1
|
Sousa IS, Tavares LFS, Silva BA, Moreno DSA, Alviano CS, Santos ALS, Kneipp LF. Calcineurin activity in Fonsecaea pedrosoi: tacrolimus and cyclosporine A inhibited conidia growth, filamentation and showed synergism with itraconazole. Braz J Microbiol 2024:10.1007/s42770-024-01463-2. [PMID: 39044105 DOI: 10.1007/s42770-024-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Fonsecaea pedrosoi is a melanized fungus that causes chromoblastomycosis (CBM), a tropical neglected disease responsible for chronic and disability-related subcutaneous mycosis. Given the challenging nature of CBM treatment, the study of new targets and novel bioactive drugs capable of improving patient life quality is urgent. In the present work, we detected a calcineurin activity in F. pedrosoi conidial form, employing primarily colorimetric, immunoblotting and flow cytometry assays. Our findings reveal that the calcineurin activity of F. pedrosoi was stimulated by Ca2+/calmodulin, inhibited by EGTA and specific inhibitors, such as tacrolimus (FK506) and cyclosporine A (CsA), and proved to be insensitive to okadaic acid. In addition, FK506 and CsA were able to affect the cellular viability and the fungal proliferation. This effect was corroborated by transmission electron microscopy that showed both calcineurin inhibitors promoted profound changes in the ultrastructure of conidia, causing mainly cytoplasm condensation and intense vacuolization that are clear indication of cell death. Our data indicated that FK506 exhibited the highest effectiveness, with a minimum inhibitory concentration (MIC) of 3.12 mg/L, whereas CsA required 15.6 mg/L to inhibit 100% of conidial growth. Interestingly, when both were combined with itraconazole, they demonstrated anti-F. pedrosoi activity, exhibiting a synergistic effect. Moreover, the fungal filamentation was affected after treatment with both calcineurin inhibitors. These data corroborate with other calcineurin studies in fungal cells and open up further discussions aiming to establish the role of this enzyme as a potential target for antifungal therapy against CBM infections.
Collapse
Affiliation(s)
- Ingrid S Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Lucilene F S Tavares
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Bianca A Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-901, Brazil
| | - Daniela S A Moreno
- Laboratório de Estrutura de Microrganismos, IMPG, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, IMPG, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-901, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil.
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
2
|
Elhaj Mahmoud D, Hérivaux A, Morio F, Briard B, Vigneau C, Desoubeaux G, Bouchara JP, Gangneux JP, Nevez G, Le Gal S, Papon N. The epidemiology of invasive fungal infections in transplant recipients. Biomed J 2024; 47:100719. [PMID: 38580051 PMCID: PMC11220536 DOI: 10.1016/j.bj.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024] Open
Abstract
Transplant patients, including solid-organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients, are exposed to various types of complications, particularly rejection. To prevent these outcomes, transplant recipients commonly receive long-term immunosuppressive regimens that in turn make them more susceptible to a wide array of infectious diseases, notably those caused by opportunistic pathogens. Among these, invasive fungal infections (IFIs) remain a major cause of mortality and morbidity in both SOT and HSCT recipients. Despite the continuing improvement in early diagnostics and treatments of IFIs, the management of these infections in transplant patients is still complicated. Here, we provide an overview concerning the most recent trends in the epidemiology of IFIs in SOT and HSCT recipients by describing the prominent yeast and mold species involved, the timing of post-transplant IFIs and the risk factors associated with their occurrence in these particularly weak populations. We also give special emphasis into basic research advances in the field that recently suggested a role of the global and long-term prophylactic regimen in orchestrating various biological disturbances in the organism and conditioning the emergence of the most adapted fungal strains to the particular physiological profiles of transplant patients.
Collapse
Affiliation(s)
- Dorra Elhaj Mahmoud
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Anaïs Hérivaux
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de L'Immunité, UR1155, Nantes, France
| | - Benoit Briard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, Parasitologie-Mycologie Médicale-Médecine Tropicale, Tours, France
| | - Cécile Vigneau
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085, Rennes, France; Division of Nephrology, Rennes University Hospital, Rennes, France
| | - Guillaume Desoubeaux
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, Parasitologie-Mycologie Médicale-Médecine Tropicale, Tours, France
| | - Jean-Philippe Bouchara
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085, Rennes, France; Laboratory of Parasitology and Medical Mycology, European Confederation of Medical Mycology (ECMM) Excellence Center, Centre National de Référence Aspergilloses Chroniques, Rennes University Hospital, Rennes, France
| | - Gilles Nevez
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France; University of Brest, University of Angers, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Brest, France
| | - Solène Le Gal
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France; University of Brest, University of Angers, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Brest, France
| | - Nicolas Papon
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France.
