1
|
Chen YY, Chi H, Liao WC, Li SW, Yang YC, Lin HC, Chang HP, Pan YJ, Chiang RL, Hsieh YC. Genomic analysis of penicillin-binding proteins and recombination events in an emerging amoxicillin- and meropenem-resistant PMEN3 (Spain 9V-3, ST156) variant in Taiwan and comparison with global descendants of this lineage. Microbiol Spectr 2023; 11:e0184023. [PMID: 37930013 PMCID: PMC10715136 DOI: 10.1128/spectrum.01840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
From 2008 to 2020, the Taiwan National Notifiable Disease Surveillance System database demonstrated that the incidence of non-vaccine serotype 23A invasive pneumococcal disease (IPD) approximately doubled. In this study, 276 non-repetitive pneumococcal clinical isolates were collected from two medical centers in Taiwan between 2019 and 2021. Of these 267 pneumococci, 60 were serotype 23A. Among them, 50 (83%) of serotype 23A isolates belonged to the sequence type (ST) 166 variant of the Spain9V-3 clone. Pneumococcal 23A-ST166 isolates were collected to assess their evolutionary relationships using whole-genome sequencing. All 23A-ST166 isolates were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299, the newly identified PBP2x-299 in Taiwan. Transformation of the pbp1a, pbp2b, and pbp2x alleles into the β-lactam-susceptible R6 strain revealed that PBP2x-299 and PBP2b-11 increased the MIC of ceftriaxone and meropenem by 16-fold, respectively. Prediction analysis of recombination sites in PMEN3 descendants (23A-ST166 in Taiwan, 35B-ST156 in the United States, and 11A-ST838/ST6521 in Europe) showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displayed an evolutionary capacity for global dissemination and persistence, increasing IPD incidence, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases, and contributing to high antibiotic resistance. A clonal shift with a highly β-lactam-resistant non-vaccine serotype 23A, from ST338 to ST166, increased in Taiwan. ST166 is a single-locus variant of the Spain9V-3 clone, which is also called the PMEN3 lineage. All 23A-ST166 isolates, in this study, were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299. PBP2x-299 and PBP2b-11 contributed to the increasing MIC of ceftriaxone and meropenem, respectively. Prediction analysis of recombination sites in PMEN3 descendants showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displays the evolutionary capacity for dissemination, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases and contributing to high antibiotic resistance.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hsin Chi
- Department of Medicine, MacKay Medicine College, New Taipei, Taiwan
- Department of Pediatrics, MacKay Children’s Hospital and MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Chao Liao
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Yu-Ching Yang
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Ho-Chen Lin
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hsiao-Pei Chang
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ruei-Lin Chiang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
2
|
Gibson PS, Veening JW. Gaps in the wall: understanding cell wall biology to tackle amoxicillin resistance in Streptococcus pneumoniae. Curr Opin Microbiol 2023; 72:102261. [PMID: 36638546 DOI: 10.1016/j.mib.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and one of the main pathogens responsible for otitis media infections in children. Amoxicillin (AMX) is a broad-spectrum β-lactam antibiotic, used frequently for the treatment of bacterial respiratory tract infections. Here, we discuss the pneumococcal response to AMX, including the mode of action of AMX, the effects on autolysin regulation, and the evolution of resistance through natural transformation. We discuss current knowledge gaps in the synthesis and translocation of peptidoglycan and teichoic acids, major constituents of the pneumococcal cell wall and critical to AMX activity. Furthermore, an outlook of AMX resistance research is presented, including the development of natural competence inhibitors to block evolution via horizontal gene transfer, and the use of high-throughput essentiality screens for the discovery of novel cotherapeutics.
Collapse
Affiliation(s)
- Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Zhou M, Wang L, Wang Z, Kudinha T, Wang Y, Xu Y, Liu Z. Molecular Characterization of Penicillin-Binding Protein2x, 2b and 1a of Streptococcus pneumoniae Causing Invasive Pneumococcal Diseases in China: A Multicenter Study. Front Microbiol 2022; 13:838790. [PMID: 35300486 PMCID: PMC8921733 DOI: 10.3389/fmicb.2022.838790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pneumoniae is a common human pathogen that can cause severe invasive pneumococcal diseases (IPDs). Penicillin-binding proteins (PBPs) are the targets for β-lactam antibiotics (BLAs), which are the common empirical drugs for treatment of pneumococcal infection. This study investigated the serotype distribution and antibiotic resistance patterns of S. pneumoniae strains causing IPD in China, including exploring the association between penicillin (PEN) susceptibility and PBPs variations. A total of 300 invasive S. pneumoniae isolates were collected from 27 teaching hospitals in China (2010-2015). Serotypes were determined by Quellung reaction. Serotypes 23F and 19F were the commonest serotypes in isolates from cerebrospinal fluid (CSF), whilst serotypes 19A and 23F were most commonly seen in non-CSF specimens. Among the 300 invasive S. pneumoniae strains, only one strain (serotype 6A, MIC = 0.25 μg/ml) with PEN MIC value ≤ 0.25 μg/ml did not have any substitutions in the PBPs active sites. All the strains with PEN MIC value ≥ 0.5 μg/ml had different substitutions within PBPs active sites. Substitutions in PBP2b and PBP2x active sites were common in low-level penicillin-resistant S. pneumoniae (PRSP) strains (MIC = 0.5 μg/ml), with or without PBP1a substitution, while all strains with PEN MIC ≥ 1 μg/ml had substitutions in PBP1a active sites, accompanied by PBP2b and PBP2x active site substitutions. Based on the three PBPs substitution combinations, a high degree of diversity was observed amongst the isolates. This study provides some new insights for understanding the serology and antibiotic resistance dynamics of S. pneumoniae causing IPD in China. However, further genomic studies are needed to facilitate a comprehensive understanding of antibiotic resistance mechanisms of S. pneumoniae.
Collapse
Affiliation(s)
- Menglan Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Lulu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziran Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, Australia.,NSW Health Pathology, Regional and Rural, Orange Hospital, Orange, NSW, Australia
| | - Yao Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Zhengyin Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Li L, Zhou J, Li M, Yu Z, Gao K, Yang J, Cheng P, Yang J, Zhang W, Yu Z, Sun H. Comparative Genomic Analysis of Streptococcus pneumoniae Strains: Penicillin Non-susceptible Multi-drug-Resistant Serotype 19A Isolates. Curr Microbiol 2022; 79:49. [PMID: 34982234 DOI: 10.1007/s00284-021-02715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/11/2021] [Indexed: 11/03/2022]
Abstract
Streptococcus pneumoniae can cause several diseases including otitis media, sinusitis, pneumonia, sepsis and meningitis. The introduction of pneumococcal vaccines has changed the molecular epidemiological and antibiotic resistance profiles of related diseases. Analysis of molecular patterns and genome sequences of clinical strains may facilitate the identification of novel drug resistance mechanism. Three multidrug resistance 19A isolates were verified, serotyped and the complete genomes were sequenced combining the Pacific Biosciences and the Illumina Miseq platform. Genomic annotation revealed that similar central networks were found in the clinical isolates, and Mauve alignments indicated high similarity between different strains. The pan-genome analysis showed the shared and unique cluster in the strains. Mobile elements were predicted in the isolates including prophages and CRISPER systems, which may participate in the virulence and antibiotic resistance of the strains. The presence of 31 virulence factor genes was predicted from other pathogens for PRSP 19339 and 19343, while 30 for PRSP 19087. Meanwhile, 33 genes antibiotic resistance genes were predicted including antibiotic resistance genes, antibiotic-target genes and antibiotic biosynthesis genes. Further analysis of the antibiotic resistance genes revealed new mutations in the isolates. By comparative genomic analysis, we contributed to the understanding of resistance mechanism of the clinical isolates with other serotype strains, which could facilitate the concrete drug resistance mechanism study.
