1
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
2
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
3
|
Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rhéault JG, Pongchaikul P, Santanirand P, Levesque RC, Fothergill JL, Winstanley C. A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 2020; 11:1370. [PMID: 32170080 PMCID: PMC7070040 DOI: 10.1038/s41467-020-15081-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s.
Collapse
Affiliation(s)
- Adrian Cazares
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Matthew P Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Laura L Wright
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Macauley Grimes
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | | | | - Roger C Levesque
- Institute for Integrative and Systems Biology (IBIS), University Laval, Quebec City, QC, Canada
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Semper C, Stogios P, Meziane-Cherif D, Evdokimova E, Courvalin P, Savchenko A. Structural characterization of aminoglycoside 4'-O-adenylyltransferase ANT(4')-IIb from Pseudomonas aeruginosa. Protein Sci 2020; 29:758-767. [PMID: 31891426 DOI: 10.1002/pro.3815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Aminoglycosides were one of the first classes of broad-spectrum antibacterial drugs clinically used to effectively combat infections. The rise of resistance to these drugs, mediated by enzymatic modification, has since compromised their utility as a treatment option, prompting intensive research into the molecular function of resistance enzymes. Here, we report the crystal structure of aminoglycoside nucleotidyltransferase ANT(4')-IIb in apo and tobramycin-bound forms at a resolution of 1.6 and 2.15 Å, respectively. ANT(4')-IIb was discovered in the opportunistic pathogen Pseudomonas aeruginosa and conferred resistance to amikacin and tobramycin. Analysis of the ANT(4')-IIb structures revealed a two-domain organization featuring a mixed β-sheet and an α-helical bundle. ANT(4')-IIb monomers form a dimer required for its enzymatic activity, as coordination of the aminoglycoside substrate relies on residues contributed by both monomers. Despite harbouring appreciable primary sequence diversity compared to previously characterized homologues, the ANT(4')-IIb structure demonstrates a surprising level of structural conservation highlighting the high plasticity of this general protein fold. Site-directed mutagenesis of active site residues and kinetic analysis provides support for a catalytic mechanism similar to those of other nucleotidyltransferases. Using the molecular insights provided into this ANT(4')-IIb-represented enzymatic group, we provide a hypothesis for the potential evolutionary origin of these aminoglycoside resistance determinants.
Collapse
Affiliation(s)
- Cameron Semper
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID)
| | | | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID)
| | - Patrice Courvalin
- Institut Pasteur, Unité des Agents Anitbactériens, Paris Cedex, France
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID)
| |
Collapse
|
5
|
Kateete DP, Nakanjako R, Namugenyi J, Erume J, Joloba ML, Najjuka CF. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007-2009). SPRINGERPLUS 2016; 5:1308. [PMID: 27547682 PMCID: PMC4978656 DOI: 10.1186/s40064-016-2986-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/02/2016] [Indexed: 11/29/2022]
Abstract
Background Multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii are common causes of health care associated infections worldwide. Carbapenems are effective against infections caused by multidrug resistant Gram-negative bacteria including Pseudomonas and Acinetobacter species. However, their use is threatened by the emergence of carbapenemase-producing strains. The aim of this study was to determine the prevalence of carbapenem-resistant P. aeruginosa and A. baumannii at Mulago Hospital in Kampala Uganda, and to establish whether the hospital environment harbors carbapenem-resistant Gram-negative rods. Results Between February 2007 and September 2009, a total of 869 clinical specimens were processed for culture and sensitivity testing yielding 42 (5 %) P. aeruginosa and 29 (3 %) A. baumannii isolates, of which 24 % (10/42) P. aeruginosa and 31 % (9/29) A. baumannii were carbapenem-resistant. Additionally, 80 samples from the hospital environment were randomly collected and similarly processed yielding 58 % (46/80) P. aeruginosa and 14 % (11/80) A. baumannii, of which 33 % (15/46) P. aeruginosa and 55 % (6/11) A. baumannii were carbapenem-resistant. The total number of isolates studied was 128. Carbapenemase genes detected were blaIMP-like (36 %, 9/25), blaVIM-like (32 %, 8/25), blaSPM-like (16 %, 4/25); blaNDM-1-like (4 %, 1/25) in carbapenem-resistant P. aeruginosa, and blaOXA-23-like (60 %, 9/15), blaOXA-24-like (7 %, 1/15), blaOXA-58-like (13 %, 2/15), and blaVIM-like (13 %, 2/15) in