| |
Collapse
|
3
|
Fernández-Ruiz M. Pharmacological management of invasive mold infections in solid organ transplant recipients. Expert Opin Pharmacother 2024; 25:239-254. [PMID: 38436619 DOI: 10.1080/14656566.2024.2326507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Solid organ transplant (SOT) recipients face an increased susceptibility to invasive fungal infection (IFI) due to filamentous fungi. Post-transplant invasive aspergillosis (IA) and mucormycosis are related to exceedingly high mortality rates and graft loss risk, and its management involve a unique range of clinical challenges. AREAS COVERED First, the current treatment recommendations for IA and mucormycosis among SOT recipients are critically reviewed, including the supporting evidence. Next, we discussed particular concerns in this patient population, such as drug-drug interactions (DDIs) between triazoles and post-transplant immunosuppression or treatment-related toxicity. The role for immunomodulatory and host-targeted therapies is also considered, as well as the theoretical impact of the intrinsic antifungal activity of calcineurin inhibitors. Finally, a personal opinion is made on future directions in the pharmacological approach to post-transplant IFI. EXPERT OPINION Despite relevant advances in the treatment of mold IFIs in the SOT setting, such as the incorporation of isavuconazole (with lower incidence of DDIs and better tolerability than voriconazole), there remains a large room for improvement in areas such as the position of combination therapy or the optimal strategy for the reduction of baseline immunosuppression. Importantly, future studies should define the specific contribution of newer antifungal agents and classes.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Lefranc M, Accoceberry I, Fitton-Ouhabi V, Biteau N, Noël T. Rapamycin and caspofungin show synergistic antifungal effects in caspofungin-susceptible and caspofungin-resistant Candida strains in vitro. J Antimicrob Chemother 2024; 79:151-156. [PMID: 37991226 DOI: 10.1093/jac/dkad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVES Caspofungin is an echinocandin antifungal agent that inhibits synthesis of glucan required for the fungal cell wall. Resistance is mediated by mutation of Fks1 glucan synthase, among which S645P is the most common resistance-associated polymorphism. Rapamycin is a macrolide that inhibits the mechanistic target of rapamycin (mTOR) protein kinase activity. This study investigated the interaction between rapamycin and caspofungin in inhibiting the growth of WT Candida albicans and Fks1 S645P mutant clinical isolate, and WT Candida lusitaniae and genetically engineered isogenic strain with Fks1 S645P mutation at equivalent position. METHODS Interactions between caspofungin and rapamycin were evaluated using the microdilution chequerboard method in liquid medium. The results were analysed using the Loewe additivity model (FIC index, FICI) and the Bliss independence model (response surface, RS, analysis). RESULTS Synergy between rapamycin and caspofungin was shown for C. albicans and C. lusitaniae strains by RS analysis of the chequerboard tests. Synergy was observed in strains susceptible and resistant to caspofungin. Weak subinhibitory concentrations of rapamycin were sufficient to restore caspofungin susceptibility. CONCLUSIONS We report here, for the first time, synergy between caspofungin and rapamycin in Candida species. Synergy was shown for strains susceptible and resistant to caspofungin. This study highlights the possible implication of the TOR pathway in sensing antifungal-mediated cell wall stress and in modulating the cellular response to echinocandins in Candida yeasts.