Collapse
Affiliation(s)
- Lifeng Li
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Juanjuan Zhou
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Mingchao Li
- Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zengyuan Yu
- Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Kaijie Gao
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Junwen Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ping Cheng
- Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Junmei Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Wancun Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Zhidan Yu
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Huiqing Sun
- Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
5
|
Hathout RM, Abdelhamid SG, El-Housseiny GS, Metwally AA. Comparing cefotaxime and ceftriaxone in combating meningitis through nose-to-brain delivery using bio/chemoinformatics tools. Sci Rep 2020; 10:21250. [PMID: 33277611 PMCID: PMC7718871 DOI: 10.1038/s41598-020-78327-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Bio/chemoinformatics tools can be deployed to compare antimicrobial agents aiming to select an efficient nose-to-brain formulation targeting the meningitis disease by utilizing the differences in the main structural, topological and electronic descriptors of the drugs. Cefotaxime and ceftriaxone were compared at the formulation level (by comparing the loading in gelatin and tripalmitin matrices as bases for the formation of nanoparticulate systems), at the biopharmaceutical level (through the interaction with mucin and the P-gp efflux pumps) and at the therapeutic level (through studying the interaction with S. pneumoniae bacterial receptors). GROMACS v4.6.5 software package was used to carry-out all-atom molecular dynamics simulations. Higher affinity of ceftriaxone was observed compared to cefotaxime on the investigated biopharmaceutical and therapeutic macromolecules. Both drugs showed successful docking on mucin, P-gp efflux pump and S. pneumoniae PBP1a and 2b; but ceftriaxone showed higher affinity to the P-gp efflux pump proteins and higher docking on mucin. Ceftriaxone showed less out-of-matrix diffusion and higher entrapment on the gelatin and the tripalmitin matrices. Accordingly, Ceftriaxone gelatin nanospheres or tripalmitin solid lipid nanoparticles may pose a more feasible and efficient nose-to-brain formulation targeting the meningitis disease compared to the cefotaxime counterparts.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt.
| | | | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdelkader A Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
6
|
Hanachi M, Kiran A, Cornick J, Harigua-Souiai E, Everett D, Benkahla A, Souiai O. Genomic Characteristics of Invasive Streptococcus pneumoniae Serotype 1 in New Caledonia Prior to the Introduction of PCV13. Bioinform Biol Insights 2020; 14:1177932220962106. [PMID: 33088176 PMCID: PMC7545519 DOI: 10.1177/1177932220962106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae serotype 1 is a common cause of global invasive pneumococcal disease. In New Caledonia, serotype 1 is the most prevalent serotype and led to two major outbreaks reported in the 2000s. The pneumococcal conjugate vaccine 13 (PCV13) was introduced into the vaccination routine, intending to prevent the expansion of serotype 1 in New Caledonia. Aiming to provide a baseline for monitoring the post-PCV13 changes, we performed a whole-genome sequence analysis on 67 serotype 1 isolates collected prior to the PCV13 introduction. To highlight the S. pneumoniae serotype 1 population structure, we performed a multilocus sequence typing (MLST) analysis revealing that NC serotype 1 consisted of 2 sequence types: ST3717 and the highly dominant ST306. Both sequence types harbored the same resistance genes to beta-lactams, macrolide, streptogramin B, fluoroquinolone, and lincosamide antibiotics. We have also identified 36 virulence genes that were ubiquitous to all the isolates. Among these virulence genes, the pneumolysin sequence presented an allelic profile associated with disease outbreaks and reduced hemolytic activity. Moreover, recombination hotspots were identified in 4 virulence genes and more notably in the cps locus (cps2L), potentially leading to capsular switching, a major mechanism of the emergence of nonvaccine types. In summary, this study represents the first overview of the genomic characteristics of S. pneumoniae serotype 1 in New Caledonia prior to the introduction of PCV13. This preliminary description represents a baseline to assess the impact of PCV13 on serotype 1 population structure and genomic diversity.
Collapse
Affiliation(s)
- Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia.,Faculty of Science of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Anmol Kiran
- Queens Research Institute, University of Edinburgh, Edinburgh, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Jennifer Cornick
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Departement of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology-LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Dean Everett
- Queens Research Institute, University of Edinburgh, Edinburgh, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia.,Institut Supérieur des Technologies Médicales de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Wang Y, Xu J, Kong L, Li B, Li H, Huang WE, Zheng C. Raman-activated sorting of antibiotic-resistant bacteria in human gut microbiota. Environ Microbiol 2020; 22:2613-2624. [PMID: 32114713 PMCID: PMC7383503 DOI: 10.1111/1462-2920.14962] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/26/2020] [Indexed: 01/12/2023]
Abstract
The antibiotic‐resistant bacteria (ARB) and antibiotic‐resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman–DIP) to detect metabolic active ARB (MA‐ARB) in situ at the single‐cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA‐ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA‐ARB, Raman‐activated cell sorting (RACS) was used to sort MA‐ARB from human gut microbiota, and mini‐metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA‐ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman–DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single‐cell level.
Collapse
Affiliation(s)
- Yi Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.,Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Lingchao Kong
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bei Li
- The State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, CAS, 130033, Changchun, China.,HOOKE Instruments Ltd., 130033, Changchun, China
| | - Hang Li
- HOOKE Instruments Ltd., 130033, Changchun, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Goh SL, Kee BP, Abdul Jabar K, Chua KH, Nathan AM, Bruyne J, Ngoi ST, Teh CSJ. Molecular detection and genotypic characterisation of Streptococcus pneumoniae isolated from children in Malaysia. Pathog Glob Health 2020; 114:46-54. [PMID: 32003298 DOI: 10.1080/20477724.2020.1719325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is one of the main causative agents of pneumococcal diseases. To date, more than 90 distinct serotypes have been identified. Implementation of vaccines has caused a drastic reduction in vaccine-serotype pneumococcal diseases but increase in cases due to non-vaccine serotype has been observed in Malaysia. However, further investigation on different serotype incidence in Malaysia is needed and the rate of pneumococcal vaccination for new-born babies in Malaysia remains low. The recent emergence of drug-resistant S. pneumoniae (DRSP) has also been a global concern, especially penicillin resistance. This study determined the serotypes of S. pneumoniae strains (n = 95) isolated from nasopharyngeal specimens from children admitted to UMMC from 2013 to 2015. In accordance with previous studies, PCR result showed 40% of NT isolates were successfully typed as 3 less common serotypes, namely 9N/L, 17A, and 23B. The repetitive-element PCR (REP-PCR) result revealed genetic variations among the strains whereby five major clusters were observed at the similarity of 80% by clustering analysis based on fingerprint data. Penicillin-binding proteins (pbps) of selected isolates were studied by PCR and sequencing. Three strains with ≤19-mm diameter zone for Oxacillin Disc Diffusion (ODD) test previously were recorded to have mutation on all pbp1a, pbp2b, and pbp2x with MIC of 4 µg/ml, which were penicillin-intermediate resistance according to the CLSI breakpoints.