carbapenem-resistant A. baumannii. Furthermore, class 1 integrons were detected in 38 % (48/128) of P. aeruginosa and Acinetobacter, 37 % (26/71) of which were in clinical isolates and 39 % (22/57) in environment isolates. Gene cassettes were found in 25 % (12/48) of integron-positive isolates. These were aminoglycoside adenylyltransferase ant(4′)-IIb (3 isolates); trimethoprim-resistant dihydrofolate reductase dfrA (2 isolates); adenyltransferase aadAB (3 isolates); QacE delta1 multidrug exporter (2 isolates); quinolone resistance pentapeptide repeat protein qnr (1 isolate); and metallo-β-lactamase genes blaVIM-4-like, blaIMP-19-like, and blaIMP-26-like (1 isolate each). Gene cassettes were missing in 75 % (36/48) of the integron-positive isolates. Conclusions The prevalence of carbapenem-resistant P. aeruginosa and Acinetobacter among hospitalized patients at Mulago Hospital is low compared to rates from South-East Asia. However, it is high among isolates and in the environment, which is of concern given that the hospital environment is a potential source of infection for hospitalized patients and health care workers. Electronic supplementary material The online version of this article (doi:10.1186/s40064-016-2986-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David P Kateete
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda ; Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ritah Nakanjako
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda ; College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Juliet Namugenyi
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda ; College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda ; Makerere University-Johns Hopkins University (MU-JHU) Core Lab at the Infectious Diseases Institute (IDI), College of Health Sciences, Makerere University, Kampala, Uganda
| | - Joseph Erume
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Moses L Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda ; Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Christine F Najjuka
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
6
|
Gharieb RM, Tartor YH, Khedr MHE. Non-Typhoidal Salmonella in poultry meat and diarrhoeic patients: prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug resistant strains. Gut Pathog 2015; 7:34. [PMID: 26705426 PMCID: PMC4690223 DOI: 10.1186/s13099-015-0081-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background The worldwide increase of food-borne infections with antibiotic resistant pathogens constitutes a major public health problem. Therefore, this study aimed to determine the prevalence, antibiogram, virulence genes profiles and integron characteristics of non-typhoidal Salmonella spp. isolated from poultry meat and diarrhoeic patients in Egypt. Methods A total of 150 samples comprising (100 poultry meat and 50 diarrhoeic patients’ stool) were examined for the presence of Salmonella spp. using culture methods followed by biochemical and serological identification of the isolates. All Salmonella strains were tested for their susceptibility to the antibiotics using disk diffusion method and screened for the presence of virulence genes and class I integrons using PCR. Results The overall prevalence of Salmonella spp. in poultry meat samples was 10 % compared to 4 % in diarrhoeic patients. All the isolates were serologically identified into Salmonella Typhimurium (seven isolates), S. Derby, S. Kiel, S. Rubislaw (one isolate, each) and untypable strains (two isolates). Antibiotic susceptibility testing showed a higher resistance of the total isolates to erythromycin and tetracycline (100 %, each), followed by amoxicillin-clavulanic acid (91.7 %), trimethoprim-sulfamethoxazole (83.3 %), streptomycin, nalidixic acid, ampicillin-sulbactam (75 %, each), gentamycin, ampicillin (66.7 %, each), chloramphenicol (58.3 %), ciprofloxacin (25 %) and ceftriaxone (16.7 %). Virulence genes profiles revealed the presence of sopB gene in five Salmonella strains isolated from poultry meat (n = 3) and humans (n = 2). Moreover, pefA was only identified in three isolates from poultry meat. On the other hand, S. Kiel and S. Typhimurium (one isolate, each) were harboring hilA and stn genes, respectively. Class 1 integrons were detected in all Salmonella spp. with variable amplicon sizes ranged from 650–3000 bp. Sequencing of these amplicons revealed the presence of gene cassettes harboring aac(3)-Id, aadA2, aadA4, aadA7, sat, dfrA15, lnuF and estX resistance genes. Nucleotide sequence analysis showed point mutations in the aac(3)-Id of S. Derby, aadA2, estX-sat genes of S. Typhimurium. Meanwhile, frame shift mutation was observed in aadA7 genes of S. Typhimurium. Conclusions Increasing rate of antimicrobial resistance and class 1 integrons among multidrug resistant Salmonella spp. has prompted calls for the reduction of antimicrobial use in livestock to prevent future emergence of resistance.
