model of schistosomiasis. A single dose of EPIIS (100 or 400 mg/kg) administered orally to mice infected with adult S. mansoni resulted in reduced worm burden and egg production. The treatment with the lower dose of EPIIS (100 mg/kg) significantly reduced total worm burden by 60.61% (P < 0.001), as well as decreasing hepatosplenomegaly and egg excretion. Scanning electron microscopy revealed morphological changes in the worm tegument after treatment. Despite good activity of EPIIS in adult S. mansoni, oral treatment with single dose of EPIIS 100 mg/kg had only moderate effects in mice infected with juvenile S. mansoni. In addition, we performed cytotoxicity and toxicological studies with EPIIS and found no in vitro cytotoxicity (in HaCaT, and NIH-3T3 cells) at a concentration of 512 μg/mL. We also performed in silico analysis of toxicological properties and showed that EPIIS had low predicted toxicity. To confirm this, we investigated systemic acute toxicity in vivo by orally administering a 2000 mg/kg dose to Swiss mice. Treated mice showed no significant changes in hematological, biochemical, or histological parameters compared to non-treated animals. Epiisopilosine showed potential as a schistosomicidal drug: it did not cause acute toxicity and it displayed an acceptable safety profile in the animal model.
Collapse
|
6
|
Abstract
Praziquantel has remained the drug of choice for schistosomiasis chemotherapy for almost 40 years. The pressing need to develop a new antischistosomal drug may necessitate exploring and filtering chemotherapeutic history to search for the most promising ones. In this context, this review attempts to summarize all progress made in schistosomiasis chemotherapy from the early 20th century (mid-1910s) to 2016. We gathered almost 100 compounds providing information on therapeutic action, specifically covering at least first in vivo studies in animal model and in vitro. Pharmacokinetic and toxicity profiles of antischistosomal agents were also described. Preclinical studies indicate a handful of promising future candidates.
Collapse
|
7
|
Morais ER, Oliveira KC, de Paula RG, Ornelas AMM, Moreira ÉBC, Badoco FR, Magalhães LG, Verjovski-Almeida S, Rodrigues V. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni. PLoS One 2017; 12:e0184192. [PMID: 28898250 PMCID: PMC5595316 DOI: 10.1371/journal.pone.0184192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites’ tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis.
Collapse
Affiliation(s)
- Enyara R. Morais
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- * E-mail:
| | - Katia C. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Parasitologia e Micologia, Núcleo de Enteroparasitas, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Renato G. de Paula
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Alice M. M. Ornelas
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Érika B. C. Moreira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Fernanda Rafacho Badoco
- Grupo de Pesquisa em Produtos Naturais, Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Lizandra G. Magalhães
- Grupo de Pesquisa em Produtos Naturais, Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, SP, Brasil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
8
|
El-Moslemany RM, Eissa MM, Ramadan AA, El-Khordagui LK, El-Azzouni MZ. Miltefosine lipid nanocapsules: Intersection of drug repurposing and nanotechnology for single dose oral treatment of pre-patent schistosomiasis mansoni. Acta Trop 2016; 159:142-8. [PMID: 27039667 DOI: 10.1016/j.actatropica.2016.03.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
A dual drug repurposing/nanotechnological approach was used to develop an alternative oral treatment for schistosomiasis mansoni using miltefosine (MFS), an anticancer alkylphosphocholine, and lipid nanocapsules (LNCs) as oral nanovectors. We demonstrated earlier that MFS possesses significant activity against different developmental stages of Schistosoma mansoni in the mouse model using 5 successive 20mg/kg/day oral doses. Moreover, an effective single dose (20mg/kg) oral treatment against the adult stage of S. mansoni in mice was developed using LNCs, particularly modified with CTAB, a positive charge imparting agent (MFS-LNC-CTAB(+)), or oleic acid as membrane permeabilizer (MFS-LNC-OA). Efficacy enhancement involved, at least in part, targeting of the worm tegument with MFS-LNCs as a new therapeutic entity. As the tegument surface charge and composition may differ in pre-patent stages of the parasite, it was of importance in the present study to assess the efficacy of a single oral dose of the two MFS-LNC formulations against invasive and immature stages for potential advantage relative to praziquantel. Results indicated potent schistosomicidal effects against both invasive and immature stages of S. mansoni in infected mice, efficacy being both formulation and developmental stage dependent. This was indicated by the significant reduction in the total worm burden of the invasive stage by 91.6% and 76.8% and the immature stage by 82.7% and 96.7% for MFS-LNC-CTAB+ and MFS-LNC-OA, respectively. Histopathological findings indicated amelioration of hepatic pathology with regression of the granulomatous inflammatory reaction and reduction in granulomas number and size, verifying marked improvement in architecture of hepatic lobules. From a clinical perspective, MFS-LNCs offer potential as an alternative single oral dose nanomedicine with a wide therapeutic profile for the mass chemotherapy of schistosomiasis mansoni.
Collapse
|
9
|
Volle JN, Guillon R, Bancel F, Bekro YA, Pirat JL, Virieux D. Phosphono- and Phosphinolactones in the Life Sciences. ADVANCES IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/bs.aihch.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Eissa MM, El-Moslemany RM, Ramadan AA, Amer EI, El-Azzouni MZ, El-Khordagui LK. Miltefosine Lipid Nanocapsules for Single Dose Oral Treatment of Schistosomiasis Mansoni: A Preclinical Study. PLoS One 2015; 10:e0141788. [PMID: 26574746 PMCID: PMC4648507 DOI: 10.1371/journal.pone.0141788] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 10/13/2015] [Indexed: 01/09/2023] Open
Abstract
Miltefosine (MFS) is an alkylphosphocholine used for the local treatment of cutaneous metastases of breast cancer and oral therapy of visceral leishmaniasis. Recently, the drug was reported in in vitro and preclinical studies to exert significant activity against different developmental stages of schistosomiasis mansoni, a widespread chronic neglected tropical disease (NTD). This justified MFS repurposing as a potential antischistosomal drug. However, five consecutive daily 20 mg/kg doses were needed for the treatment of schistosomiasis mansoni in mice. The present study aims at enhancing MFS efficacy to allow for a single 20mg/kg oral dose therapy using a nanotechnological approach based on lipid nanocapsules (LNCs) as oral nanovectors. MFS was incorporated in LNCs both as membrane-active structural alkylphospholipid component and active antischistosomal agent. MFS-LNC formulations showed high entrapment efficiency (EE%), good colloidal properties, sustained release pattern and physical stability. Further, LNCs generally decreased MFS-induced erythrocyte hemolytic activity used as surrogate indicator of membrane activity. While MFS-free LNCs exerted no antischistosomal effect, statistically significant enhancement was observed with all MFS-LNC formulations. A maximum effect was achieved with MFS-LNCs incorporating CTAB as positive charge imparting agent or oleic acid as membrane permeabilizer. Reduction of worm load, ameliorated liver pathology and extensive damage of the worm tegument provided evidence for formulation-related efficacy enhancement. Non-compartmental analysis of pharmacokinetic data obtained in rats indicated independence of antischistosomal activity on systemic drug exposure, suggesting possible gut uptake of the stable LNCs and targeting of the fluke tegument which was verified by SEM. The study findings put forward MFS-LNCs as unique oral nanovectors combining the bioactivity of MFS and biopharmaceutical advantages of LNCs, allowing targeting via the oral route. From a clinical point of view, data suggest MFS-LNCs as a potential single dose oral nanomedicine for enhanced therapy of schistosomiasis mansoni and possibly other diseases.