Collapse
Affiliation(s)
- Shu Ling Goh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anna Marie Nathan
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jessie Bruyne
- University Malaya Medical Centre, University Malaya Paediatric and Child Health Research Group, University of Malaya, Kuala Lumpur, Malaysia
| | - Soo Tein Ngoi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Talebi M, Sadeghi J, Ahmadi A, Lohrasbi V, Owlia P, Pourshafie MR. High Rate of Serotype Switching and Genetic Variations Indicates Widespread Recombination Between Clinical and Commensal Penicillin-Nonsusceptible Streptococcus pneumoniae in Tehran. Microb Drug Resist 2019; 25:865-873. [PMID: 30785836 DOI: 10.1089/mdr.2018.0336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A total of 161 Streptococcus pneumoniae were collected between 2013 and 2015 in Tehran, Iran. The strains were tested for antimicrobial susceptibility and minimum inhibitory concentrations, serotyped, and genotyped by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Penicillin-binding proteins (PBPs) were also typed by restriction fragment length polymorphism (PBP-RFLP). Out of 161 strains, 32 isolates (20%) were highly resistant to penicillin. The most frequent serotypes among the penicillin-nonsusceptible S. pneumoniae (PNSP) were 14 (24%), 23F (18%), and 19F (17%). RFLP of pbp2b, pbp2x, and pbp1a genes revealed 8, 6, and 7 different patterns, respectively. Analysis of 93 PNSP isolates displayed 80 PFGE types with 8 common types constituting 21 (23%) isolates. The remaining 72 isolates (77%) were single types. MLST indicated a high degree of genetic diversity among the 93 PNSP with 36 different sequence types. Six internationally known penicillin resistant clones were identified in our isolates among which Spain23F-1 (ST81), Spain6B-2 (ST90), and Spain9V-3 (ST156) were the predominant clones. The results indicated international identifiable clones of S. pneumoniae, especially Spain23F-1 with high penicillin resistance could play a major role in spread of antimicrobial resistance in Iran. The extensive sequence variation in PBP2x, PBP2b, and PBP1a in resistant strains of clinical and commensal S. pneumoniae was suggestive of a widespread homologous recombination within S. pneumoniae populations.
Collapse
Affiliation(s)
- Malihe Talebi
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Sadeghi
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Lohrasbi
- 1 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parviz Owlia
- 2 Molecular Microbiology Research Center (MMRC), Shahed University, Tehran, Iran
| | | |
Collapse
|
10
|
Diawara I, Nayme K, Katfy K, Barguigua A, Kettani-Halabi M, Belabbes H, Timinouni M, Zerouali K, Elmdaghri N. Analysis of amino acid motif of penicillin-binding proteins 1a, 2b, and 2x in invasive Streptococcus pneumoniae nonsusceptible to penicillin isolated from pediatric patients in Casablanca, Morocco. BMC Res Notes 2018; 11:632. [PMID: 30170603 PMCID: PMC6119257 DOI: 10.1186/s13104-018-3719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the nature of the amino acid motifs found in PBPs of Streptococcus pneumoniae isolates in invasive diseases from pediatric patients at Casablanca, Morocco. Five penicillin-susceptible (PSSP), ten penicillin-intermediate (PISP), and fifteen penicillin-resistant S. pneumoniae (PRSP) were studied by PCR-RFLP and DNA sequencing of the pbp1a, - 2b, and - 2x genes. RESULTS There were no changes in the conserved motifs of PBP1a, PBP2b and PBP2x for PSSP strains. Substitution close to PBP1a conserved motifs were found in all PRSP isolates and six/five PISP. Analysis of PBP2b showed that all but one of the 10 PISP strains and all PRSP had substitutions. Substitution close to PBP2x motifs showed that all but three of the 10 PISP strains and all PRSP had substitutions in tow conserved motifs. A total of 6, 11 and 10 genotypes were found after analysis of pbp1a, pbp2b, and pbp2x, respectively. The penicillin-nonsusceptible S. pneumoniae isolated in Casablanca share most amino acid substitutions of those reported worldwide, but they occurred among pneumococci with low level resistance to b-lactams.
Collapse
Affiliation(s)
- Idrissa Diawara
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco. .,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco. .,Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco.
| | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Khalid Katfy
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Abouddihaj Barguigua
- Laboratory of Biotechnology and Sustainable Development of Natural Ressources, Polydisciplinary Faculty, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Houria Belabbes
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Khalid Zerouali
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| | - Naima Elmdaghri
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 5696, Casablanca, Morocco.,Service de Microbiologie, CHU Ibn Rochd, B.P 2698, Casablanca, Morocco
| |
Collapse
|
11
|
Ahmadi A, Yaghoubi S, Irajian G. Molecular Analysis of PBP1A in Streptococcus pneumoniae Isolated from Clinical and Normal Flora Samples in Tehran, Iran: A Multicenter Study. Microb Drug Resist 2018; 25:39-46. [PMID: 30070961 DOI: 10.1089/mdr.2017.0326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence of high-level penicillin resistance in pneumococcal isolates has seriously complicated the treatment of pneumococcal infections in recent years. The purpose of this study was to determine the serotype, antimicrobial susceptibility, molecular typing, and genetic analysis of the penicillin-binding protein 1a (pbp1a) gene in pneumococcal isolates with high-level resistance to penicillin in Tehran, Iran. PCR amplification, sequencing, and data analysis of the pbp1a gene were carried out for isolates with high-level resistance to penicillin. Antibiotic susceptibility tests showed that the multiple drug resistance pattern "E-CD-OX-TS-T" was the most prevalent (18.0%). The most common serotypes were serotypes 14 (21%), 19F (17%), 23F (16%), and 3 (16%). The highest mutation rates were found in STMK conserved motifs, but no mutation was detected in the other two sequence motifs (SRN and KTG). High-level resistant isolates showed mutations at residues TSQF (574-577) NTGY. Pneumococcal isolates have experienced shifts toward higher penicillin minimal inhibitory concentration levels and other β-lactams. The results of this study show that the presence of multiple substitutions in the pbp1a gene in pneumococcal isolates is highly associated with a reduced affinity to penicillin.
Collapse
Affiliation(s)
- Ali Ahmadi
- 1 Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences , Tehran, Iran
| | - Sajad Yaghoubi
- 2 Department of Microbiology, Asadabad School of Medical Sciences , Asadabad, Iran
| | - GholamReza Irajian
- 3 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences , Tehran, Iran .,4 Microbial Biotechnology Research Center, Iran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
12
|
Pfaller MA, Mendes RE, Flamm RK, Jones RN, Sader HS. Ceftaroline Activity Against Multidrug-Resistant Streptococcus pneumoniae from U.S. Medical Centers (2014) and Molecular Characterization of a Single Ceftaroline Nonsusceptible Isolate. Microb Drug Resist 2017; 23:571-579. [PMID: 27918694 DOI: 10.1089/mdr.2016.0258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae isolates (2,614) were collected from patients at 135 U.S. Medical Centers during 2014. Isolates were evaluated for multidrug resistance to penicillin, ceftriaxone, erythromycin, tetracycline, trimethoprim-sulfamethoxazole, and levofloxacin. A single isolate (853008) demonstrated a ceftaroline nonsusceptible minimal inhibitory concentration (MIC) value, and it was subjected to molecular characterization. Ceftaroline (MIC50/90, ≤0.015/0.12 μg/ml) was eightfold more potent than ceftriaxone (MIC50/90, ≤0.06/1 μg/ml) against all isolates. For multidrug-resistant (MDR) isolates (28.8% of tested strains), ceftaroline (MIC50/90, 0.06/0.25 μg/ml; 99.9% susceptible) was the most active agent tested, being eightfold more active than ceftriaxone (MIC50/90, 0.25/2 μg/ml; 81.5% susceptible at MIC, ≤1 μg/ml) and 16-fold more active than penicillin (MIC50/90, 0.25/4 μg/ml; 78.5% susceptible at MIC, ≤2 μg/ml). Isolate 853008 was a single locus variant of sequence type 377 and serotype 35B. It had multiple substitutions in the penicillin-binding proteins (PBPs), mainly PBP2x, when compared with reference sequences from the R6 strain. Isolate 853008 showed 31 amino acid alterations in MurM. The in vitro data presented here confirm that ceftaroline potency against S. pneumoniae to be higher than other β-lactams, including against those isolates demonstrating ceftriaxone nonsusceptible and MDR phenotypes.