Collapse
Affiliation(s)
- Rasha M Gharieb
- Depatment of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Yasmine H Tartor
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Mariam H E Khedr
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| |
Collapse
|
7
|
Snyder LA, Loman NJ, Faraj LA, Levi K, Weinstock G, Boswell TC, Pallen MJ, Ala'Aldeen DA. Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing. ACTA ACUST UNITED AC 2013; 18. [PMID: 24176582 DOI: 10.2807/1560-7917.es2013.18.42.20611] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although previous bacterial typing methods have been informative about potential relatedness of isolates collected during outbreaks, next-generation sequencing has emerged as a powerful tool to not only look at similarity between isolates, but also put differences into biological context. In this study, we have investigated the whole genome sequence of five Pseudomonas aeruginosa isolates collected during a persistent six-year outbreak at Nottingham University Hospitals National Health Service (NHS) Trust – City Campus, United Kingdom. Sequencing, using both Roche 454 and Illumina, reveals that most of these isolates are closely related. Some regions of difference are noted between this cluster of isolates and previously published genome sequences. These include regions containing prophages and prophage remnants such as the serotype-converting bacteriophage D3 and the cytotoxin-converting phage phi CTX. Additionally, single nucleotide polymorphisms (SNPs) between the genomic sequence data reveal key single base differences that have accumulated during the course of this outbreak, giving insight into the evolution of the outbreak strain. Differentiating SNPs were found within a wide variety of genes, including lasR, nrdG, tadZ, and algB. These have been generated at a rate estimated to be one SNP every four to five months. In conclusion, we demonstrate that the single base resolution of whole genome sequencing is a powerful tool in analysis of outbreak isolates that can not only show strain similarity, but also evolution over time and potential adaptation through gene sequence changes.
Collapse
Affiliation(s)
- L A Snyder
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ilyina TS. Mobile ISCR elements: Structure, functions, and role in emergence, increase, and spread of blocks of bacterial multiple antibiotic resistance genes. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416812040040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
10
|
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2:65. [PMID: 21747788 PMCID: PMC3128976 DOI: 10.3389/fmicb.2011.00065] [Citation(s) in RCA: 564] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/24/2011] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
11
|
Abstract
Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different -OH or -NH₂ groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltransferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes.
Collapse
|
12
|
Coyne S, Courvalin P, Galimand M. Acquisition of multidrug resistance transposon Tn6061 and IS6100-mediated large chromosomal inversions in Pseudomonas aeruginosa clinical isolates. MICROBIOLOGY-SGM 2010; 156:1448-1458. [PMID: 20110294 DOI: 10.1099/mic.0.033639-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is a major human opportunistic pathogen, especially for patients in intensive care units or with cystic fibrosis. Multidrug resistance is a common feature of this species. In a previous study we detected the ant(4')-IIb gene in six multiresistant clinical isolates of P. aeruginosa, and determination of the environment of the gene led to characterization of Tn6061. This 26 586 bp element, a member of the Tn3 family of transposons, carried 10 genes conferring resistance to six drug classes. The ant(4')-IIb sequence was flanked by directly repeated copies of ISCR6 in all but one of the strains studied, consistent with ISCR6-mediated gene acquisition. Tn6061 was chromosomally located in six strains and plasmid-borne in the remaining isolate, suggesting horizontal acquisition. Duplication-insertion of IS6100, that ended Tn6061, was responsible for large chromosomal inversions. Acquisition of Tn6061 and chromosomal inversions are further examples of intricate mechanisms that contribute to the genome plasticity of P. aeruginosa.
Collapse
Affiliation(s)
- Sébastien Coyne
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Patrice Courvalin
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marc Galimand
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
13
|
Struble JM, Gill RT. Reverse engineering antibiotic sensitivity in a multidrug-resistant Pseudomonas aeruginosa isolate. Antimicrob Agents Chemother 2006; 50:2506-15. [PMID: 16801433 PMCID: PMC1489790 DOI: 10.1128/aac.01640-05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a pervasive and growing clinical problem. We describe an evaluation of a reverse engineering approach for identifying cellular mechanisms and genes that could be manipulated to increase antibiotic sensitivity in a resistant Pseudomonas aeruginosa isolate. We began by chemically mutating a broadly resistant isolate of P. aeruginosa and screening for mutants with increased sensitivity to the aminoglycoside amikacin, followed by performing whole-genome transcriptional profiling of the mutant and wild-type strains to characterize the global changes occurring as a result of the mutations. We then performed a series of assays to characterize the mechanisms involved in the increased sensitivity of the mutant strains. We report four primary results: (i) mutations that increase sensitivity occur at a high frequency (10(-2)) relative to the frequency of those that increase resistance (10(-5) to 10(-10)) and occur at a frequency 10(4) higher than the frequency of a single point mutation; (ii) transcriptional profiles were altered in sensitive mutants, resulting in overall expression patterns more similar to those of the sensitive laboratory strain PAO1 than those of the parental resistant strain; (iii) genes found from transcriptional profiling had the more dramatic changes in expression-encoded functions related to cellular membrane permeability and aminoglycoside modification, both of which are known aminoglycoside resistance mechanisms; and finally, (iv) even though we did not identify the specific sites of mutation, several different follow-up MIC assays suggested that the mutations responsible for increased sensitivity differed between sensitive mutants.