Collapse
Affiliation(s)
- Maha M. Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M. El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa A. Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eglal I. Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mervat Z. El-Azzouni
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Labiba K. El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- * E-mail:
| |
Collapse
|
11
|
Fusion protein comprised of the two schistosomal antigens, Sm14 and Sm29, provides significant protection against Schistosoma mansoni in murine infection model. BMC Infect Dis 2015; 15:147. [PMID: 25887456 PMCID: PMC4389862 DOI: 10.1186/s12879-015-0906-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/13/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Schistosoma mansoni infection represents a major cause of morbidity and mortality in many areas of the developing world. Effective vaccines against schistosomiasis are not available and disease management relies mainly on treatment with the anthelmintic drug praziquantel. Several promising schistosomal antigens have been evaluated for vaccine efficacy such as Sm14, Sm29 and tetraspanins. However, most investigators examine these promising antigens in animal models individually rather than in properly adjuvanted antigen combinations. METHODS In the present study, we made a recombinant fusion protein comprised of the promising schistosomal antigens Sm14 and Sm29. The fusion protein, FSm14/29, was administered to Swiss albino mice either unadjuvanted or adjuvanted with polyinosinic-polycytidylic acid adjuvant, poly(I:C). Mice were challenged with S. mansoni cercariae and different parasitological/immunological parameters were assessed seven weeks post-challenge. Data were analyzed using the ANOVA test with post-hoc Tukey-Kramer test. RESULTS Mice pre-immunized with unadjuvanted or poly(I:C)-adjuvanted fusion protein showed reduction of adult worm burden of 44.7 and 48.4%, respectively. In addition, significant reduction of tissue egg burdens was observed in mice immunized with the fusion protein when compared with the infected saline/adjuvant negative control groups and groups immunized with the individual Sm14 and Sm29 antigens. Light microscope and scanning electron microscope (SEM) investigation of adult worms recovered from FSm14/29-immunized mice revealed appreciable morphological damage and tegumental deformities. Histopathological examination of liver sections of immunized mice demonstrated reduced granulomatous and inflammatory reactions when compared with infected unvaccinated mice or mice immunized with the individual Sm14 and Sm29 antigens. CONCLUSION The findings presented in this study highlight the importance of the fusion protein FSm14/29 as a potential vaccine candidate that is worthy of further investigation.
Collapse
|
12
|
Mossallam SF, Amer EI, El-Faham MH. Efficacy of Synriam™, a new antimalarial combination of OZ277 and piperaquine, against different developmental stages of Schistosoma mansoni. Acta Trop 2015; 143:36-46. [PMID: 25530543 DOI: 10.1016/j.actatropica.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023]
Abstract
Control of schistosomiasis relies on a single drug, praziquantel (PZQ). Given the rising concerns about the potential emergence of PZQ-resistant strains, it has now become necessary to search for novel therapeutics. However, the current pace for anti-schistosomal drug discovery is slow; hence, repositioning of existing approved drugs can offer a safe, rapid and cost-effective solution. The anti-malarial synthetic artemisinin-derivatives trioxolanes demonstrated anti-schistosomal efficacies against the three major species infecting humans and, unlike PZQ, showed activities against both juvenile and adult worm stages. The 1,2,4-trioxolane/OZ277 (arterolane maleate) in combination with a partner drug: piperaquine phosphate was recently developed as an anti-malarial drug and manufactured by Ranbaxy (India) as Synriam™ (SYN). Herein, the in vivo activities of SYN were investigated in a mouse model of Schistosoma mansoni (S. mansoni), compared to PZQ. We show that a single fixed dose of 240mg/kg SYN (40mg/kg arterolane and 200mg/kg piperaqine) induced significant protective effects in mice, in terms of reduction in worm and tissue egg burdens, which were evident against all schistosome developmental stages. Extensive alterations in the tegument and subtegumental tissues of SYN-exposed worms were revealed by both scanning and transmission electron microscopes. Progressive decrease in worm activity and occurrence of death were noticed in vitro upon exposure to the drug - more pronounced in the presence of haemin. This report provides the first evidence of the efficacy of a combination of 1,2,4-trioxolane and piperaquine against S. mansoni in mice. Being effective against young stages, SYN could be used to prevent early Schistosoma infection.