Collapse
Affiliation(s)
- Michael A Pfaller
- 1 JMI Laboratories , North Liberty, Iowa
- 2 University of Iowa , Iowa City, Iowa
| | | | | | | | | |
Collapse
|
13
|
Antimicrobial resistance, penicillin-binding protein sequences, and pilus islet carriage in relation to clonal evolution of Streptococcus pneumoniae serotype 19A in Russia, 2002-2013. Epidemiol Infect 2017; 145:1708-1719. [PMID: 28318472 DOI: 10.1017/s0950268817000541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Clonal changes of serotype 19A pneumococci have been appreciated in conjunction with growing prevalence of this serotype after implementation of the seven-valent pneumococcal conjugate vaccine (PCV7). In the present study, we characterized serotype 19A pneumococci collected in Russia within a decade preceding the implementation of PCV vaccination and described their clonal evolution. We retrospectively analyzed non-invasive serotype 19A isolates collected in 2002-2013. All isolates were subjected to multilocus sequence typing, antimicrobial susceptibility testing, determination of macrolide resistance genotype, molecular detection of pilus islet (PI) carriage, sequencing of penicillin-binding protein (PBP) genes. A total of 49 serotype 19A isolates represented 25 sequence types, of which 14 were newly described. The majority of isolates were distributed among clonal complex (CC) 663 (28%), CC230 (25%), CC156, and CC320 (14% each). CC663 and CC156 dominated in 2003, but were replaced by CC230 and CC320 later on; CC320 was only evident starting 2010. All isolates of CC663 and CC156 carried PI1; CC320 possessed both PI1 and PI2. The overall rate of altered amino acids in penicillin-nonsusceptible isolates was 13·9%, 7·2%, and 8·7% for PBP1a, PBP2b, and PBP2x, respectively. Our findings demonstrate that the clonal structure of serotype 19A pneumococci may evolve without PCV pressure.
Collapse
|
14
|
Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and its Application. Infect Dis Ther 2016; 6:57-67. [PMID: 28039666 PMCID: PMC5336419 DOI: 10.1007/s40121-016-0144-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
Ceftaroline is a novel cephalosporin recently approved in children for treatment of acute bacterial skin and soft tissue infections and community-acquired bacterial pneumonia (CABP) caused by methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae and other susceptible bacteria. With a favorable tolerability profile and efficacy proven in pediatric patients and excellent in vitro activity against resistant Gram-positive and Gram-negative bacteria, ceftaroline may serve as a therapeutic option for polymicrobial infections, CABP caused by penicillin- and ceftriaxone-resistant S. pneumoniae and resistant Gram-positive infections that fail first-line antimicrobial agents. However, limited data are available on tolerability in neonates and infants younger than 2 months of age, and on pharmacokinetic characteristics in children with chronic medical conditions and those with invasive, complicated infections. In this review, the microbiological profile of ceftaroline, its mechanism of action, and pharmacokinetic profile will be presented. Additionally, clinical evidence for use in pediatric patients and proposed place in therapy is discussed.
Collapse
|
15
|
Zhou X, Liu J, Zhang Z, Liu Y, Wang Y, Liu Y. Molecular characteristics of penicillin-binding protein 2b, 2x and 1a sequences in Streptococcus pneumoniae isolates causing invasive diseases among children in Northeast China. Eur J Clin Microbiol Infect Dis 2016; 35:633-45. [PMID: 26972430 DOI: 10.1007/s10096-016-2582-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Streptococcus pneumoniae is one of the common pathogens causing severe invasive infections in children. This study aimed to investigate the serotype distribution and variations of penicillin-binding proteins (PBPs) 2b, 2x and 1a in S. pneumoniae isolates causing invasive diseases in Northeast China. A total of 256 strains were isolated from children with invasive pneumococcal disease (IPD) from January 2000 to October 2014. All strains were serotyped and determined for antibiotic resistance. The amplicons of penicillin-binding domains in pbp1a, pbp2b and pbp2x genes were sequenced for variation identification. The most prevalent serotypes of isolates in IPD children were 19A, 14, 19F, 23F and 6B. 19A and 19F were the most frequent serotypes of penicillin-resistant S. pneumoniae (PRSP), which present with high resistance to amoxicillin, cefotaxime, ceftriaxone and meropenem. The numbers of amino acid substitutions of penicillin-non-susceptible S. pneumoniae (PNSP) isolates were higher than those of penicillin-sensitive S. pneumoniae isolates in all the PBP genes (p < 0.01). The patterns of amino acid mutation in PBP2b, PBP2x and PBP1a were unique and different from those of other countries. All of the serotype 19A and 19F PRSP isolates carried 25 amino acid mutations, including Ala618 → Gly between positions 560 and 675 in PBP2b and Thr338 → Ala substitutions in PBP2x. The amino acid alterations in PBP2b, PBP2x and PBP1a from S. pneumoniae were closely associated with resistance to β-lactam antibiotics. This study provides new data for further monitoring of genetic changes related to the emergence and spread of resistance to β-lactam antibiotics in China.
Collapse
Affiliation(s)
- X Zhou
- Department of Clinical Laboratory, The Affiliated Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - J Liu
- Department of Clinical Laboratory, The Affiliated Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Z Zhang
- Department of Clinical Laboratory, The Affiliated Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Y Liu
- Department of Clinical Laboratory, The Affiliated Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Y Wang
- Department of Clinical Laboratory, The Affiliated Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Y Liu
- Department of Clinical Laboratory, The Affiliated Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
16
|
Qureshi NN, Gallaher B, Schiller NL. Evolution of amoxicillin resistance of Helicobacter pylori in vitro: characterization of resistance mechanisms. Microb Drug Resist 2015; 20:509-16. [PMID: 24901497 DOI: 10.1089/mdr.2014.0019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Helicobacter pylori is the major cause of peptic ulcers and gastric cancer in humans. Treatment involves a two or three drug cocktail, typically including amoxicillin. Increasing levels of resistance to amoxicillin contribute to treatment failures, and higher levels of resistance are believed to be due to multiple genetic mutations. In this study, we examined the progression of spontaneous genetic mutations that contribute to amoxicillin resistance in H. pylori when exposed to increasing concentrations of amoxicillin in vitro. During the selection process, we isolated five strains each of which had progressively higher levels of resistance. Using a whole genome sequencing approach, we identified mutations in a number of genes, notably pbp1, pbp2, hefC, hopC, and hofH, and by sequencing these genes in each isolate we were able to map the order and gradual accumulation of mutations in these isolates. These five isolates, each expressing multiple mutated genes and four transformed strains expressing individually mutated pbp1, hefC, or hofH, were characterized using minimum inhibitory concentrations, amoxicillin uptake, and efflux studies. Our results indicate that mutations in pbp1, hefC, hopC, hofH, and possibly pbp2 contribute to H. pylori high-level amoxicillin resistance. The data also provide evidence for the complexity of the evolution of amoxicillin resistance in H. pylori and indicate that certain families of genes might be more susceptible to amoxicillin resistance mutations than others.
