1
|
da Costa VM, Santos TT, Pinto NV, Carneiro G, Frézard F, Marques Borges GS. To heat or not to heat: the impact of temperature on the aggregation state of amphotericin B in drug delivery systems. Nanomedicine (Lond) 2024; 19:1953-1956. [PMID: 39119655 PMCID: PMC11485903 DOI: 10.1080/17435889.2024.2382669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Valéria Moreira da Costa
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Thais Tunes Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natalha Vicentina Pinto
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Silva Marques Borges
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
2
|
Svirkin Y, Lee J, Marx R, Yoon S, Landrau N, Kaisar MA, Qin B, Park JH, Alam K, Kozak D, Wang Y, Xu X, Zheng J, Rivnay B. Amphotericin B release rate is the link between drug status in the liposomal bilayer and toxicity. Asian J Pharm Sci 2022; 17:544-556. [PMID: 36105314 PMCID: PMC9459057 DOI: 10.1016/j.ajps.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Amphotericin B (AmB) is an amphiphilic drug commonly formulated in liposomes and administered intravenously to treat systemic fungal infections. Recent studies on the liposomal drug product have shed light on the AmB aggregation status in the bilayer, which heat treatment (curing) modifies. Although toxicity was found related to aggregation status - loose aggregates significantly more toxic than tight aggregates - the precise mechanism linking aggregation and toxicity was not well understood. This study directly measured drug release rate from various AmB liposomal preparations made with modified curing protocols to evaluate correlations among drug aggregation state, drug release, and in vitro toxicity. UV–Vis spectroscopy of these products detected unique curing-induced changes in the UV spectral features: a ∼25 nm blue-shift of the main absorption peak (λmax) in aqueous buffer and a decrease in the OD346/OD322 ratio upon thermal curing, reflecting tighter aggregation. In vitro release testing (IVRT) data showed, by applying and fitting first-order release kinetic models for one or two pools, that curing impacts two significant changes: a 3–5-fold drop in the overall drug release rate and a ten-fold decrease in the ratio between the loosely aggregated and the tightly aggregated, more thermodynamically stable drug pool. The kinetic data thus corroborated the trend independently deduced from the UV–Vis spectral data. The in vitro toxicity assay indicated a decreased toxicity with curing, as shown by the significantly increased concentration, causing half-maximal potassium release (TC50). The data suggest that the release of AmB requires dissociation of the tight complexes within the bilayer and that the reduced toxicity relates to this slower rate of dissociation. This study demonstrates the relationship between AmB aggregation status within the lipid bilayer and drug release (directly measured rate constants), providing a mechanistic link between aggregation status and in vitro toxicity in the liposomal formulations.
Collapse
|
3
|
Silva-Carvalho R, Leão T, Gama FM, Tomás AM. Covalent Conjugation of Amphotericin B to Hyaluronic Acid: An Injectable Water-Soluble Conjugate with Reduced Toxicity and Anti-Leishmanial Potential. Biomacromolecules 2022; 23:1169-1182. [DOI: 10.1021/acs.biomac.1c01451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ricardo Silva-Carvalho
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Teresa Leão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco M. Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana M. Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Silva-Carvalho R, Leão T, Bourbon AI, Gonçalves C, Pastrana L, Parpot P, Amorim I, Tomas AM, Portela da Gama M. Hyaluronic acid-Amphotericin B Nanocomplexes: a Promising Anti-Leishmanial Drug Delivery System. Biomater Sci 2022; 10:1952-1967. [DOI: 10.1039/d1bm01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an effective amphotericin B (AmB) formulation to replace actual treatments available for leishmaniasis, which present serious drawbacks, is a challenge. Here we report the development of hyaluronic...