Collapse
|
13
|
Guimarães MA, de Oliveira RN, Véras LMC, Lima DF, Campelo YDM, Campos SA, Kuckelhaus SAS, Pinto PLS, Eaton P, Mafud AC, Mascarenhas YP, Allegretti SM, de Moraes J, Lolić A, Verbić T, Leite JRSA. Anthelmintic activity in vivo of epiisopiloturine against juvenile and adult worms of Schistosoma mansoni. PLoS Negl Trop Dis 2015; 9:e0003656. [PMID: 25816129 PMCID: PMC4376696 DOI: 10.1371/journal.pntd.0003656] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/27/2015] [Indexed: 02/02/2023] Open
Abstract
Schistosomiasis is a serious disease currently estimated to affect more that 207 million people worldwide. Due to the intensive use of praziquantel, there is increasing concern about the development of drug-resistant strains. Therefore, it is necessary to search for and investigate new potential schistosomicidal compounds. This work reports the in vivo effect of the alkaloid epiisopiloturine (EPI) against adults and juvenile worms of Schistosoma mansoni. EPI was first purified its thermal behavior and theoretical solubility parameters charaterised. In the experiment, mice were treated with EPI over the 21 days post-infection with the doses of 40 and 200 mg/kg, and 45 days post-infection with single doses of 40, 100 and 300 mg/kg. The treatment with EPI at 40 mg/kg was more effective in adult worms when compared with doses of 100 and 300 mg/kg. The treatment with 40 mg/kg in adult worms reduced parasite burden significantly, lead to reduction in hepatosplenomegaly, reduced the egg burden in faeces, and decreased granuloma diameter. Scanning electron microscopy revealed morphological changes to the parasite tegument after treatment, including the loss of important features. Additionally, the in vivo treatment against juvenile with 40 mg/kg showed a reduction of the total worm burden of 50.2%. Histopathological studies were performed on liver, spleen, lung, kidney and brain and EPI was shown to have a DL50 of 8000 mg/kg. Therefore EPI shows potential to be used in schistosomiasis treatment. This is the first time that schistosomicidal in vivo activity of EPI has been reported.
Collapse
Affiliation(s)
- Maria A. Guimarães
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Rosimeire N. de Oliveira
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Leiz M. C. Véras
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Piauí, Parnaíba, Piauí, Brazil
- Graduate Program in Biotechnology, RENORBIO, Focal Point Federal University of Piauí, Teresina, Piauí, Brazil
| | - David F. Lima
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Piauí, Parnaíba, Piauí, Brazil
- Graduate Program in Biotechnology, RENORBIO, Focal Point Federal University of Piauí, Teresina, Piauí, Brazil
- Collegiate Academic Medicine, Federal University of São Francisco Valley, Campus Paulo Afonso, Paulo Afonso, Bahia, Brazil
| | - Yuri D. M. Campelo
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Piauí, Parnaíba, Piauí, Brazil
- Graduate Program in Biotechnology, RENORBIO, Focal Point Federal University of Piauí, Teresina, Piauí, Brazil
| | - Stefano Augusto Campos
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Selma A. S. Kuckelhaus
- Faculty of Medicine, University of Brasilia, UNB Campus Dacy Ribeiro, Brasília, Distrito Federal, Brazil
| | | | - Peter Eaton
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Portugal
| | - Ana C. Mafud
- Group of Crystallography, Institute of Physics of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Yvonne P. Mascarenhas
- Group of Crystallography, Institute of Physics of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Silmara M. Allegretti
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases (NPDN/FACIG), Guarulhos, São Paulo, Brazil
| | | | - Tatjana Verbić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - José Roberto S. A. Leite
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Piauí, Parnaíba, Piauí, Brazil
| |
Collapse
|
14
|
Dong L, Duan W, Chen J, Sun H, Qiao C, Xia CM. An artemisinin derivative of praziquantel as an orally active antischistosomal agent. PLoS One 2014; 9:e112163. [PMID: 25386745 PMCID: PMC4227710 DOI: 10.1371/journal.pone.0112163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
Background Schistosomiasis is a major health problem in tropical and sub-tropical areas caused by species of trematode belonging to the genus Schistosoma. The treatment and control of this disease has been relying on the use of a single drug praziquantel. However, the drug resistance concern urged the development of new drugs against schistosoma. Here, we report our systematic biological evaluation of DW-3-15, a new lead compound developed based on our conjugation design rationale as an effective anti-schistosomal agent. Methodology/Principal Findings The antischistosomal activity of DW-3-15 was systematically evaluated in S. japonicum infected mouse model for its stage-sensitivity and dose response. The results revealed that DW-3-15 exhibited 60–85% worm reduction rate against different development stage of worm. Scanning electron microscopy (SEM) observation indicated that DW-3-15 may damage to the tegument of male schistosomes. Conclusions/Significance Our results demonstrated that DW-3-15 showed potent anti-schistosomal activities in vivo. The results strongly support our conjugation design strategy of artemisinin analogs and further development of DW-3-15 as a new lead compound as anti-schistosomal agent.
Collapse
Affiliation(s)
- Lanlan Dong
- College of Medical Science, Soochow University, Suzhou, China
| | - Wenwen Duan
- College of Medical Science, Soochow University, Suzhou, China
| | - Jinglei Chen
- College of Medical Science, Soochow University, Suzhou, China
| | - Huan Sun
- College of Medical Science, Soochow University, Suzhou, China
| | - Chunhua Qiao
- College of Medical Science, Soochow University, Suzhou, China
- * E-mail: (CQ); (CX)
| | - Chao-ming Xia
- College of Medical Science, Soochow University, Suzhou, China
- * E-mail: (CQ); (CX)
| |
Collapse
|
15
|
Pereira AC, Esperandim VR, Ferreira da Silva D, Magalhães LG, Lima TC, Nanayakkara DNP, Cunha WR, Bastos JK, Andrade e Silva ML. Furofuran lignans display schistosomicidal and trypanocidal activities. PHYTOCHEMISTRY 2014; 107:119-125. [PMID: 25200100 DOI: 10.1016/j.phytochem.2014.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Parasitic diseases continue to be a major worldwide health problem, and there is an urgent need for development of therapeutic drugs. This paper describes synthesis of dehydrodiferulic acid dilactone 1 and dehydrodisinapic acid dilactone 2 furofuran lignans by oxidative coupling of ferulic and sinapic acids, respectively. Their schistosomicidal, trypanocidal, and leishmanicidal activities were evaluated in vitro against Schistosoma mansoni adult worms, trypomastigote and amastigotes forms of Trypanosoma cruzi, and promastigote forms of Leishmania amazonensis. Compound 1 did not display significant schistosomicidal activity, but it presented potent trypanocidal activity, since it induced death of trypomastigotes and amastigotes with IC50/24h of 9.3μM and 7.3μM, respectively. Compound 2 had slight trypanocidal and schistosomicidal activities. None of the compounds were active against L. amazonensis. These results demonstrated that furofuran lignans are potentially useful for anti-parasitic drugs development and should be further investigated.