Collapse
Affiliation(s)
- Nadia N Qureshi
- Division of Biomedical Sciences, School of Medicine, University of California , Riverside, Riverside, California
| | | | | |
Collapse
|
17
|
Commensal streptococci serve as a reservoir for β-lactam resistance genes in Streptococcus pneumoniae. Antimicrob Agents Chemother 2015; 59:3529-40. [PMID: 25845880 DOI: 10.1128/aac.00429-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, septicemia, and middle ear infections. The incidence of S. pneumoniae isolates that are not susceptible to penicillin has risen worldwide and may be above 20% in some countries. Beta-lactam antibiotic resistance in pneumococci is associated with significant sequence polymorphism in penicillin-binding proteins (PBPs). Commensal streptococci, especially S. mitis and S. oralis, have been identified as putative donors of mutated gene fragments. However, no studies have compared sequences of the involved pbp genes in large collections of commensal streptococci with those of S. pneumoniae. We therefore investigated the sequence diversity of the transpeptidase region of the three pbp genes, pbp2x, pbp2b, and pbp1a in 107, 96, and 88 susceptible and nonsusceptible strains of commensal streptococci, respectively, at the nucleotide and amino acid levels to determine to what extent homologous recombination between commensal streptococci and S. pneumoniae plays a role in the development of beta-lactam resistance in S. pneumoniae. In contrast to pneumococci, extensive sequence variation in the transpeptidase region of pbp2x, pbp2b, and pbp1a was observed in both susceptible and nonsusceptible strains of commensal streptococci, conceivably reflecting the genetic diversity of the many evolutionary lineages of commensal streptococci combined with the recombination events occurring with intra- and interspecies homologues. Our data support the notion that resistance to beta-lactam antibiotics in pneumococci is due to sequences acquired from commensal Mitis group streptococci, especially S. mitis. However, several amino acid alterations previously linked to beta-lactam resistance in pneumococci appear to represent species signatures of the donor strain rather than being causal of resistance.
Collapse
|
18
|
Sauerbier J, Maurer P, Rieger M, Hakenbeck R. Streptococcus pneumoniae R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events. Mol Microbiol 2012; 86:692-706. [PMID: 22931193 DOI: 10.1111/mmi.12009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 11/28/2022]
Abstract
Interspecies gene transfer has been implicated as the major driving force for the evolution of penicillin resistance in Streptococcus pneumoniae. Genomic alterations of S. pneumoniae R6 introduced during four successive transformations with DNA of the high-level penicillin-resistant Streptococcus mitis B6 with beta-lactam selection have now been determined and the contribution of genes to high resistance levels was analysed genetically. Essential for high level resistance to penicillins of the transformant CCCB was the combination of murM(B) (6) and the 3' region of pbp2b(B) (6) . Sequences of both genes were detected in clinical isolates of S. pneumoniae, confirming the participation of S. mitis in the global gene pool of beta-lactam resistance determinants. The S. mitis PBP1b gene which contains an authentic stop codon within the transpeptidase domain is now shown to contribute only marginal to resistance, but it is possible that the presence of its transglycosylase domain is important in the context of cognate PBPs. The genome sequence of CCCB revealed 36 recombination events, including deletion and acquisition of genes and repeat elements. A total of 78 genes were affected representing 67 kb or 3.3% of the genome, documenting extensive alterations scattered throughout the genome.
Collapse
Affiliation(s)
- Julia Sauerbier
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | |
Collapse
|
19
|
Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol 2012; 7:395-410. [PMID: 22393892 DOI: 10.2217/fmb.12.2] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.
Collapse
Affiliation(s)
- Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Paul Ehrlich Strasse 23, D-67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
20
|
Matsumoto A, Hashimoto K, Kawasaki Y, Hosoya M. A challenge to appropriate antibiotic use in children with respiratory infections: a 5-year single-institution experience. Fukushima J Med Sci 2012; 57:33-45. [PMID: 22353649 DOI: 10.5387/fms.57.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We have studied the rate of emergence of antibiotic-resistant Streptococcus pneumoniae (S. pneumoniae) and Haemophilus influenzae (H. influenzae) and the subsequent antibiotic use in host patients of those isolates at the Department of Pediatrics, Soma General Hospital, Fukushima. Moreover, we carried out several studies investigating the risks and benefits of antibiotic-free treatment for children with respiratory infections. In this report, we summarize our research and suggest better treatment options for pediatric patients with respiratory infections. METHODS We investigated the necessity of antibiotic use in the treatment of pediatric inpatients with respiratory syncytial virus (RSV) infection, and tested our hypothesis that antibiotic-free treatment for common cold will reduce the number of resistant S. pneumoniae strains in the pediatric nasopharynx. Therefore, we restricted prescribing antibiotics for pediatric patients with respiratory infections. The rates of resistant S. pneumoniae and H. influenzae and the medication history of the host patients before and after the intervention were compared. RESULTS We found that most of the RSV-infected patients recovered without antibiotic treatment, and that the antibiotic-free treatment inhibited the emergence of antibiotic-resistant strains. The rate of penicillin-resistant S. pneumoniae decreased but the rate of ampicillin-resistant H. influenzae did not change significantly during the study. CONCLUSION We concluded that patients with respiratory infections can be treated without antibiotics, under careful examination and observation. Continued monitoring of such new interventions as well as recommending their use to other caregivers and physicians will help inhibit the spread of resistant strains.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan.
| | | | | | | |
Collapse
|
21
|
Kosowska-Shick K, McGhee PL, Appelbaum PC. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 2010; 54:1670-7. [PMID: 20194704 PMCID: PMC2863635 DOI: 10.1128/aac.00019-10] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 11/20/2022] Open
Abstract
We compared the affinities of ceftaroline for all penicillin-binding proteins (PBPs) with those of ceftriaxone and cefotaxime in 6 Staphylococcus aureus and 7 Streptococcus pneumoniae isolates with various resistance phenotypes. Ceftaroline MICs were PBP1A, -1B, and -2A > PBP2B, and ceftaroline had >or=4-fold higher 50% inhibitory concentrations (IC(50)s) (0.1 to 4 microg/ml) for PBP2X, -2A, -2B, and -3 than those for the other cephalosporins tested. Among 3 penicillin-resistant S. pneumoniae strains, ceftaroline had a high affinity for PBP2X (IC(50), 0.1 to 1 microg/ml), a primary target for cephalosporin PBP binding activity, and high affinities for PBP2B (IC(50), 0.5 to 4 microg/ml) and PBP1A (IC(50), 0.125 to 0.25 microg/ml) as well, both of which are also known as major targets for PBP binding activity of cephalosporins. Ceftaroline PBP affinities in methicillin-susceptible S. aureus strains were greater than or equal to those of the 3 other beta-lactams tested. Ceftaroline bound to PBP2a in methicillin-resistant S. aureus (IC(50), 0.01 to 1 microg/ml) with up to 256-fold-higher affinity than those of other agents. Ceftaroline demonstrated very good PBP affinity against all S. aureus and S. pneumoniae strains tested, including resistant isolates.