Collapse
Affiliation(s)
- Maxime Lefranc
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, 33000 Bordeaux, France
| | - Isabelle Accoceberry
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, 33000 Bordeaux, France
| | - Valérie Fitton-Ouhabi
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
| | - Nicolas Biteau
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
| | - Thierry Noël
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
| |
Collapse
|
5
|
Ancuceanu R, Hovaneț MV, Cojocaru-Toma M, Anghel AI, Dinu M. Potential Antifungal Targets for Aspergillus sp. from the Calcineurin and Heat Shock Protein Pathways. Int J Mol Sci 2022; 23:ijms232012543. [PMID: 36293395 PMCID: PMC9603945 DOI: 10.3390/ijms232012543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus species, especially A. fumigatus, and to a lesser extent others (A. flavus, A. niger, A. terreus), although rarely pathogenic to healthy humans, can be very aggressive to immunocompromised patients (they are opportunistic pathogens). Although survival rates for such infections have improved in recent decades following the introduction of azole derivatives, they remain a clinical challenge. The fact that current antifungals act as fungistatic rather than fungicide, that they have limited safety, and that resistance is becoming increasingly common make the need for new, more effective, and safer therapies to become more acute. Over the last decades, knowledge about the molecular biology of A. fumigatus and other Aspergillus species, and particularly of calcineurin, Hsp90, and their signaling pathway proteins, has progressed remarkably. Although calcineurin has attracted much interest, its adverse effects, particularly its immunosuppressive effects, make it less attractive than it might at first appear. The situation is not very different for Hsp90. Other proteins from their signaling pathways, such as protein kinases phosphorylating the four SPRR serine residues, CrzA, rcnA, pmcA-pmcC (particularly pmcC), rfeF, BAR adapter protein(s), the phkB histidine kinase, sskB MAP kinase kinase, zfpA, htfA, ctfA, SwoH (nucleoside diphosphate kinase), CchA, MidA, FKBP12, the K27 lysine position from Hsp90, PkcA, MpkA, RlmA, brlA, abaA, wetA, other heat shock proteins (Hsp70, Hsp40, Hsp12) currently appear promising and deserve further investigation as potential targets for antifungal drug development.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (R.A.); (M.V.H.)
| | - Marilena Viorica Hovaneț
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
- Correspondence: (R.A.); (M.V.H.)
| | - Maria Cojocaru-Toma
- Faculty of Pharmacy, Nicolae Testemițanu State University of Medicine and Pharmacy, 2025 Chisinau, Moldova
| | - Adriana-Iuliana Anghel
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela Dinu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
6
|
Rossato L, Camargo Dos Santos M, Vitale RG, de Hoog S, Ishida K. Alternative treatment of fungal infections: Synergy with non-antifungal agents. Mycoses 2020; 64:232-244. [PMID: 33098146 DOI: 10.1111/myc.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Fungal infections are responsible for high mortality rates in immunocompromised and high-risk surgical patients. Therapy failures during the last decades due to increasing multidrug resistance demand innovative strategies for novel and effective antifungal drugs. Synergistic combinations of antifungals with non-antifungal agents highlight a pragmatic strategy to reduce the development of drug resistance and potentially repurpose known compounds with other functions to bypass costly and time-consuming novel drug development.
Collapse
Affiliation(s)
- Luana Rossato
- Faculdade de Ciências da Saúde, Federal University of Grande Dourados, Mato Grosso do Sul, Brazil
| | | | - Roxana G Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Hospital JM Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem 2020; 295:14458-14472. [PMID: 32796038 DOI: 10.1074/jbc.rev120.013731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022] Open
Abstract
Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.
Collapse
Affiliation(s)
- Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert G Privé
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Schwarz P, Schwarz PV, Felske-Zech H, Dannaoui E. In vitro interactions between isavuconazole and tacrolimus, cyclosporin A or sirolimus against Mucorales. J Antimicrob Chemother 2020; 74:1921-1927. [PMID: 30934052 DOI: 10.1093/jac/dkz102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To evaluate the in vitro interactions of isavuconazole with immune suppressors (tacrolimus, cyclosporin A or sirolimus) against 30 Mucorales isolates belonging to the most common species responsible for mucormycosis in humans (Rhizopus arrhizus, Rhizopus delemar, Rhizopus microsporus, Lichtheimia corymbifera, Lichtheimia ramosa, Mucor circinelloides and Rhizomucor pusillus). METHODS In vitro interaction was evaluated by a microdilution chequerboard technique. RESULTS Combination of isavuconazole with tacrolimus, cyclosporin A or sirolimus, was synergistic for 50%, 46% and 7% of the isolates, respectively. Antagonistic interaction was observed for 4% of the isolates for the combination with cyclosporin A (one R. arrhizus isolate) and for 32% of the isolates for the combination with sirolimus (six R. arrhizus isolates and three R. pusillus isolates). CONCLUSIONS These in vitro data show that calcineurin inhibitors are more likely than inhibitors of the mTOR pathway to enhance the activity of isavuconazole against Mucorales. These in vitro results warrant further animal experiments.