Collapse
Affiliation(s)
- Julie M Struble
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
14
|
Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 2006; 70:296-316. [PMID: 16760305 PMCID: PMC1489542 DOI: 10.1128/mmbr.00048-05] [Citation(s) in RCA: 438] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
"Common regions" (CRs), such as Orf513, are being increasingly linked to mega-antibiotic-resistant regions. While their overall nucleotide sequences show little identity to other mobile elements, amino acid alignments indicate that they possess the key motifs of IS91-like elements, which have been linked to the mobility ent plasmids in pathogenic Escherichia coli. Further inspection reveals that they possess an IS91-like origin of replication and termination sites (terIS), and therefore CRs probably transpose via a rolling-circle replication mechanism. Accordingly, in this review we have renamed CRs as ISCRs to give a more accurate reflection of their functional properties. The genetic context surrounding ISCRs indicates that they can procure 5' sequences via misreading of the cognate terIS, i.e., "unchecked transposition." Clinically, the most worrying aspect of ISCRs is that they are increasingly being linked with more potent examples of resistance, i.e., metallo-beta-lactamases in Pseudomonas aeruginosa and co-trimoxazole resistance in Stenotrophomonas maltophilia. Furthermore, if ISCR elements do move via "unchecked RC transposition," as has been speculated for ISCR1, then this mechanism provides antibiotic resistance genes with a highly mobile genetic vehicle that could greatly exceed the effects of previously reported mobile genetic mechanisms. It has been hypothesized that bacteria will surprise us by extending their "genetic construction kit" to procure and evince additional DNA and, therefore, antibiotic resistance genes. It appears that ISCR elements have now firmly established themselves within that regimen.
Collapse
Affiliation(s)
- Mark A Toleman
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Rm. 737 Botterell Hall, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
16
|
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2005; 28:519-42. [PMID: 15539072 DOI: 10.1016/j.femsre.2004.04.001] [Citation(s) in RCA: 440] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/05/2004] [Accepted: 04/17/2004] [Indexed: 11/21/2022] Open
Abstract
Chloramphenicol (Cm) and its fluorinated derivative florfenicol (Ff) represent highly potent inhibitors of bacterial protein biosynthesis. As a consequence of the use of Cm in human and veterinary medicine, bacterial pathogens of various species and genera have developed and/or acquired Cm resistance. Ff is solely used in veterinary medicine and has been introduced into clinical use in the mid-1990s. Of the Cm resistance genes known to date, only a small number also mediates resistance to Ff. In this review, we present an overview of the different mechanisms responsible for resistance to Cm and Ff with particular focus on the two different types of chloramphenicol acetyltransferases (CATs), specific exporters and multidrug transporters. Phylogenetic trees of the different CAT proteins and exporter proteins were constructed on the basis of a multisequence alignment. Moreover, information is provided on the mobile genetic elements carrying Cm or Cm/Ff resistance genes to provide a basis for the understanding of the distribution and the spread of Cm resistance--even in the absence of a selective pressure imposed by the use of Cm or Ff.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institut für Tierzucht, Bundesforschungsanstalt für Landwirtschaft (FAL), Höltystrasse 10, 31535 Neustadt-Mariensee, Germany.