Collapse
Affiliation(s)
- K. Kosowska-Shick
- Department of Pathology, Hershey Medical Center, Hershey, Pennsylvania
| | - P. L. McGhee
- Department of Pathology, Hershey Medical Center, Hershey, Pennsylvania
| | - P. C. Appelbaum
- Department of Pathology, Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
22
|
Expansion and evolution of the Streptococcus pneumoniae Spain9V-ST156 clonal complex in Poland. Antimicrob Agents Chemother 2010; 54:1720-7. [PMID: 20194703 DOI: 10.1128/aac.01340-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we analyzed 118 penicillin-nonsusceptible Streptococcus pneumoniae (PNSP) isolates (MICs, >or=0.12 microg/ml) recovered in Poland in 2003 to 2005 from patients with respiratory tract diseases and invasive infections. Seven different serotypes (14, 9V, 23F, 19F, 6B, 19A, and 6A, in order of descending frequency), seven alleles of the murM gene (murMA, murMB6, and the new murMB12 to -16 alleles), and 31 multilocus sequence types (STs) were observed. The vast majority of the PNSP isolates (90.7%) belonged to the international multiresistant clones, and among these, the Spain(9V)-ST156 clonal complex was the most prevalent (56 isolates) and was significantly overrepresented in invasive infections. The clone has been evolving rapidly, as demonstrated by the observed number of STs, the diversity in multiple-locus variable-number-tandem-repeat analysis (MLVA) types, and the polymorphism of pbp and pspA genes (coding for penicillin-binding proteins and the pneumococcal surface protein A, respectively). The presence and structure of the rlrA islet (encoding the pneumococcal pilus) were very well conserved. The Spain(9V)-ST156 clonal complex has been largely responsible for a decreasing susceptibility to penicillin among pneumococci in Poland in recent years, in spite of a relatively moderate antimicrobial use.
Collapse
|
23
|
The trend of drug-resistant Streptococcus pneumoniae from nasopharynx of children. J Infect Chemother 2010; 16:255-9. [DOI: 10.1007/s10156-010-0048-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/05/2010] [Indexed: 11/29/2022]
|
24
|
Pichichero ME, Reed MD. Variations in amoxicillin pharmacokinetic/pharmacodynamic parameters may explain treatment failures in acute otitis media. Paediatr Drugs 2009; 11:243-9. [PMID: 19566108 DOI: 10.2165/00148581-200911040-00003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) modeling and Monte Carlo simulations suggest that amoxicillin should rarely fail as therapy for Streptococcus pneumoniae and Haemophilus influenzae acute otitis media (AOM) infections except when the S. pneumoniae are highly penicillin resistant or the H. influenzae are beta-lactamase producing. However, important and not infrequent exceptions to this expectation have been described. The objective of this review was to define the biologic variations in amoxicillin PK/PD parameters for the treatment of AOM in children and assess whether these variations could explain why the commonly employed amoxicillin PK/PD model is imperfect in predicting outcome for every patient in this clinical setting. To this end, a literature search of MEDLINE (1966-2006) and EMBASE (1974-2006) was conducted to identify studies that evaluated ampicillin or amoxicillin intestinal absorption, serum concentrations, and/or middle ear fluid (MEF) concentrations. Analysis of studies identified for review showed that the intestinal bioavailability of amoxicillin depends on passive diffusion and a saturable 'pump' mechanism that produces variable serum concentrations of the antibacterial agent. Indeed, substantial differences from patient to patient in serum (5- to 30-fold) and MEF (up to 20-fold) concentrations of amoxicillin occur following oral administration, and 15-35% of children have no detectable amoxicillin in MEF. These findings suggest that variability in PK/PD parameters may impact amoxicillin concentrations in serum and MEF, possibly explaining some AOM treatment failures.
Collapse
Affiliation(s)
- Michael E Pichichero
- Rochester General Research Institute, Legacy Pediatric Group, Rochester, New York, USA.
| | | |
Collapse
|
25
|
Varon E. Actualisation de l’épidémiologie des méningites bactériennes aiguës chez l’adulte en France. Med Mal Infect 2009; 39:432-44. [DOI: 10.1016/j.medmal.2009.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/20/2009] [Indexed: 11/16/2022]
|
26
|
Comparative antipneumococcal activities of sulopenem and other drugs. Antimicrob Agents Chemother 2009; 53:2239-47. [PMID: 19307366 DOI: 10.1128/aac.01531-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For 297 penicillin-susceptible, -intermediate, and -resistant pneumococcal strains, the sulopenem MIC(50)s were 0.008, 0.06, and 0.25, respectively, and the sulopenem MIC(90)s were 0.016, 0.25, and 0.5 microg/ml, respectively. The MIC(50)s of amoxicillin for the corresponding strains were 0.03, 0.25, and 2.0 microg/ml, respectively, and the MIC(90)s were 0.03, 1.0, and 8.0 microg/ml, respectively. The combination of amoxicillin and clavulanate gave MICs similar to those obtained with amoxicillin alone. The sulopenem MICs were similar to those of imipenem and meropenem. The MICs of ss-lactams increased with those of penicillin G, and among the quinolones tested, moxifloxacin had the lowest MICs. Additionally, 45 strains of drug-resistant type 19A pneumococci were tested by agar dilution and gave sulopenem MIC(50)s and MIC(90)s of 1.0 and 2.0 microg/ml, respectively. Both sulopenem and amoxicillin (with and without clavulanate) were bactericidal against all 12 strains tested at 2x MIC after 24 h. Thirty-one strains from 10 countries with various penicillin, amoxicillin, and carbapenems MICs, including those with the highest sulopenem MICs, were selected for sequencing analysis of the pbp1a, pbp2x, and pbp2b regions encoding the transpeptidase active site and MurM. We did not find any correlations between specific penicillin-binding protein-MurM patterns and changes in the MICs.
Collapse
|
27
|
Binding of faropenem and other beta-lactam agents to penicillin-binding proteins of pneumococci with various beta-lactam susceptibilities. Antimicrob Agents Chemother 2009; 53:2176-80. [PMID: 19237649 DOI: 10.1128/aac.01566-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Faropenem demonstrated low MICs (< or = 1 microg/ml) for all penicillin-susceptible and nonsusceptible pneumococci and exhibited very strong abilities to bind to Streptococcus pneumoniae penicillin-binding proteins (PBPs), except for PBP2X. The lower faropenem affinity for PBP2X did not affect MICs for any strains tested, and only imipenem had lower MICs, with much lower binding affinities for all PBPs tested, than faropenem.