Collapse
|
5
|
Alenazi SA, Elmorsy E, Al-Ghafari A, El-Husseini A. Effect of amphotericin B-deoxycholate (Fungizone) on the mitochondria of Wistar rats' renal proximal tubules cells. J Appl Toxicol 2021; 41:1620-1633. [PMID: 33740284 DOI: 10.1002/jat.4151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Amphotericin B-deoxycholate (Fungizone [FZ]) is a widely used potent antimycotic drug in spite of its nephrotoxic effect via different mechanisms. The effect of FZ on renal cell bioenergetics is not clear. The current study evaluated the effect of FZ on the bioenergetics of albino rats' isolated renal proximal tubule cells (PTCs). The cytotoxic effect of FZ on the isolated renal cells was assessed by MTT and lactate dehydrogenase (LDH) assays. The effect of FZ on the PTCs uptake (OAT1 and OCT2) and efflux (P-gp and MRP2) transporters was evaluated. Then, the effect of FZ on mitochondria was assessed by studying complexes I-IV activities, lactate assay, oxygen consumption rates (OCR), and western blotting for all mitochondrial complexes. Moreover, the effect of FZ on mitochondrial membrane fluidity (MMF) and fatty acids composition was evaluated. Additionally, the protective effect of coenzyme q10 was studied. Outcomes showed that FZ was cytotoxic to the PTCs in a concentration and time-dependent patterns. FZ significantly inhibited the studied uptake and efflux tubular transporters with inhibition of the mitochondrial complexes activities and parallel increase in lactate production and decrease in OCRs. Finally, FZ significantly reduced the expression of all mitochondrial complexes in addition to significant increase in MMF and MMFA concentration. Coenzyme Q10 was found to significantly decrease FZ-induced cytotoxicity and transporters impairment in the PTC. FZ significantly inhibits bioenergetics of PTC, which may stimulate the cascade of cell death and clinical nephrotoxicity.
Collapse
Affiliation(s)
- Shehab Ahmed Alenazi
- Department of Pediatrics, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Khadke S, Roces CB, Donaghey R, Giacobbo V, Su Y, Perrie Y. Scalable solvent-free production of liposomes. J Pharm Pharmacol 2020; 72:1328-1340. [PMID: 32671856 DOI: 10.1111/jphp.13329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/12/2020] [Accepted: 05/23/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVES A major challenge faced with the manufacture of liposomes is the high volumes of organic solvents used during manufacturing. Therefore, we have implemented an organic solvent-free production method for drug-loaded liposomes and demonstrated its applicability with both aqueous core-loaded and bilayer-loaded drugs. METHODS Liposomes were produced by high shear mixing dry powder lipids with an aqueous buffer, followed by down-sizing using a Microfluidizer processor. Liposomes were purified via tangential flow filtration and characterised in terms of size, polydispersity index, zeta potential and drug loading. KEY FINDINGS Doxorubicin-loaded PEGylated liposomes can be manufactured using this solvent-free method with particle sizes of 100-110 nm, low polydispersity index (PDI) (<0.2) and high drug loading (97-98%). If required, liposomes can be further down-sized via microfluidic processing without impacting drug loading. Similar results were achieved with non-PEGylated liposomes. With bilayer-loaded amphotericin B liposomes, again liposomes can be prepared within a clinically appropriate size range (100-110 nm in size, low PDI) with high drug loading (98-100%). CONCLUSIONS We apply a simple and scalable solvent-free method for the production of both aqueous core or bilayer drug-loaded liposomes.