Collapse
Affiliation(s)
- Ana Carolina Pereira
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Viviane Rodrigues Esperandim
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | | | - Lizandra Guidi Magalhães
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Thais Coelho Lima
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Dhammika N P Nanayakkara
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | - Jairo Kenupp Bastos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
16
|
Effect of ozonide OZ418 against Schistosoma japonicum harbored in mice. Parasitol Res 2014; 113:3259-66. [PMID: 24948106 DOI: 10.1007/s00436-014-3988-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/06/2014] [Indexed: 01/09/2023]
Abstract
The in vitro and in vivo efficacies of ozonide carboxylic acid OZ418 against Schistosoma japonicum were investigated. For in vitro experiments, juvenile (14-day-old) and adult schistosomes were collected from mice infected with 80-100 S. japonicum cercariae for 14 and 35 days post-infection and the worms were maintained in Roswell Park Memorial Institute (RPMI) 1640 supplemented by 10% calf serum. Against 35-day-old adult S. japonicum, OZ418 resulted in weakened worm motor activity, injury to the worm body, emergence of vacuoles along the worm surface, and death. A similar outcome was seen in 14-day-old juvenile S. japonicum exposed to OZ418. Ineffective concentrations (1, 5, and 10 μg/mL) of OZ418 also interacted with hemin to significantly increase the killing effect against adult schistosomes. The LC50 value of OZ418 against juvenile (14-day-old) and adult schistosomes were identical--16.2 μg/mL, whereas the corresponding LC95 values were 30.7 and 22.7 μg/mL, respectively. Treatment of adult and juvenile (14-day-old) S. japonicum-infected mice with single 200-400-mg/kg oral doses of OZ418 produced total worm burden reductions of 68.5-84.1 and 37.5-50.9%, respectively. Further study showed that in mice infected with various stages of schistosomes and treated with a single oral OZ418 400 mg/kg, poor efficacy was seen in the 3-h-old juvenile worm group, while 14-day-old and 21-day-old juvenile worm groups exhibited less efficacy with total worm burden reductions of 42.6-52.4%. On the other hand, similar and higher total worm burden reductions (64.2-76.0%) were seen in the 7-day-old juvenile worm group and 28-day-old as well as 35-day-old adult worm groups. Furthermore, the mean worm burden reductions of the 7-day-old juvenile worm group and 35-day-old adult worm group were statistically significantly higher than that of the 14-day-old or 21-day-old juvenile worm group (P < 0.01 or <0.05). These data suggest that OZ418 has promising efficacy against 7-day-old juvenile and adult S. japonicum.
Collapse
|
17
|
Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS Negl Trop Dis 2014; 8:e2617. [PMID: 24392173 PMCID: PMC3879229 DOI: 10.1371/journal.pntd.0002617] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/20/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Schistosomiasis is a major endemic disease that affects hundreds of millions worldwide. Since the treatment and control of this parasitic disease rely on a single drug, praziquantel, it is imperative that new effective drugs are developed. Here, we report that phytol, a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties in vitro and in a mouse model of schistosomiasis mansoni. METHODS AND FINDINGS In vitro, phytol reduced the motor activity of worms, caused their death and confocal laser scanning microscopy analysis showed extensive tegumental alterations in a concentration-dependent manner (50 to 100 µg/mL). Additionally, phytol at sublethal doses (25 µg/mL) reduced the number of Schistosoma mansoni eggs. In vivo, a single dose of phytol (40 mg/kg) administered orally to mice infected with adult S. mansoni resulted in total and female worm burden reductions of 51.2% and 70.3%, respectively. Moreover, phytol reduced the number of eggs in faeces (76.6%) and the frequency of immature eggs (oogram pattern) was significantly reduced. The oogram also showed increases in the proportion of dead eggs. Confocal microcopy studies revealed tegumental damage in adult S. mansoni recovered from mice, especially in female worms. CONCLUSIONS The significant reduction in parasite burden by this chlorophyll molecule validates phytol as a promising drug and offers the potential of a new direction for chemotherapy of human schistosomiasis. Phytol is a common food additive and nonmutagenic, with satisfactory safety. Thus, phytol has potential as a safe and cost-effective addition to antischistosomal therapy.
Collapse
|
18
|
Xiao SH. Mefloquine, a new type of compound against schistosomes and other helminthes in experimental studies. Parasitol Res 2013; 112:3723-40. [PMID: 23979493 DOI: 10.1007/s00436-013-3559-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
Up to date, schistosomiasis is still prevalent worldwide. It is estimated that more than 200 million individuals are infected, and 120 million suffer from clinical morbidity. Facing such huge cases of schistosomiasis, only heavy reliance on a single praziquantel for schistosomiasis control does not adapt and may promote the selection and spread of drug-resistant parasites. Therefore, it is an urgent need to develop the new antischistosomal drug. In 2008-2009, the antimalarial drug mefloquine, an arylaminoalcohol compound, has been found to be effective against schistosomes. According to the experimental studies, the deepest impression on the antischistosomal properties of mefloquine can be summarized as following points: (1) single dose of mefloquine possesses potential effect against three major species of schistosomes (Schistosoma mansoni, Schistosoma haematobium, and Schistosoma japonicum) infecting humans; (2) the drug displays similar effects against developing stages of juvenile and adult schistosomes, which are superior to that of artemisinins and praziquantel; (3) in vitro mefloquine exerts direct killing effect on juvenile and adult schistosomes, while in vivo, the efficacy of the drug is independent to host immune response, (4) mefloquine causes extensive and severe morphological, histopathological, and ultrastructural damage to adult and juvenile schistosomes, particularly, the worm tegument, musculature, gut, and vitelline glands of female worms are the key sites attacked by the drug; (5) combined treatment with mefloquine and praziquantel, or artemisinins shows synergistic effect against schistosome in experimental therapy,while in initially clinical trial, mefloquine in combination with artesunate also exhibits higher cure rates against schistosomiasis hematobia and schistosomiasis mansoni, and (6) several mefloquine-related arylmethanols exhibit potential effect against schistosomes in vivo, which is a useful clue helpful for development of new antischistosomal compound. In the present review, we have summarized the major results published in recent years, and the significance as well as the prospect for the future study of mefloquine have been discussed briefly.