Collapse
Affiliation(s)
- Patrick Schwarz
- Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, Marburg, Germany.,Center for Invasive Mycoses and Antifungals, Philipps University Marburg, Marburg, Germany
| | - Petra V Schwarz
- Center for Invasive Mycoses and Antifungals, Philipps University Marburg, Marburg, Germany
| | - Heike Felske-Zech
- Department of Legal Medicine, University Hospital Gießen, Gießen, Germany
| | - Eric Dannaoui
- Université Paris Descartes, Faculté de Médecine, AP-HP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, Paris, France.,Dynamyc Research Group (EA 7380), Paris Est Créteil University, Créteil, France
| |
Collapse
|
9
|
In Vitro Interaction between Isavuconazole and Tacrolimus, Cyclosporin A, or Sirolimus against Aspergillus Species. J Fungi (Basel) 2020; 6:jof6030103. [PMID: 32650564 PMCID: PMC7560155 DOI: 10.3390/jof6030103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction of isavuconazole with immunosuppressors (tacrolimus, cyclosporin A, or sirolimus) against 30 Aspergillus isolates belonging to the most common species responsible for invasive aspergillosis in humans (Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus) was evaluated in vitro by a microdilution checkerboard technique based on the EUCAST reference method for antifungal susceptibility testing. The interpretation of the results was performed based on the fractional inhibitory concentration index. The combination of isavuconazole with tacrolimus, cyclosporin A, or sirolimus, was synergistic for 56, 20, or 10% of the isolates, respectively. Interestingly synergy of the combination of isavuconazole with tacrolimus was also achieved for the majority of azole-resistant isolates of A. fumigatus, and for all A. niger isolates with isavuconazole minimal inhibitory concentrations ≥ 8 µg/mL. Antagonistic interactions were never observed for any combination tested.
Collapse
|
10
|
Schmidt S, Hogardt M, Demir A, Röger F, Lehrnbecher T. Immunosuppressive Compounds Affect the Fungal Growth and Viability of Defined Aspergillus Species. Pathogens 2019; 8:pathogens8040273. [PMID: 31795350 PMCID: PMC6963520 DOI: 10.3390/pathogens8040273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Immunosuppressive drugs are administered to a number of patients; e.g., to allogeneic hematopoietic stem cell transplant recipients. Immunosuppressive drugs impair the immune system and thus increase the risk of invasive fungal disease, but may exhibit antifungal activity at the same time. We investigated the impact of various concentrations of three commonly used immunosuppressive compounds—cyclosporin A (CsA), methylprednisolone (mPRED), and mycophenolic acid (MPA)—on the growth and viability of five clinically important Aspergillus species. Methods included disc diffusion, optical density of mycelium, and viability assays such as XTT. MPA and CsA had a species-specific and dose-dependent inhibitory effect on the growth of all Aspergillus spp. tested, although growth inhibition by MPA was highest in A. niger,A. flavus and A. brasiliensis. Both agents exhibited species-specific hyphal damage, which was higher when the immunosuppressants were added to growing conidia than to mycelium. In contrast, mPRED increased the growth of A. niger, but had no major impact on the growth and viability of any of the other Aspergillus species tested. Our findings may help to better understand the interaction of drugs with Aspergillus species and ultimately may have an impact on individualizing immunosuppressive therapy.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Asuman Demir
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Frauke Röger
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
- Correspondence:
| |
Collapse
|
11
|
Yang J, Gao L, Yu P, Kosgey JC, Jia L, Fang Y, Xiong J, Zhang F. In vitro synergy of azole antifungals and methotrexate against Candida albicans. Life Sci 2019; 235:116827. [PMID: 31479680 DOI: 10.1016/j.lfs.2019.116827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aims to evaluate the effective of azoles and MTX for patients with invasive candidiasis. METHODS We used the disk diffusion assay and the checkerboard assay to evaluate the in vitro interactions between MTX and antifungals. In addition, we used the transmission electron microscopy to observe the ultrastructure of the effect of MTX and fluconazole on Candida albicans. RESULTS The rates of synergy for the combination of MTX with fluconazole (FLC), itraconazole (ITC), and voriconazole (VRZ) were 91.3%, 65.2%, and 87% in checkerboard testing. No antagonism was found between methotrexate and azole antifungals in any of the strains. Furthermore, MTX treated C. albicans showed extensive cell wall vacuolations and the inhibition of blastospores growth, as observed using transmission electron microscopy. There was an apparent destruction of the cell membrane and cell wall resulting in the destruction of cytoplasm, a phenomenon observed when MTX was combined with azoles. CONCLUSION This study provides evidence that the combination of azoles and MTX is effective for patients with invasive candidiasis, which on the other hand, will reduce the side effects of the drugs.