Collapse
|
28
|
McGee L, Biek D, Ge Y, Klugman M, du Plessis M, Smith AM, Beall B, Whitney CG, Klugman KP. In vitro evaluation of the antimicrobial activity of ceftaroline against cephalosporin-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 2009; 53:552-6. [PMID: 19015339 PMCID: PMC2630653 DOI: 10.1128/aac.01324-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/31/2008] [Accepted: 11/09/2008] [Indexed: 11/20/2022] Open
Abstract
Increasing pneumococcal resistance to extended-spectrum cephalosporins warrants the search for novel agents with activity against such resistant strains. Ceftaroline, a parenteral cephalosporin currently in phase 3 clinical development, has demonstrated potent in vitro activity against resistant gram-positive organisms, including penicillin-resistant Streptococcus pneumoniae. In this study, the activity of ceftaroline was evaluated against highly cefotaxime-resistant isolates of pneumococci from the Active Bacterial Core surveillance program of the Centers for Disease Control and Prevention and against laboratory-derived cephalosporin-resistant mutants of S. pneumoniae. The MICs of ceftaroline and comparators were determined by broth microdilution. In total, 120 U.S. isolates of cefotaxime-resistant (MIC > or = 4 microg/ml) S. pneumoniae were tested along with 18 laboratory-derived R6 strains with known penicillin-binding protein (PBP) mutations. Clinical isolates were characterized by multilocus sequence typing, and the DNAs of selected isolates were sequenced to identify mutations affecting pbp genes. Ceftaroline (MIC(90) = 0.5 microg/ml) had greater in vitro activity than penicillin, cefotaxime, or ceftriaxone (MIC(90) = 8 microg/ml for all comparators) against the set of highly cephalosporin-resistant clinical isolates of S. pneumoniae. Ceftaroline was also more active against the defined R6 PBP mutant strains, which suggests that ceftaroline can overcome common mechanisms of PBP-mediated cephalosporin resistance. These data indicate that ceftaroline has significant potency against S. pneumoniae strains resistant to existing parenteral cephalosporins and support its continued development for the treatment of infections caused by resistant S. pneumoniae strains.
Collapse
|
29
|
Stanhope MJ, Lefébure T, Walsh SL, Becker JA, Lang P, Pavinski Bitar PD, Miller LA, Italia MJ, Amrine-Madsen H. Positive selection in penicillin-binding proteins 1a, 2b, and 2x from Streptococcus pneumoniae and its correlation with amoxicillin resistance development. INFECTION GENETICS AND EVOLUTION 2008; 8:331-9. [PMID: 18394970 DOI: 10.1016/j.meegid.2008.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 11/29/2022]
Abstract
The efficacy of beta-lactam antibiotics in Streptococcus pneumoniae has been compromised because of the development of altered penicillin-binding proteins (PBPs), however, this has been less so for amoxicillin than for penicillin. Recently, there have been a number of important methods developed to detect molecular adaptation in protein coding genes. The purpose of this study is to employ modern molecular selection approaches to predict sites under positive selection pressure in PBPs, derived from a large international S. pneumoniae collection of amoxicillin resistant and susceptible isolates, and encompassing a comparative data set of 354 pbp1a, 335 pbp2b, and 389 pbp2x gene sequences. A correspondence discriminant analysis (CDA) of positively selected pbp sites and amoxicillin MIC (minimum inhibitory concentration) values is then used to detect sites under positive selection pressure that are important in discriminating different amoxicillin MICs. Molecular adaptation was evident throughout PBP2X, with numerous positively selected sites in both the transpeptidase (TP) and C-terminal domains, strongly correlated with discriminating amoxicillin MICs. In the case of PBP1A positive selection was present in the glycosyltransfer (GT), TP and C-terminal domains. Sites within the TP domain tended to be correlated with the discrimination of low from intermediate MICs, whereas sites within the C-terminal tail, with a discrimination of intermediate from fully resistant. Most of the positively selected sites within PBP2B were in the N-terminal domain and were not correlated with amoxicillin MICs, however, several sites taken from the literature for the TP domain were strongly associated with discriminating high from intermediate level amoxicillin resistance. Many of the positively selected sites could be directly associated with functional inferences based on the crystal structures of these proteins. Our results suggest that clinical emphasis on TP domain sequences of these proteins may result in missing information relevant to antibiotic resistance development.
Collapse
Affiliation(s)
- Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 2008; 32:361-85. [PMID: 18248419 DOI: 10.1111/j.1574-6976.2007.00095.x] [Citation(s) in RCA: 415] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A number of ways and means have evolved to provide resistance to eubacteria challenged by beta-lactams. This review is focused on pathogens that resist by expressing low-affinity targets for these antibiotics, the penicillin-binding proteins (PBPs). Even within this narrow focus, a great variety of strategies have been uncovered such as the acquisition of an additional low-affinity PBP, the overexpression of an endogenous low-affinity PBP, the alteration of endogenous PBPs by point mutations or homologous recombination or a combination of the above.
Collapse
Affiliation(s)
- André Zapun
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075-CNRS, CEA, Université Joseph Fourier, Grenoble, France
| | | | | |
Collapse
|
31
|
Zhang T, Zhao N, Zhang T, Black S, Xu B, Zhao G. Meta-analysis of antibiotic susceptibility and the genotype of penicillin-binding proteins in Streptococcus pneumoniae. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2008; 40:797-803. [PMID: 18759155 DOI: 10.1080/00365540802195234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To further understanding of the mechanisms of development of resistance to penicillin in Streptococcus pneumoniae, and the role of penicillin-binding proteins (PBPs) mutations to antibiotics resistance a meta-analysis was performed. Major databases, Pubmed, Current Contents, Biosis previews, Web of Science, were searched for studies that published within 1997 through to 2007, and reported the penicillin MIC and the alteration of PBP 1a, 2b and 2x (genes or proteins) of clinical S. pneumoniae isolates. Papers were reviewed by 2 persons and used standard criteria to enroll them. Meta-analysis was performed using a random-effects model. Overall, 20 studies were included in the meta-analysis. For the included 1771 clinical S. pneumoniae isolates, the susceptibility to penicillin decreased in inverse proportion to the presence of mutated pbp genes. The mutations of the conserved amino acid motifs STMK and SRNVP of PBP 1A, STMK and LKSG of PBP2X, and SSNT of PBP2B are critical for the penicillin resistance. Those motifs can be used as markers for the penicillin susceptibility of S. pneumoniae. These results are useful in helping define the mechanism of penicillin resistance in S. pneumoniae.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
32
|
Stanhope MJ, Walsh SL, Becker JA, Miller LA, Lefébure T, Lang P, Bitar PDP, Amrine-Madsen H. The relative frequency of intraspecific lateral gene transfer of penicillin binding proteins 1a, 2b, and 2x, in amoxicillin resistant Streptococcus pneumoniae. INFECTION GENETICS AND EVOLUTION 2007; 7:520-34. [PMID: 17475572 DOI: 10.1016/j.meegid.2007.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/21/2007] [Accepted: 03/23/2007] [Indexed: 11/18/2022]
Abstract
Evidence exists for both interspecific and intraspecific recombination (lateral gene transfer; LGT) involving Streptococcus pneumoniae pbp (penicillin binding protein) loci. LGT of capsular genes, or serotype switching, is also know to occur between S. pneumoniae of different serotype. It is not clear whether intraspecific pbp LGT is relatively common, whether there is a difference in the relative frequency of intraspecific LGT of different pbps, and whether serotype switching is more or less frequent than pbp LGT. The purpose of this study was to use comparative evolutionary biology analysis of 216 international clinical S. pneumoniae isolates, from the Alexander Project collection, to gain insight on these issues, as well as the possible role they might be playing in spreading amoxicillin resistance. All 216 isolates were genotyped using MLST and complete or nearly complete sequences for pbp1a, pbp2b, and pbp2x were determined. Amoxicillin MICs were available for each isolate. pbps were genotyped using phylogenetics and two or more pbp types within a MLST sequence type (ST) or clonal complex were taken as putative cases of pbp LGT; these hypotheses were statistically evaluated using the approximately unbiased (AU) test. Serotypes were determined for 171 of these isolates and the minimum number of switching events necessary to explain the serotype phenotypes for each of the STs and clonal complexes were evaluated. The majority (78%) of the amoxicillin resistant isolates were comprised in 5 clonal complexes. The relative frequency of pbp LGT was greatest for pbp2b and 2x (minimum of 10.2 and 7.8%, respectively, of the isolates consistent with the LGT hypothesis), followed by 1a (3.9%). Serotype switching was more frequent than intraspecific pbp LGT (33% of isolates consistent with serotype switching hypothesis). Although intraspecific LGT of pbps is occurring and has played a role in the spread of amoxicillin resistance in S. pneumoniae, clonal dissemination appears to be more significant.