Collapse
Affiliation(s)
- Shu-hua Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Shanghai, 200025, People's Republic of China,
| |
Collapse
|
19
|
Soares CS, Morais ER, Magalhães LG, Machado CB, Moreira ÉBDC, Teixeira FR, Rodrigues V, Yoshino TP. Molecular and functional characterization of a putative PA28γ proteasome activator orthologue in Schistosoma mansoni. Mol Biochem Parasitol 2013; 189:14-25. [PMID: 23611749 DOI: 10.1016/j.molbiopara.2013.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
PA28γ is a proteasome activator involved in the regulation of the cellular proliferation, differentiation and growth. In the present study, we identified and characterized a cDNA from Schistosoma mansoni exhibiting significant homology to PA28γ of diverse taxa ranging from mammals (including humans) to simple invertebrates. Designated SmPA28γ, this transcript has a 753bp predicted ORF encoding a protein of 250 amino acid residues. Alignment of SmPA28γ with multiple PA28γ orthologues revealed an average similarity of ~40% among the investigated organisms, and 90% similarity with PA28γ from Schistosoma japonicum. In addition, phylogenetic analysis demonstrated a close linkage between SmPA28γ to its sister group that contains well-characterized PA28γ sequences from Drosophila spp., as well as sharing the same branch with PA28γ from S. japonicum. Gene expression profiling of SmPA28γ using real-time quantitative PCR revealed elevated steady-state transcript levels in the eggs, miracidia and paired adult worms compared to other stages. In parallel with gene expression profiles, an affinity-purified anti-SmPA28γ antibody produced against recombinant protein exhibited strongest reactivity in Western blot analyses to endogenous SmPA28γ from miracidia, sporocysts and paired adult worms. Given its known regulatory function in other organisms, we hypothesized that the high level of SmPA28γ transcript and protein in these stages may be correlated with an important role of the PA28γ in the cellular growth and/or development of this parasite. To address this hypothesis, miracidia were transformed in vitro to sporocysts in the presence of SmPA28γ double-stranded RNAs (dsRNAs) and cultivated for 4 days, after which time steady-state transcript and protein levels, and phenotypic changes were evaluated. SmPA28γ dsRNA treatment resulted in gene and protein knockdown of ~60% and ~80%, respectively, which were correlated with a significant decrease in larval length compared to its controls. These findings are consistent with a putative role of SmPA28γ in larval growth/development of the S. mansoni.
Collapse
Affiliation(s)
- Cláudia Sossai Soares
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Morais ER, Oliveira KC, Magalhães LG, Moreira EBC, Verjovski-Almeida S, Rodrigues V. Effects of curcumin on the parasite Schistosoma mansoni: a transcriptomic approach. Mol Biochem Parasitol 2012; 187:91-7. [PMID: 23276630 DOI: 10.1016/j.molbiopara.2012.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Schistosomiasis remains a severe problem of public health in developing countries. Several reports show that praziquantel, the drug of choice for treating schistosomiasis, can select Schistosoma mansoni strains resistant to the drug. Thus, developing new drugs against this parasitosis is a highly desirable goal. Curcumin, a phenolic compound deriving from the plant Curcuma longa, has been shown to have anticancer, anti-inflammatory and antiparasitic effects. Recently, our group has demonstrated that curcumin causes the separation of S. mansoni adult worm pairs, eggs infertility, decreased oviposition and parasite viability, leading to death. In the present work, we have investigated the effects of curcumin on S. mansoni gene expression in adult worms through microarray analyses. Our results showed 2374 genes that were significantly and differentially expressed, of which 981 were up-regulated and 1393 were down-regulated. Among the differentially expressed genes there were components of important signaling pathways involved in embryogenesis and oogenesis such as Notch and TGF-β. Gene networks most significantly enriched with altered genes were identified, including a network related to Cellular Function and Maintenance, Molecular Transport, Organ Development, which is connected to the TGF-β signaling pathway and might be related to the effect of curcumin on pairing of adult worm pairs, egg production and viability of worms. qPCR validation experiments with 7 genes have confirmed the expression changes detected with arrays. Here we suggest that transcriptional repression observed in Notch and TGF-β pathways could explain the effects on oviposition and egg development described in the literature.
Collapse
Affiliation(s)
- Enyara R Morais
- Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, 14040-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
21
|
In vitro schistosomicidal activity of some brazilian cerrado species and their isolated compounds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:173614. [PMID: 22924053 PMCID: PMC3424599 DOI: 10.1155/2012/173614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 11/29/2022]
Abstract
Miconia langsdorffii Cogn. (Melastomataceae), Roupala montana Aubl. (Proteaceae), Struthanthus syringifolius (Mart.) (Loranthaceae), and Schefflera vinosa (Cham. & Schltdl.) Frodin (Araliaceae) are plant species from the Brazilian Cerrado whose schistosomicidal potential has not yet been described. The crude extracts, fractions, the triterpenes betulin, oleanolic acid, ursolic acid and the flavonoids quercetin 3-O-β-D-rhamnoside, quercetin 3-O-β-D-glucoside, quercetin 3-O-β-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside and isorhamnetin 3-O-β-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside were evaluated in vitro against Schistosoma mansoni adult worms and the bioactive n-hexane fractions of the mentioned species were also analyzed by GC-MS. Betulin was able to cause worm death percentage values of 25% after 120 h (at 100 μM), and 25% and 50% after 24 and 120 h (at 200 μM), respectively; besides the flavonoid quercetin 3-O-β-D-rhamnoside promoted 25% of death of the parasites at 100 μM. Farther the flavonoids quercetin 3-O-β-D-glucoside and quercetin 3-O-β-D-rhamnoside at 100 μM exhibited significantly reduction in motor activity, 75% and 87.5%, respectively. Biological results indicated that crude extracts of R. montana, S. vinosa, and M. langsdorffii and some n-hexane and EtOAc fractions of this species were able to induce worm death to some extent. The results suggest that lupane-type triterpenes and flavonoid monoglycosides should be considered for further antiparasites studies.