Collapse
Affiliation(s)
- Swapnil Khadke
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Carla B Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rachel Donaghey
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Valeria Giacobbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yang Su
- Microfluidics International Corporation, Westwood, MA, USA
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
7
|
Liu H, Rivnay B, Avery K, Myung JH, Kozak D, Landrau N, Nivorozhkin A, Ashraf M, Yoon S. Optimization of the manufacturing process of a complex amphotericin B liposomal formulation using quality by design approach. Int J Pharm 2020; 585:119473. [PMID: 32473373 DOI: 10.1016/j.ijpharm.2020.119473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
In this work, the manufacturing process of a complex liposomal amphotericin B (AmB) product was optimized using quality by design (QbD) approach. A comprehensive QbD-based process understanding and design space (DS) to the critical process parameters (CPPs) is essential to the drug development and consistent quality control. The process was based on the acid-aided formation of drug-lipid complexes in a methanol-chloroform mixture (step I) followed by spray drying (step II), hydration and liposome formation by microfluidization (step III), and lyophilization (step IV). Firstly, the risk assessment was conducted to identify the critical process parameters among the four key steps. Nine CPPs and five CQAs (API Monomer identity (absorbance main peak at 321 nm), API Aggregation identity (absorbance peak ratio, OD 415 nm/321 nm), particle size, in-vitro toxicity, and the cake quality) were determined based on their severity and occurrences with their contribution to the quality target product profile (QTPP). Based on the risk assessment results, the final screening design of experiments (DoE) was developed using fractional factorial design. Secondly, the empirical equation was developed for each CQA based on experimental data. The impact of CPPs on the CQAs was analyzed using the coefficient plot and contour plot. In addition to the effect of individual formulation parameters and process parameters, the effects of the four key separate steps were also evaluated and compared. In general, the curing temperature during microfluidization has been identified as the most significant CPP. Finally, design space exploration was carried out to demonstrate how the critical process parameters can be varied to consistently produce a drug product with desired characteristics. The design space size increased at the higher value of the curing temperature, the API to phospholipid ratio (API:PL), and the lower value of the DSPG to phospholipid ratio (PG:PL) and aspirator rate.
Collapse
Affiliation(s)
- Huolong Liu
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Benjamin Rivnay
- Landrau Scientific Innovations, LLC, 22 Laurel Street, Leominster, MA 01453, USA
| | - Ken Avery
- Landrau Scientific Innovations, LLC, 22 Laurel Street, Leominster, MA 01453, USA
| | - Ja Hye Myung
- U.S. Food and Drug Administration, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Darby Kozak
- U.S. Food and Drug Administration, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Nelson Landrau
- Landrau Scientific Innovations, LLC, 22 Laurel Street, Leominster, MA 01453, USA
| | - Alex Nivorozhkin
- Neo-Advent Technologies, LLC, 410 Great Rd., Suite 4-2-2, Littleton, MA 01460, USA
| | - Muhammad Ashraf
- U.S. Food and Drug Administration, Office of Testing and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
8
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
9
|
Critical process parameters in manufacturing of liposomal formulations of amphotericin B. Int J Pharm 2019; 565:447-457. [DOI: 10.1016/j.ijpharm.2019.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022]
|
10
|
Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol 2018; 24:504-512. [DOI: 10.1080/10837450.2018.1515225] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Nashiru Billa
- School of Pharmacy, University of Nottingham, Semenyih, Malaysia
| |
Collapse
|
11
|
Zia Q, Mohammad O, Rauf MA, Khan W, Zubair S. Biomimetically engineered Amphotericin B nano-aggregates circumvent toxicity constraints and treat systemic fungal infection in experimental animals. Sci Rep 2017; 7:11873. [PMID: 28928478 PMCID: PMC5605718 DOI: 10.1038/s41598-017-11847-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/15/2017] [Indexed: 12/30/2022] Open
Abstract
Biomimetic synthesis of nanoparticles offers a convenient and bio friendly approach to fabricate complex structures with sub-nanometer precision from simple precursor components. In the present study, we have synthesized nanoparticles of Amphotericin B (AmB), a potent antifungal agent, using Aloe vera leaf extract. The synthesis of AmB nano-assemblies (AmB-NAs) was established employing spectro-photometric and electron microscopic studies, while their crystalline nature was established by X-ray diffraction. AmB-nano-formulation showed much higher stability in both phosphate buffer saline and serum and exhibit sustained release of parent drug over an extended time period. The as-synthesized AmB-NA possessed significantly less haemolysis as well as nephrotoxicity in the host at par with Ambisome®, a liposomized AmB formulation. Interestingly, the AmB-NAs were more effective in killing various fungal pathogens including Candida spp. and evoked less drug related toxic manifestations in the host as compared to free form of the drug. The data of the present study suggest that biomimetically synthesized AmB-NA circumvent toxicity issues and offer a promising approach to eliminate systemic fungal infections in Balb/C mice.