Collapse
Affiliation(s)
- Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Varon E, Houssaye S. [Resistance of infectious agents involved in low respiratory tract infections in France]. Med Mal Infect 2006; 36:555-69. [PMID: 16962730 DOI: 10.1016/j.medmal.2006.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/19/2006] [Indexed: 11/21/2022]
Abstract
This review concerning the major lower respiratory tract pathogens in France has for aim to describe the epidemiology of resistance to beta-lactams, macrolides, ketolides, and fluoroquinolones especially in Streptococcus pneumoniae and Haemophilus influenzae. It should also provide new insights on the mechanisms of acquired resistance and the level of resistance conferred, highlighting the related ecological impact. In the context of this XVth consensus conference, this review should contribute to the elaboration of guidelines for the treatment of lower respiratory tract infections in adults.
Collapse
Affiliation(s)
- E Varon
- Laboratoire de microbiologie, centre national de référence des pneumocoques, APHP, hôpital européen Georges-Pompidou, 20-40, rue Leblanc, 75908 Paris cedex 15, France.
| | | |
Collapse
|
34
|
Cafini F, del Campo R, Alou L, Sevillano D, Morosini MI, Baquero F, Prieto J. Alterations of the penicillin-binding proteins and murM alleles of clinical Streptococcus pneumoniae isolates with high-level resistance to amoxicillin in Spain. J Antimicrob Chemother 2005; 57:224-9. [PMID: 16368701 DOI: 10.1093/jac/dki442] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The aim of this study was to analyse the nucleotide sequences of regions encoding the penicillin-binding domains of pbp1A, pbp2B and pbp2X genes and murM alleles from 14 selected amoxicillin-resistant Streptococcus pneumoniae isolates (MICs 8-16 mg/L) obtained in Spain. METHODS PFGE and dideoxynucleotide chain termination sequencing were used. RESULTS Analysis of PFGE profiles showed that the amoxicillin-resistant S. pneumoniae strains belonged to six different PFGE patterns including the Spain23F-1, Spain6B-2, Spain9V-3 and Spain(14)-5 international clones; however, 8 of the 14 strains belonged to the Spain9V-3 clone. These strains showed the typical changes in penicillin-binding proteins (PBPs) 1A and 2X and had 10 unique changes in the 590-641 region of PBP2B as described previously. Transformation experiments tried to incorporate the transpeptidase domain of PBP2B including the 590-641 region associated with amoxicillin-resistant pneumococci. Sequencing of the pbp2B genes revealed that part of the 3' region of the pbp2B sequence encoding a region of the domain (around amino acid 514-538 to the C terminus of PBP2B) did not recombine with the R6 pbp2B gene. The murM sequence analysis showed that 6, 6 and 2 amoxicillin-resistant S. pneumoniae strains had murMA, murMB5 and murMB6 alleles, respectively. However, strains with murMB5 or murMB6 alleles showed a single mutation (N537D) in the 537-581 region of PBP2B, while strains with the murMA allele had 12 unique changes. CONCLUSIONS Ten unique changes in the 590-641 region of PBP2B and no specific murM alleles were found in S. pneumoniae strains isolated in Spain with an amoxicillin MIC>or=8 mg/L (MICs from 6 to 12 mg/L by 1 mg/L step dilution). In addition, the presence of specific mutations in PBP2B seems to play a key role in the presence of different murM alleles in these amoxicillin-resistant pneumococcal strains.
Collapse
Affiliation(s)
- Fabio Cafini
- Departamento de Microbiología, Facultad de Medicina, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Chiba N, Kobayashi R, Hasegawa K, Morozumi M, Nakayama E, Tajima T, Iwata S, Ubukata K. Antibiotic susceptibility according to genotype of penicillin-binding protein and macrolide resistance genes, and serotype of Streptococcus pneumoniae isolates from community-acquired pneumonia in children. J Antimicrob Chemother 2005; 56:756-60. [PMID: 16131518 DOI: 10.1093/jac/dki302] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Antibiotic susceptibilities, genes mediating beta-lactam and macrolide resistance, and serotypes were analysed for strains of Streptococcus pneumoniae. METHODS A total of 392 strains of S. pneumoniae were isolated from paediatric patients with community-acquired pneumonia between May 2002 and 2004. All strains were classified into six genotype patterns according to the mutations found in the pbp1a, pbp2x and pbp2b genes identified by PCR. These results are represented by adding 'g', indicating genotypic identification. RESULTS Thirty-nine per cent of the isolates showed mutations in either one or two PBP genes (gPISP, where PISP stands for penicillin-intermediate resistant S. pneumoniae) and 52.3% had mutations in three genes (gPRSP, where PRSP stands for penicillin-resistant S. pneumoniae). The majority of the strains had a macrolide resistance gene: mefA, (30.6%); ermB, (48.5%); or both mefA and ermB, (7.7%). The most frequent serotypes of these strains were: 6B (23.2%), 23F (17.6%), 19F (17.3%), 14 (10.5%) and 6A (8.2%). Serotypes of the seven-valent conjugate vaccine covered 70.9% of all isolates, and 89.8% of gPRSP. Serotypes of the strains with cefotaxime MICs of > or =2 mg/L were almost all of a vaccine type. CONCLUSIONS The results suggest that introduction of conjugate vaccines into infants and children is necessary for the prevention of pneumococcal infections in Japan.
Collapse
Affiliation(s)
- Naoko Chiba
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Woodford N. Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin Microbiol Infect 2005; 11 Suppl 3:2-21. [PMID: 15811020 DOI: 10.1111/j.1469-0691.2005.01140.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of antibiotic resistance by bacteria is an evolutionary inevitability, a convincing demonstration of their ability to adapt to adverse environmental conditions. Since the emergence of penicillinase-producing Staphylococcus aureus in the 1940s, staphylococci, enterococci and streptococci have proved themselves adept at developing or acquiring mechanisms that confer resistance to all clinically available antibacterial classes. The increasing problems of methicillin-resistant S. aureus and coagulase-negative staphylococci (MRSA and MRCoNS), glycopeptide-resistant enterococci and penicillin-resistant pneumococci in the 1980s, and recognition of glycopeptide-intermediate S. aureus in the 1990s and, most recently, of fully vancomycin-resistant isolates of S. aureus have emphasised our need for new anti-Gram-positive agents. Antibiotic resistance is one of the major public health concerns for the beginning of the 21st century. The pharmaceutical industry has responded with the development of oxazolidinones, lipopeptides, injectable streptogramins, ketolides, glycylcyclines, second-generation glycopeptides and novel fluoroquinolones. However, clinical use of these novel agents will cause new selective pressures and will continue to drive the development of resistance. This review describes the various antibiotic resistance mechanisms identified in isolates of staphylococci, enterococci and streptococci, including mechanisms of resistance to recently introduced anti-Gram-positive agents.
Collapse
Affiliation(s)
- N Woodford
- Antibiotic Resistance Monitoring and Reference Laboratory, Centre for Infections, Health Protection Agency, London NW9 5HT, UK.
| |
Collapse
|