Collapse
|
22
|
El Ridi RAF, Tallima HAM. Novel therapeutic and prevention approaches for schistosomiasis: review. J Adv Res 2012; 4:467-78. [PMID: 25685454 PMCID: PMC4293887 DOI: 10.1016/j.jare.2012.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 01/23/2023] Open
Abstract
Schistosomiasis is a debilitating disease affecting approximately 600 million people in 74 developing countries, with 800 million, mostly children at risk. To circumvent the threat of having praziquantel (PZQ) as the only drug used for treatment, several PZQ derivatives were synthesized, and drugs destined for other parasites were used with success. A plethora of plant-derived oils and extracts were found to effectively kill juvenile and adult schistosomes, yet none was progressed to pre- and clinical studies except an oleo-gum resin extracted from the stem of Commiphora molmol, myrrh, which action was challenged in several trials. We have proposed an essential fatty acid, a component of our diet and cells, the polyunsaturated fatty acid arachidonic acid (ARA) as a remedy for schistosomiasis, due to its ability to activate the parasite tegument-bound neutral sphingomyelinase, with subsequent hydrolysis of the apical lipid bilayer sphingomyelin molecules, allowing access of specific antibody molecules, and eventual worm attrition. This concept was convincingly supported using larval and adult Schistosoma mansoni and Schistosoma haematobium worms in in vitro experiments, and in vivo studies in inbred mice and outbred hamsters. Even if ARA proves to be an entirely effective and safe therapy for schistosomiasis, it will not prevent reinfection, and accordingly, the need for developing an effective vaccine remains an urgent priority. Our studies have supported the status of S. mansoni calpain, glutathione-S-transferase, aldolase, triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, enolase, and 2-cys peroxiredoxin as vaccine candidates, as they are larval excreted-secreted products and, contrary to the surface membrane molecules, are entirely accessible to the host immune system effector elements. We have proposed that the use of these molecules, in conjunction with Th2 cytokines-inducing adjuvants for recruiting and activating eosinophils and basophils, will likely lead to development and implementation of a sterilizing vaccine in a near future.
Collapse
Affiliation(s)
- Rashika A F El Ridi
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Hatem A-M Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
23
|
Melek FR, Tadros MM, Yousif F, Selim MA, Hassan MH. Screening of marine extracts for schistosomicidal activity in vitro. Isolation of the triterpene glycosides echinosides A and B with potential activity from the Sea Cucumbers Actinopyga echinites and Holothuria polii. PHARMACEUTICAL BIOLOGY 2012; 50:490-496. [PMID: 22136393 DOI: 10.3109/13880209.2011.615842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Praziquantel (PZQ) is the drug available for the treatment of schistosomiasis. The reported reduced cure rates, the failure of treatment after PZQ administration in patients and the existence of resistant parasite strains, reinforce the need to rapidly discover new effective molecules against Schistosoma parasite. OBJECTIVE To screen the methanol extracts of 79 marine organisms for their schistosomicidal activities against Schistosoma mansoni adult worms in vitro and perform bio-assay directed chromatography for the most active extracts to isolate the active compounds. MATERIALS AND METHODS Screening of the marine organisms and bio-assay directed chromatography of the most active extracts together with identification of the active isolates using 1D and 2D NMR analysis, were investigated. RESULTS RESULTS indicated that the isolates echinosides A and B from the sea cucumbers Actinopyga echinites Jaeger and Holothuria polii Delle Chiaie (Holothuriidae) were highly active. Their LC(50) values were equal to 0.19 μg/ml and 0.27 μg/ml, respectively. Detailed (1)HNMR data for echinosides A and B are reported here for the first time. DISCUSSION AND CONCLUSION These findings demonstrate that the isolated echinosides possess potential in vitro schistosomicidal activity against S. mansoni adult worms. Therefore, echinosides are promising as lead compounds for the development of new schistosomicidal agents.
Collapse
Affiliation(s)
- Farouk R Melek
- Natural Compounds Department, National Research Center, Giza, Egypt.
| | | | | | | | | |
Collapse
|
24
|
Pereira AC, Magalhães LG, Gonçalves UO, Luz PP, Moraes ACG, Rodrigues V, da Matta Guedes PM, da Silva Filho AA, Cunha WR, Bastos JK, Nanayakkara NPD, e Silva MLA. Schistosomicidal and trypanocidal structure-activity relationships for (±)-licarin A and its (-)- and (+)-enantiomers. PHYTOCHEMISTRY 2011; 72:1424-1430. [PMID: 21570099 DOI: 10.1016/j.phytochem.2011.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/08/2011] [Accepted: 04/13/2011] [Indexed: 05/30/2023]
Abstract
(±)-Licarin A (1) was obtained by oxidative coupling, and its enantiomers, (-)-licarin A (2) and (+)-licarin A (3), were resolved by chiral HPLC. Schistosomicidal and trypanocidal activities of these compounds were evaluated in vitro against Schistosoma mansoni adult worms and trypomastigote forms of Trypanosoma cruzi. The racemic mixture (1) displayed significant schistosomicidal activity with an LC₅₀ value of 53.57 μM and moderate trypanocidal activity with an IC₅₀ value of 127.17 μM. On the other hand, the (-)-enantiomer (2), displaying a LC₅₀ value of 91.71 μM, was more active against S. mansoni than the (+)-enantiomer (3), which did not show activity. For the trypanocidal assay, enantiomer 2 showed more significant activity (IC₅₀ of 23.46 μM) than enantiomer 3, which showed an IC₅₀ value of 87.73 μM. Therefore, these results suggest that (±)-licarin A (1) and (-)-licarin A (2) are promising compounds that could be used for the development of schistosomicidal and trypanocidal agents.
Collapse
Affiliation(s)
- A C Pereira
- Grupo de Pesquisas em Produtos Naturais, Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira 2001, 14404-600 Franca, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miltefosine, a promising novel agent for schistosomiasis mansoni. Int J Parasitol 2011; 41:235-42. [DOI: 10.1016/j.ijpara.2010.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/13/2022]
|
26
|
Affiliation(s)
- Alexander Dömling
- Departments of Pharmacy, Chemistry and Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
27
|
Botros SS, William S, Beadle JR, Valiaeva N, Hostetler KY. Antischistosomal activity of hexadecyloxypropyl cyclic 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine and other alkoxyalkyl esters of acyclic nucleoside phosphonates assessed by schistosome worm killing in vitro. Antimicrob Agents Chemother 2009; 53:5284-7. [PMID: 19704122 PMCID: PMC2786359 DOI: 10.1128/aac.00840-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/17/2009] [Accepted: 08/18/2009] [Indexed: 11/20/2022] Open
Abstract
9-(S)-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA] has been reported to have antischistosomal activity. Ether lipid esters of (S)-HPMPA and cidofovir (CDV) have greatly increased activities in antiviral assays and in lethal animal models of poxvirus diseases. To see if ether lipid esters of CDV and (S)-HPMPA enhance antischistosomal activity, we tested their alkoxyalkyl esters using Schistosoma mansoni worm killing in vitro. Hexadecyloxypropyl (HDP)-cyclic-(S)-HPMPA and HDP-cyclic-CDV exhibited significant in vitro antischistosomal activities and may offer promise alone or in combination with praziquantel.