Collapse
Affiliation(s)
- Jianxun Yang
- Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150080, China.
| | - Lei Gao
- Microscopy Core Facility, Westlake University, Hangzhou 310024, China
| | - Pei Yu
- Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150080, China
| | - Janet Cheruiyot Kosgey
- WU Lien-The Institute, Department of Microbiology, Harbin Medical University, Harbin 150080, China
| | - Lina Jia
- WU Lien-The Institute, Department of Microbiology, Harbin Medical University, Harbin 150080, China
| | - Yong Fang
- WU Lien-The Institute, Department of Microbiology, Harbin Medical University, Harbin 150080, China
| | - Jikui Xiong
- Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150080, China
| | - Fengmin Zhang
- WU Lien-The Institute, Department of Microbiology, Harbin Medical University, Harbin 150080, China
| |
Collapse
|
12
|
Li Y, Zhang Y, Lu L. Calcium signaling pathway is involved in non-CYP51 azole resistance in Aspergillus fumigatus. Med Mycol 2019; 57:S233-S238. [PMID: 30816964 DOI: 10.1093/mmy/myy075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus, which is one of the primary airborne ascomycete pathogens and allergens worldwide, causes invasive fungal infections, which have high morbidity and mortality rates among immunosuppressed patients. The abuse of azole antifungals results in serious drug resistance in clinical therapy. Thus, a thorough understanding of the azole drug resistance mechanism and screening of antifungal agents with a novel mode of action and new drug targets are required to fight against drug resistance. Current studies suggest that there are three major azole resistance mechanisms in fungal pathogens, including changes of the drug target Cyp51, activation of drug efflux pumps and induction of cellular stress responses. Fungi must adapt to a variety of external environmental stressors to survive. These obstacles include stress to the plasma membrane after azole antifungal treatments, high temperature, pH variation, and oxidative stress. As a filamentous fungus, A. fumigatus has evolved numerous signal-transduction systems to sense and respond to azole stresses to survive and proliferate in harsh environmental conditions. Among these signal-transduction systems, the Ca2+ signaling pathway is one of the most important response systems, which has been verified to be involved in stress adaptation. In this review, we have summarized how the components of the calcium-signaling pathway and their interaction network are involved in azole stress response in A. fumigatus.
Collapse
Affiliation(s)
- Yeqi Li
- Jiangsu Key laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yuanwei Zhang
- Jiangsu Key laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ling Lu
- Jiangsu Key laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
13
|
Juvvadi PR, Moseley MA, Hughes CJ, Soderblom EJ, Lennon S, Perkins SR, Thompson JW, Geromanos SJ, Wildgoose J, Richardson K, Langridge JI, Vissers JPC, Steinbach WJ. Scanning Quadrupole Data-Independent Acquisition, Part B: Application to the Analysis of the Calcineurin-Interacting Proteins during Treatment of Aspergillus fumigatus with Azole and Echinocandin Antifungal Drugs. J Proteome Res 2017; 17:780-793. [PMID: 29251506 DOI: 10.1021/acs.jproteome.7b00499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcineurin is a critical cell-signaling protein that orchestrates growth, stress response, virulence, and antifungal drug resistance in several fungal pathogens. Blocking calcineurin signaling increases the efficacy of several currently available antifungals and suppresses drug resistance. We demonstrate the application of a novel scanning quadrupole DIA method for the analysis of changes in the proteins coimmunoprecipitated with calcineurin during therapeutic antifungal drug treatments of the deadly human fungal pathogen Aspergillus fumigatus. Our experimental design afforded an assessment of the precision of the method as demonstrated by peptide- and protein-centric analysis from eight replicates of the study pool QC samples. Two distinct classes of clinically relevant antifungal drugs that are guideline recommended for the treatment of invasive "aspergillosis" caused by Aspergillus fumigatus, the azoles (voriconazole) and the echinocandins (caspofungin and micafungin), which specifically target the fungal plasma membrane and the fungal cell wall, respectively, were chosen to distinguish variations occurring in the proteins coimmunoprecipitated with calcineurin. Novel potential interactors were identified in response to the different drug treatments that are indicative of the possible role for calcineurin in regulating these