Collapse
Affiliation(s)
- Qamar Zia
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Ahmar Rauf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Wasi Khan
- Department of Applied Physics, Aligarh Muslim University, Aligarh, India
| | - Swaleha Zubair
- Women's College, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
12
|
A novel performing PEG-cholane nanoformulation for Amphotericin B delivery. Int J Pharm 2015; 495:41-51. [DOI: 10.1016/j.ijpharm.2015.08.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022]
|
13
|
Amphotericin B-induced renal tubular cell injury is mediated by Na+ Influx through ion-permeable pores and subsequent activation of mitogen-activated protein kinases and elevation of intracellular Ca2+ concentration. Antimicrob Agents Chemother 2009; 53:1420-6. [PMID: 19139282 DOI: 10.1128/aac.01137-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amphotericin B (AMB) is one of the most effective antifungal agents; however, its use is often limited by the occurrence of adverse events, especially nephrotoxicity. The present study was designed to determine the possible mechanisms underlying the nephrotoxic action of AMB. The exposure of a porcine proximal renal tubular cell line (LLC-PK1 cells) to AMB caused cell injury, as assessed by mitochondrial enzyme activity, the leakage of lactate dehydrogenase, and tissue ATP depletion. Propidium iodide uptake was enhanced, while terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was not affected by AMB, suggesting a lack of involvement of apoptosis in AMB-induced cell injury. The cell injury was inhibited by the depletion of membrane cholesterol with methyl-beta-cyclodextrin, which lowered the extracellular Na(+) concentration or the chelation of intracellular Ca(2+). The rise in the intracellular Ca(2+) concentration may be mediated through the activation of the ryanodine receptor (RyR) on the endoplasmic reticulum and the mitochondrial Na(+)-Ca(2+) exchanger, since cell injury was attenuated by dantrolene (an RyR antagonist) and CGP37157 (an Na(+)-Ca(2+) exchanger inhibitor). Moreover, AMB-induced cell injury was reversed by PD169316 (a p38 mitogen-activated protein [MAP] kinase inhibitor), c-Jun N-terminal kinase inhibitor II, and PD98059 (a MEK1/2 inhibitor). The phosphorylations of these MAP kinases were enhanced by AMB in a calcium-independent manner, suggesting the involvement of MAP kinases in AMB-induced cell injury. These findings suggest that Na(+) entry through membrane pores formed by the association of AMB with membrane cholesterol leads to the activation of MAP kinases and the elevation of the intracellular Ca(2+) concentration, leading to renal tubular cell injury.
Collapse
|
14
|
Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. Amphotericin B Formulations and Drug Targeting. J Pharm Sci 2008; 97:2405-25. [PMID: 17893903 DOI: 10.1002/jps.21179] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amphotericin B is a low-soluble polyene antibiotic which is able to self-aggregate. The aggregation state can modify its activity and pharmacokinetical characteristics. In spite of its high toxicity it is still widely employed for the treatment of systemic fungal infections and parasitic disease and different formulations are marketed. Some of these formulations, such as liposomal formulations, can be considered as classical examples of drug targeting. The pharmacokinetics, toxicity and activity are clearly dependent on the type of amphotericin B formulation. New drug delivery systems such as liposomes, nanospheres and microspheres can result in higher concentrations of AMB in the liver and spleen, but lower concentrations in kidney and lungs, so decreasing its toxicity. Moreover, the administration of these drug delivery systems can enhance the drug accessibility to organs and tissues (e.g., bone marrow) otherwise inaccessible to the free drug. During the last few years, new AMB formulations (AmBisome, Abelcet, and Amphotec) with an improved efficacy/toxicity ratio have been marketed. This review compares the different formulations of amphotericin B in terms of pharmacokinetics, toxicity and activity and discusses the possible drug targeting effect of some of these new formulations.