Collapse
Affiliation(s)
- Sanaa S. Botros
- Departments of Pharmacology, Parasitology, Theodor Bilharz Research Institute, Warrak el-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt, San Diego Veterans Medical Research Foundation and Department of Medicine, Division of Infectious Disease, University of California, San Diego, La Jolla, California 92093
| | - Samia William
- Departments of Pharmacology, Parasitology, Theodor Bilharz Research Institute, Warrak el-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt, San Diego Veterans Medical Research Foundation and Department of Medicine, Division of Infectious Disease, University of California, San Diego, La Jolla, California 92093
| | - James R. Beadle
- Departments of Pharmacology, Parasitology, Theodor Bilharz Research Institute, Warrak el-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt, San Diego Veterans Medical Research Foundation and Department of Medicine, Division of Infectious Disease, University of California, San Diego, La Jolla, California 92093
| | - Nadejda Valiaeva
- Departments of Pharmacology, Parasitology, Theodor Bilharz Research Institute, Warrak el-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt, San Diego Veterans Medical Research Foundation and Department of Medicine, Division of Infectious Disease, University of California, San Diego, La Jolla, California 92093
| | - Karl Y. Hostetler
- Departments of Pharmacology, Parasitology, Theodor Bilharz Research Institute, Warrak el-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt, San Diego Veterans Medical Research Foundation and Department of Medicine, Division of Infectious Disease, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
28
|
Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, Xu F, Renslo AR, Williams J, McKerrow JH, Caffrey CR. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis 2009; 3:e478. [PMID: 19597541 PMCID: PMC2702839 DOI: 10.1371/journal.pntd.0000478] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/03/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Praziquantel (PZQ) is the only widely available drug to treat schistosomiasis. Given the potential for drug resistance, it is prudent to search for novel therapeutics. Identification of anti-schistosomal chemicals has traditionally relied on phenotypic (whole organism) screening with adult worms in vitro and/or animal models of disease-tools that limit automation and throughput with modern microtiter plate-formatted compound libraries. METHODS A partially automated, three-component phenotypic screen workflow is presented that utilizes at its apex the schistosomular stage of the parasite adapted to a 96-well plate format with a throughput of 640 compounds per month. Hits that arise are subsequently screened in vitro against adult parasites and finally for efficacy in a murine model of disease. Two GO/NO GO criteria filters in the workflow prioritize hit compounds for tests in the animal disease model in accordance with a target drug profile that demands short-course oral therapy. The screen workflow was inaugurated with 2,160 chemically diverse natural and synthetic compounds, of which 821 are drugs already approved for human use. This affords a unique starting point to 'reposition' (re-profile) drugs as anti-schistosomals with potential savings in development timelines and costs. FINDINGS Multiple and dynamic phenotypes could be categorized for schistosomula and adults in vitro, and a diverse set of 'hit' drugs and chemistries were identified, including anti-schistosomals, anthelmintics, antibiotics, and neuromodulators. Of those hits prioritized for tests in the animal disease model, a number of leads were identified, one of which compares reasonably well with PZQ in significantly decreasing worm and egg burdens, and disease-associated pathology. Data arising from the three components of the screen are posted online as a community resource. CONCLUSIONS To accelerate the identification of novel anti-schistosomals, we have developed a partially automated screen workflow that interfaces schistosomula with microtiter plate-formatted compound libraries. The workflow has identified various compounds and drugs as hits in vitro and leads, with the prescribed oral efficacy, in vivo. Efforts to improve throughput, automation, and rigor of the screening workflow are ongoing.
Collapse
Affiliation(s)
- Maha-Hamadien Abdulla
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - Debbie S. Ruelas
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - Brian Wolff
- Small Molecule Discovery Center, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - June Snedecor
- Small Molecule Discovery Center, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - Kee-Chong Lim
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - Fengyun Xu
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - Adam R. Renslo
- Small Molecule Discovery Center, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - Janice Williams
- Small Molecule Discovery Center, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - James H. McKerrow
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| | - Conor R. Caffrey
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California, United States of America
| |
Collapse
|
29
|
Krautz-Peterson G, Ndegwa D, Vasquez K, Korideck H, Zhang J, Peterson JD, Skelly PJ. Imaging schistosomes in vivo. FASEB J 2009; 23:2673-80. [PMID: 19346298 DOI: 10.1096/fj.08-127738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Schistosomes are intravascular, parasitic helminths that cause a chronic, often debilitating disease afflicting over 200 million people in over 70 countries. Here we describe novel imaging methods that, for the first time, permit visualization of live schistosomes within their living hosts. The technology centers on fluorescent agent uptake and activation in the parasite's gut, and subsequent detection and signal quantitation using fluorescence molecular tomography (FMT). There is a strong positive correlation between the signal detected and parasite number. Schistosoma mansoni parasites of both sexes recovered from infected experimental animals exhibit vivid fluorescence throughout their intestines. Likewise, the remaining important human schistosome parasites, S. japonicum and S. hematobium, also exhibit gut fluorescence when recovered from infected animals. Imaging has been used to efficiently document the decline in parasite numbers in infected mice treated with the antischistosome drug praziquantel. This technology will provide a unique opportunity both to help rapidly identify much-needed, novel antischistosome therapies and to gain direct visual insight into the intravascular lives of the major schistosome parasites of humans.
Collapse
Affiliation(s)
- Greice Krautz-Peterson
- Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Magalhães LG, Machado CB, Morais ER, Moreira EBDC, Soares CS, da Silva SH, Da Silva Filho AA, Rodrigues V. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 2008; 104:1197-201. [PMID: 19096877 DOI: 10.1007/s00436-008-1311-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/04/2008] [Indexed: 12/11/2022]
Abstract
The in vitro schistosomicidal activity of curcumin (doses ranging from 5 to 100 microM) was carried out against Schistosoma mansoni adult worms. Curcumin (at 50 and 100 microM) caused death of all worms. When tested at the doses of 5 and 20 microM, it decreased the worm viability in comparison with negative (Roswell Memorial Park Institute (RPMI) 1640 medium alone or RPMI 1640 medium with 10% dimethyl sulfoxide) and positive (heat-killed worms at 56 degrees C or praziquantel 10 microM) control groups. All pairs of coupled adult worms were separated into individual male and female by the action of curcumin at the doses of 20 to 100 microM. When tested at 5 and 10 microM, curcumin reduced egg production by 50% in comparison with the positive control group. It is the first time that the schistosomicidal activity has been reported for curcumin.