effectors. Notably, treatment with voriconazole showed increased immunoprecipitation of key proteins involved in membrane ergosterol biosynthesis with calcineurin. In contrast, echinocandin (caspofungin or micafungin) treatments caused increased immunoprecipitation of proteins involved in cell-wall biosynthesis and septation. Furthermore, abundant coimmunoprecipitation of ribosomal proteins with calcineurin occurred exclusively in echinocandins treatment, indicating reprogramming of cellular growth mechanisms during different antifungal drug treatments. While variations in the observed calcineurin immunoprecipitated proteins may also be due to changes in their expression levels under different drug treatments, this study suggests an important role for calcineurin-dependent cellular mechanisms in response to antifungal treatment of A. fumigatus that warrants future studies.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - M Arthur Moseley
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | | | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Sarah Lennon
- Waters Corporation , Wilmslow SK9 4AX, United Kingdom
| | - Simon R Perkins
- Institute of Integrative Biology, University of Liverpool , Liverpool L69 3BX, United Kingdom
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource Center for Genomic and Computational Biology, Duke University Medical Center , Durham, North Carolina 27710, United States
| | | | | | | | | | | | - William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center , Durham, North Carolina 27710, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|
14
|
Synergistic Effects of Tacrolimus and Azoles against Exophiala dermatitidis. Antimicrob Agents Chemother 2017; 61:AAC.00948-17. [PMID: 28923863 DOI: 10.1128/aac.00948-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/10/2017] [Indexed: 11/20/2022] Open
Abstract
In vitro interactions of tacrolimus, a calcineurin inhibitor, and azoles, including itraconazole, voriconazole, and posaconazole, against planktonic cells and biofilms of Exophiala dermatitidis were assessed via a broth microdilution checkerboard technique. A total of 16 clinical isolates were studied. The results revealed favorable synergistic inhibitory activity between tacrolimus and itraconazole, voriconazole, or posaconazole against 68.8%, 87.5%, and 100% of tested strains of planktonic E. dermatitidis, respectively.However, limited synergism was observed against biofilms of E. dermatitidis No antagonism was observed in all combinations.
Collapse
|
15
|
Borba-Santos LP, Reis de Sá LF, Ramos JA, Rodrigues AM, de Camargo ZP, Rozental S, Ferreira-Pereira A. Tacrolimus Increases the Effectiveness of Itraconazole and Fluconazole against Sporothrix spp. Front Microbiol 2017; 8:1759. [PMID: 28966608 PMCID: PMC5605639 DOI: 10.3389/fmicb.2017.01759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022] Open
Abstract
Calcineurin inhibitors – such as the clinically used drug tacrolimus – are active against important fungal pathogens, particularly when combined with azoles. However, tacrolimus has not been tested against sporotrichosis, an endemic subcutaneous mycosis with worldwide distribution. Here, we evaluated the activity of tacrolimus and cyclosporine A in vitro – as monotherapy and in combination with itraconazole or fluconazole – against yeasts of Sporothrix brasiliensis and S. schenckii, the main sporotrichosis agents in Brazil. We also analyzed the effect of tacrolimus treatment on intracellular neutral lipid levels, which typically increase after azole treatment. Tacrolimus inhibited the growth of yeasts from S. brasiliensis and S. schenckii reference isolates, with minimum inhibitory concentration (MIC) values (required for ≥50% growth inhibition) of 1 and 2 mg/L, respectively. Importantly, the combination of tacrolimus and azoles exhibited high synergy toward reference Sporothrix isolates. Tacrolimus combined with itraconazole significantly increased neutral lipid accumulation in S. brasiliensis, but not in S. schenckii. Clinical isolates of S. brasiliensis and S. schenckii were more sensitive to tacrolimus as monotherapy than feline-borne isolates, however, synergy between tacrolimus and azoles was only observed for feline-borne isolates. Cyclosporine A was effective against S. brasiliensis and S. schenckii as monotherapy (MIC = 1 mg/L), but exhibited no synergy with itraconazole and fluconazole. We conclude that tacrolimus has promising antifungal activity against sporotrichosis agents, and also increases the activity of the current anti-sporotrichosis therapy (itraconazole and fluconazole) in combination assays against S. brasiliensis feline-borne isolates.