Collapse
Affiliation(s)
- J J Torrado
- Dpto Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Complutense University of Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
15
|
Espada R, Valdespina S, Dea MA, Molero G, Ballesteros MP, Bolás F, Torrado JJ. In vivo distribution and therapeutic efficacy of a novel amphotericin B poly-aggregated formulation. J Antimicrob Chemother 2008; 61:1125-31. [DOI: 10.1093/jac/dkn048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Stoodley R, Wasan KM, Bizzotto D. Fluorescence of amphotericin B-deoxycholate (fungizone) monomers and aggregates and the effect of heat-treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:8718-25. [PMID: 17637009 DOI: 10.1021/la7008573] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fluorescence excitation and emission spectra are reported for the polyene macrolide antifungal agent Amphotericin B formulated as micellar dispersion Fungizone (FZ) and its modified counterpart heat-treated Fungizone. The addition of sodium dodecyl sulfate or sodium deoxycholate surfactant to modulate the aggregation state of Amphotericin B confirms that the monomer and dimer states have different fluorescence spectra. Energy transfer from excited dimer to monomer is observed. Both FZ and heat-treated FZ (HTFZ) show expected S1 --> S0 fluorescence emission as well as anti-Kasha fluorescence emission from the S2 state. The excitation and S1 --> S0 emission spectra of HTFZ are similar to those of FZ, while the S2 --> S0 fluorescence differs in intensity between them. The variation in the rate constant for internal conversion from S2 to S1 as the surfactant concentration is increased differs for FZ and HTFZ; we propose that this may form a new basis for examining the super-aggregated character of AmB preparations. FZ and HTFZ have a similar stability to disaggregation by added sodium dodecyl sulfate surfactant. These findings provide the groundwork for future fluorescence characterization of FZ or HTFZ interactions with cell membranes.
Collapse
Affiliation(s)
- Robin Stoodley
- Advanced Materials and Process Engineering Laboratory, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | | | | |
Collapse
|
17
|
Abdel-Salam HA. In vitro susceptibility of Cryptococcus neoformans clinical isolates from Egypt to seven antifungal drugs. Mycoses 2005; 48:327-32. [PMID: 16115103 DOI: 10.1111/j.1439-0507.2005.01137.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The in vitro susceptibility of 29 clinical isolates of Cryptococcus neoformans to fluconazole, miconazole, itraconazole, ketoconazole, flucytosine, nystatin and amphotericin B was tested by broth and colorimetric microdilution methods. Most of the isolates showed uniform patterns of susceptibility to the used antifungal agents. Only three isolates exhibited resistance [fourfold or greater rise in the minimum inhibitory concentrations (MICs)] to the tested antifungal drugs. The MIC50 and MIC90 were 0.5-8 mg l(-1) for 5-flucytosine, 0.2-8.25 mg l(-1) for nystatin, 0.5-16 mg l(-1) for fluconazole and 0.2-12.5 mg l(-1) for miconazole. However, MIC50 and MIC90 were in narrow range for the clinical yeast isolates in both methods used and showed 0.5-1 mg l(-1) for amphotericin B and 0.016-0.25 mg l(-1) for both ketoconazole and itraconazole. The combination of fluconazole plus flucytosine showed greater synergistic and fungicidal activity compared with that of fluconazole plus amphotericin B or the use of individual drugs.