| | | | | | | |
Collapse
|
17
|
Islam S, Jalal S, Wretlind B. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2004; 10:877-83. [PMID: 15373880 DOI: 10.1111/j.1469-0691.2004.00991.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MexZ-MexX-MexY multidrug efflux system in Pseudomonas aeruginosa was studied to determine its contribution to aminoglycoside resistance. Amikacin-resistant (AR) mutants were generated from P. aeruginosa strain PAO1, and clinical isolates of P. aeruginosa were collected from cystic fibrosis patients. The regulatory gene mexZ and the intergenic region (mexOZ) between mexZ and mexX were investigated for mutation by PCR and DNA sequence analysis. The results showed that 14 of 15 AR clinical isolates and one of ten laboratory mutants had at least one mutation in mexZ and/or mexOZ. To study the effect of mexZ and mexOZ mutations, the production of MexY mRNA was investigated quantitatively by real-time PCR. Seven of ten AR mutants (MIC 4-8 mg/L) produced 8-21-fold more MexY mRNA than PAO1. These isolates were sensitive to fluoroquinolones, carbapenems and ceftazidime. One AR mutant (MIC 64 mg/L) that produced > 200-fold more MexY mRNA than PAO1 was also resistant to fluoroquinolones, carbapenems and ceftazidime. Thirteen of 15 AR clinical isolates produced 3.4-727-fold more MexY mRNA. No evidence was found for the aminoglycoside-modifying enzymes 6'-N-acetyltransferase type Ib, 4'-O-nucleotidyltransferase type IIb or aminoglycoside 3'-phosphotransferase IIps in these strains. Nine AR mutants overproduced MexY without mutations in mexZ or mexOZ, suggesting that MexXY efflux is also regulated by gene(s) other than mexZ.
Collapse
Affiliation(s)
- S Islam
- Division of Clinical Bacteriology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Sobel ML, McKay GA, Poole K. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2004; 47:3202-7. [PMID: 14506031 PMCID: PMC201159 DOI: 10.1128/aac.47.10.3202-3207.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MexXY is an aminoglycoside-inducible multidrug transporter shown to contribute to intrinsic and acquired aminoglycoside resistance in laboratory isolates of Pseudomonas aeruginosa. To assess its contribution to aminoglycoside resistance in 14 clinical isolates demonstrating a panaminoglycoside resistance phenotype unlikely to be explained solely by aminoglycoside modification, expression of mexXY by these isolates was examined by reverse transcription-PCR. Elevated levels of mexXY expression were evident for most strains compared with those detected for an aminoglycoside-susceptible control strain, although there was no correlation between mexXY levels and the aminoglycoside MICs for the resistant strains, indicating that if MexXY was playing a role, other factors were also contributing. Deletion of mexXY from 9 of the 14 isolates resulted in enhanced susceptibilities to multiple aminoglycosides, confirming the contribution of this efflux system to the aminoglycoside resistance of these clinical isolates. Still, the impact of MexXY loss varied, with some strains clearly more or less dependent on MexXY for aminoglycoside resistance. Expression of mexXY also varied in these strains, with some showing high-level expression of the efflux genes independent of aminoglycoside exposure (aminoglycoside-independent hyperexpression) and others showing hyperexpression of the efflux genes that was to a greater or lesser degree aminoglycoside dependent. None of these strains carried mutations in mexZ, which encodes a negative regulator of mexXY expression, or in the mexZ-mexXY intergenic region. Thus, mexXY hyperexpression in aminoglycoside-resistant clinical isolates occurs via mutation in one or more as yet unidentified genes.
Collapse
Affiliation(s)
- Mara L Sobel
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | |
Collapse
|
19
|
Pong A, Bradley JS. Clinical challenges of nosocomial infections caused by antibiotic-resistant pathogens in pediatrics. ACTA ACUST UNITED AC 2004; 15:21-9. [PMID: 15175992 DOI: 10.1053/j.spid.2004.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance in nosocomial infections is an ever-increasing problem as health care institutions provide care for children with more complicated medical and surgical problems. Several mechanisms of antibiotic resistance are reviewed for both gram-negative and gram-positive nosocomial pathogens. These adaptive resistance mechanisms allow organisms to survive in an environment of extensive antibiotic use and result in clinically significant infections. Mobile genetic elements have facilitated the rapid spread of antibiotic resistance within and among species. The clinical challenge faced by many practitioners is to understand these mechanisms of antibiotic resistance and to develop strategies for successfully treating infection caused by resistant pathogens. Nosocomial outbreaks caused by resistant organisms are described, and an approach to empiric therapy based on presumed pathogens, site of infection, and local resistance patterns is discussed.
Collapse
Affiliation(s)
- Alice Pong
- Division of Infectious Diseases, Children's Hospital and Health Center, San Diego, CA 92123, USA
| | | |
Collapse
|
20
|
Janjetović S, Šmitran A, Musić-Rakita M, Petković M. Antimicrobial resistance of Pseudomonas aeruginosa strains isolated at the Clinical Center Banja Luka in three-year period (01/01/2000-31/12/2002). SCRIPTA MEDICA 2004. [DOI: 10.5937/scrimed0402091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|