Collapse
Affiliation(s)
- Luana P Borba-Santos
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Leandro F Reis de Sá
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Juliene A Ramos
- Instituto Federal de Educação, Ciência e TecnologiaRio de Janeiro, Brazil
| | - Anderson M Rodrigues
- Divisão de Biologia Celular, Departamento de Microbiologia, Universidade de São PauloSão Paulo, Brazil
| | - Zoilo P de Camargo
- Divisão de Biologia Celular, Departamento de Microbiologia, Universidade de São PauloSão Paulo, Brazil
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Antonio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
16
|
Samanta P, Singh N. Complications of invasive mycoses in organ transplant recipients. Expert Rev Anti Infect Ther 2016; 14:1195-1202. [PMID: 27690694 DOI: 10.1080/14787210.2016.1242412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Opportunistic mycoses remain a significant complication in organ recipients. Areas covered: This review is an evidence-based presentation of current state-of-knowledge and our perspective on recent developments in the field Expert commentary: Invasive fungal infections are associated with reduced allograft and patient survival, increase in healthcare resource utilization, and newly appreciated but largely unrecognized immunologic sequelae, such as immune reconstitution syndrome. Given adverse outcomes associated with established infections, prophylaxis is a widely used strategy for the prevention of these infections. Currently available biomarkers that detect circulating fungal cell wall constituents i.e., galactomannan and 1, 3-β-D-glucan have not proven to be beneficial as screening tools for employing targeted prophylaxis or as diagnostic assays in this patient population. However, subsets of patients at risk for opportunistic fungal infections can be identified based on clinically identifiable characteristics or events. Preventive strategies targeted towards these patients are a rational approach for optimizing outcomes.
Collapse
Affiliation(s)
- Palash Samanta
- a Division of Infectious Diseases , University of Pittsburgh , Pittsburgh , PA , USA
| | - Nina Singh
- b Division of Infectious Diseases , University of Pittsburgh and VA Pittsburgh Medical Center , Pittsburgh , PA , USA
| |
Collapse
|
17
|
Steinbach WJ, Lamoth F, Juvvadi PR. Potential Microbiological Effects of Higher Dosing of Echinocandins. Clin Infect Dis 2016; 61 Suppl 6:S669-77. [PMID: 26567286 DOI: 10.1093/cid/civ725] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The antifungal "paradoxical effect" has been described as the reversal of growth inhibition at high doses of echinocandins, most usually caspofungin. This microbiological effect appears to be a cellular compensatory response to cell wall damage, resulting in alteration of cell wall content and structure as well as fungal morphology and growth. In vitro studies demonstrate this reproducible effect in a certain percentage of fungal isolates, but animal model and clinical studies are less consistent. The calcineurin and Hsp90 cell signaling pathways appear to play a major role in regulating these cellular and structural changes. Regardless of the clinical relevance of this paradoxical growth effect, understanding the specific actions of echinocandins is paramount to optimizing their use at either standard or higher dosing schemes, as well as developing future improvements in our antifungal arsenal.
Collapse
Affiliation(s)
- William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Frédéric Lamoth
- Division of Pediatric Infectious Diseases, Department of Pediatrics Infectious Diseases Service, Department of Medicine Institute of Microbiology, Lausanne University Hospital, Switzerland
| | | |
Collapse
|
18
|
Butts A, Palmer GE, Rogers PD. Antifungal adjuvants: Preserving and extending the antifungal arsenal. Virulence 2016; 8:198-210. [PMID: 27459018 DOI: 10.1080/21505594.2016.1216283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance.
Collapse
Affiliation(s)
- Arielle Butts
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Glen E Palmer
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - P David Rogers
- a Department of Clinical Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
19
|
Falloon K, Juvvadi PR, Richards AD, Vargas-Muñiz JM, Renshaw H, Steinbach WJ. Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus. PLoS One 2015; 10:e0137869. [PMID: 26366742 PMCID: PMC4569257 DOI: 10.1371/journal.pone.0137869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/22/2015] [Indexed: 01/11/2023] Open
Abstract
Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn’t localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don’t play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn’t show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated “paradoxical growth effect” at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.