Collapse
Affiliation(s)
- Lizandra G Magalhães
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cidofovir and (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine are highly effective inhibitors of vaccinia virus DNA polymerase when incorporated into the template strand. Antimicrob Agents Chemother 2007; 52:586-97. [PMID: 18056278 DOI: 10.1128/aac.01172-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The acyclic nucleoside phosphonate drug (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine [(S)-HPMPA], is a broad-spectrum antiviral and antiparasitic agent. Previous work has shown that the active intracellular metabolite of this compound, (S)-HPMPA diphosphate [(S)-HPMPApp], is an analog of dATP and targets DNA polymerases. However, the mechanism by which (S)-HPMPA inhibits DNA polymerases remains elusive. Using vaccinia virus as a model system, we have previously shown that cidofovir diphosphate (CDVpp), an analog of dCTP and a related antiviral agent, is a poor substrate for the vaccinia virus DNA polymerase and acts to inhibit primer extension and block 3'-to-5' proofreading exonuclease activity. Based on structural similarities and the greater antiviral efficacy of (S)-HPMPA, we predicted that (S)-HPMPApp would have a similar, but more pronounced effect on vaccinia polymerase than CDVpp. Interestingly, we found that (S)-HPMPApp is a good substrate for the viral enzyme, exhibiting K(m) and V(max) parameters comparable to those of dATP, and certainly not behaving like CDVpp as a functional chain terminator. Metabolic experiments indicated that (S)-HPMPA is converted to (S)-HPMPApp to a much greater extent than CDV is converted to CDVpp, although both drugs cause identical effects on virus DNA replication at their 50% effective concentration. Subsequent studies showed that both compounds can be faithfully incorporated into DNA, but when CDV and (S)-HPMPA are incorporated into the template strand, both strongly inhibit trans-lesion DNA synthesis. It thus appears that nucleoside phosphonate drugs exhibit at least two different effects on DNA polymerases depending upon in what form the enzyme encounters the drug.
Collapse
|
32
|
Keiser J, Utzinger J. Advances in the discovery and development of trematocidal drugs. Expert Opin Drug Discov 2007; 2:S9-S23. [DOI: 10.1517/17460441.2.s1.s9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Potmesil P, Krecmerová M, Kmonícková E, Holý A, Zídek Z. Nucleotide analogues with immunobiological properties: 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]-adenine (HPMPA), -2,6-diaminopurine (HPMPDAP), and their N6-substituted derivatives. Eur J Pharmacol 2006; 540:191-9. [PMID: 16733050 DOI: 10.1016/j.ejphar.2006.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 04/12/2006] [Accepted: 04/21/2006] [Indexed: 12/11/2022]
Abstract
Newly developed acyclic nucleoside phosphonates, derivatives of adenine and 2,6-diaminopurine bearing the 2-hydroxy-3-(phosphonomethoxy)propyl (HPMP) moiety at the N9-side chain (i.e., HPMPA and HPMPDAP, respectively) were screened for in vitro immunobiological activity, using mouse resident peritoneal macrophages and splenocytes. Both HPMPA and HPMPDAP augmented the interferon-gamma-triggered production of NO as well as expression of inducible nitric oxide synthase (iNOS) mRNA in macrophages. HPMPDAP activated secretion of tumor necrosis factor-alpha (TNF-alpha), chemokines "regulated-upon-activation, normal T cell expressed and secreted" (RANTES) and macrophage inflammatory protein-1alpha (MIP-1alpha), and marginally also secretion of interleukin-10 (IL-10) in both macrophages and splenocytes. The HPMPA, less prominently than HPMPDAP, elevated only secretion of RANTES and TNF-alpha. The compounds also activated secretion of TNF-alpha (HPMPDAP > HPMPA) in human peripheral blood mononuclear cells (PBMC). Distinct N6-substituted derivatives, i.e., N6-dimethyl-, N6-cyclopropyl-, N6-piperidin-1-yl-, N6-(2-methoxyethyl)-, N6-(2-hydroxyethyl)-, N6-allyl- and N6-2-(dimethylamino)ethyl-HPMPA/HPMPDAP as well as 6-thio and 6-hydroxy derivatives usually showed loss of the activity compared to the parent compounds. The immunomodulatory effects were found to be at least in part dependent on P1 purinoreceptors, and mediated by transcriptional factor nuclear factor-kappaB.
Collapse
Affiliation(s)
- Petr Potmesil
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Centre for New Antivirals and Antineoplastics, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
34
|
Ribeiro-dos-Santos G, Verjovski-Almeida S, Leite LCC. Schistosomiasis--a century searching for chemotherapeutic drugs. Parasitol Res 2006; 99:505-21. [PMID: 16636847 DOI: 10.1007/s00436-006-0175-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 02/23/2006] [Indexed: 12/22/2022]
Abstract
Schistosomiasis affects 200 million individuals in underdeveloped and developing regions and is a growing concern for travelers worldwide. There has been evidence of resistance to the praziquantel-based therapy and reports of acute-disease manifestation; therefore, other drugs affecting different stages of the schistosome parasites life cycle and alternative therapeutic regimens should be developed and become accessible. The present review results from a comprehensive search in the scientific literature for substances and compounds tested in the past centennial for schistosomiasis therapy. We gathered over 40 drugs providing information on therapeutic action in humans or animal model, toxicity, susceptible Schistosoma stages, species, etc. The drugs were grouped according to their known metabolic effects on the parasite, whether they are on membrane structure and function, carbohydrate metabolism, protein synthesis and function, or on nucleic acid metabolism. We discuss the current knowledge of drug-target interactions, their mechanism of action and possible therapy combinations. Furthermore, based in the literature and in our own experience with large-scale Schistosoma mansoni genome and transcriptome analyses, we put forward several recently described gene products that are promising target candidates for existing or new drugs.
Collapse
|