Collapse
Affiliation(s)
- Hassan A Abdel-Salam
- Department of Microbiology, Faculty of Pharmacy, University of Zagazig, Zagazig, Egypt.
| |
Collapse
|
18
|
Leon C, Taylor R, Bartlett KH, Wasan KM. Effect of heat-treatment and the role of phospholipases on Fungizone®-induced cytotoxicity within human kidney proximal tubular (HK-2) cells and Aspergillus fumigatus. Int J Pharm 2005; 298:211-8. [PMID: 15950412 DOI: 10.1016/j.ijpharm.2005.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 11/17/2022]
Abstract
The objectives of this study were to determine the effects of heat-treatment on Fungizone (FZ)-induced cytotoxicity in human kidney (HK-2) cells and fungal isolates of Aspergillus fumigatus, and to determine the possible role of phospholipases (PLA2 and PLC) on heat-treated FZ (HFZ)-associated renal cell toxicity. HK-2 cells were grown at 37 degrees C in T75 flasks and seeded in 96-well plates at 20,000 cells/well. FZ and HFZ concentrations of 10, 25 and 50 microg/mL of AmpB were prepared. Snake venom PLA2 and PLC (2.15 U/mL) were pre-incubated with HFZ for 1h prior to addition to the cells. After 18 h of incubation, an MTS assay was performed to assess cell viability through mitochondrial respiration. A spore suspension of A. fumigatus was prepared and 96-well plates were seeded at 500,000 spores/well. HFZ and FZ were prepared as above and incubated with the fungi at 35 degrees C. After 72 h, the minimum inhibitory concentration (MIC) was determined as the lowest concentration of drug that inhibited visible growth. Student-Newman-Keuls multiple comparisons tests were conducted to determine statistical significance. FZ-induced cytotoxicity was significantly greater than for HFZ in HK-2 cells at amphotericin B (AmpB) concentrations between 10 and 50 microg AmpB/mL (n = 5-9, p < 0.05). HFZ and FZ were found to have similar minimum inhibitory concentration (MIC) ranges for A. fumigatus (0.225-0.25 microg) AmpB/mL; (n = 6). The addition of PLA2 and PLC to 50 microg heat-treated AmpB/mL significantly enhanced the cytotoxicity compared to controls (n = 6, p < 0.05). The presence of the phospholipases did not alter FZ-associated renal cell toxicity. Taken together, these findings suggest heat-treatment significantly decreased FZ-induced cytotoxicity in HK-2 cells without altering toxicity against a reference strain of A. fumigatus. In addition, PLA2 and PLC enhanced the renal toxicity associated with HFZ, but not that of FZ.
Collapse
Affiliation(s)
- Carlos Leon
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
19
|
Sánchez-Brunete JA, Dea MA, Rama S, Bolás F, Alunda JM, Torrado-Santiago S, Torrado JJ. Amphotericin B molecular organization as an essential factor to improve activity/toxicity ratio in the treatment of visceral leishmaniasis. J Drug Target 2005; 12:453-60. [PMID: 15621670 DOI: 10.1080/10611860400006596] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An in vivo study has been performed in order to determine the influence of amphotericin B (AMB) molecular organization on the toxicity and activity of this drug in the treatment of experimental visceral leishmaniasis. Three formulations with similar composition but different drug molecular self-association in aqueous media were prepared. Acute toxicity was evaluated by injecting them in healthy hamsters. Sub-acute toxicity and efficacy were studied administering them to animals previously infected with Leishmania infantum. The preparation with drug molecules completely dissolved into monomers (formulation "C") and produced the highest acute toxicity. The formulation whose AMB molecules were disposed as non-water-soluble multi-aggregates (formulation "B") proved to provide the lowest acute toxicity. This formula also showed an improved activity, mainly in the liver, if compared with the third tested formulation containing AMB molecules disposed as smaller dimerical "water-soluble" aggregates (formulation "A"). As a conclusion, molecular aggregation in biological media should be an important factor to consider when researching or optimizing medicines containing AMB. The liberation of molecules as large dispersed non-water-soluble multi-aggregates seems to improve the narrow therapeutic margin attached to the use of this drug.
Collapse
Affiliation(s)
- J A Sánchez-Brunete
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|