Collapse
Affiliation(s)
- Katie Falloon
- Duke University School of Medicine, Durham, NC, United States of America
| | - Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC, United States of America
| | - Amber D. Richards
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC, United States of America
| | - José M. Vargas-Muñiz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Hilary Renshaw
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
20
|
Petraitiene R, Petraitis V, Bacher JD, Finkelman MA, Walsh TJ. Effects of host response and antifungal therapy on serum and BAL levels of galactomannan and (1→3)-β-D-glucan in experimental invasive pulmonary aspergillosis. Med Mycol 2015; 53:558-68. [DOI: 10.1093/mmy/myv034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/29/2015] [Indexed: 11/14/2022] Open
|
21
|
Winston DJ, Limaye AP, Pelletier S, Safdar N, Morris MI, Meneses K, Busuttil RW, Singh N. Randomized, double-blind trial of anidulafungin versus fluconazole for prophylaxis of invasive fungal infections in high-risk liver transplant recipients. Am J Transplant 2014; 14:2758-64. [PMID: 25376267 DOI: 10.1111/ajt.12963] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/03/2014] [Accepted: 07/18/2014] [Indexed: 01/25/2023]
Abstract
Invasive fungal infections (IFIs) are a common complication in liver transplant recipients. There are no previous randomized trials of an echinocandin for the prevention of IFIs in solid organ transplant recipients. In a randomized, double-blind trial conducted at University-affiliated transplant centers, 200 high-risk liver transplant recipients (100 patients per group) received either anidulafungin or fluconazole for antifungal prophylaxis. Randomization was stratified by Model for End-Stage Liver Disease score ≥30 and receipt of a pretransplant antifungal agent. The primary end point was IFI in a modified intent-to-treat analysis. The overall incidence of IFI was similar for the anidulafungin (5.1%) and the fluconazole groups (8.0%) (OR 0.61, 95% CI 0.19-1.94, p = 0.40). However, anidulafungin prophylaxis was associated with less Aspergillus colonization or infection (3% vs. 9%, p = 0.08), lower breakthrough IFIs among patients who had received pretransplant fluconazole (0% vs. 27%, p = 0.07), and fewer cases of antifungal resistance (no cases vs. 5 cases). Both drugs were well-tolerated. Graft rejection, fungal-free survival, and mortality were similar for both groups. Thus, anidulafungin and fluconazole have similar efficacy for antifungal prophylaxis in most liver transplant recipients. Anidulafungin may be beneficial if the patient has an increased risk for Aspergillus infection or received fluconazole before transplantation.
Collapse
Affiliation(s)
- D J Winston
- Department of Surgery, University of California Los Angeles Medical Center, Los Angeles, CA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a Multifunctional Regulator: Unraveling Novel Functions in Fungal Stress Responses, Hyphal Growth, Drug Resistance, and Pathogenesis. FUNGAL BIOL REV 2014; 28:56-69. [PMID: 25383089 DOI: 10.1016/j.fbr.2014.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Frédéric Lamoth
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland ; Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - William J Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
23
|
In vitro interactions of calcineurin inhibitors with conventional antifungal agents against the yeast form of Penicillium marneffei. Mycopathologia 2014; 178:217-20. [PMID: 25052248 DOI: 10.1007/s11046-014-9787-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
Penicillium marneffei can cause a life-threatening disseminated mycosis in immunocompromised hosts. However, therapeutic strategies for the treatment of this infectious disease are limited. Reports of other fungi suggest that calcineurin inhibitors interact with antifungal agents to improve the treatment outcomes. Here, we evaluated the in vitro interaction of the calcineurin inhibitors cyclosporine A and tacrolimus (FK506) combined with conventional antifungal agents against the pathogenic yeast form of P. marneffei. We demonstrate that the combination of cyclosporine A with amphotericin B, itraconazole, or fluconazole was synergistic for 85, 65, and 30 % of P. marneffei strains, respectively. In contrast, no synergism was observed in all the combinations containing tacrolimus. Furthermore, antagonism was not observed for any combination. In conclusion, the therapeutic potential of a combinatory approach using the calcineurin inhibitor cyclosporine A with conventional antifungal drugs may lead to improved treatment regimens for P. marneffei infections. We propose that mechanism of action studies with cyclosporine A and antifungal agents is needed.
Collapse
|
24
|
Cordeiro RDA, Macedo RDB, Teixeira CEC, Marques FJDF, Bandeira TDJPG, Moreira JLB, Brilhante RSN, Rocha MFG, Sidrim JJC. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. J Med Microbiol 2014; 63:936-944. [PMID: 24722799 DOI: 10.1099/jmm.0.073478-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs.
Collapse
Affiliation(s)
- Rossana de Aguiar Cordeiro
- Department of Clinical Medicine, School of Medicine, Post-Graduation Program in Medicine Science, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ramila de Brito Macedo
- Department of Clinical Medicine, School of Medicine, Post-Graduation Program in Medicine Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Carlos Eduardo Cordeiro Teixeira
- Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisca Jakelyne de Farias Marques
- Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tereza de Jesus Pinheiro Gomes Bandeira
- Christus College, School of Medicine, Fortaleza, Ceará, Brazil.,LabPasteur-DASA Laboratory, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Luciano Bezerra Moreira
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Clinical Medicine, School of Medicine, Post-Graduation Program in Medicine Science, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- School of Veterinary, Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza, Ceará, Brazil.,Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, School of Medicine, Postgraduate Program in Medical Microbiology and Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
25
|
pH signaling in human fungal pathogens: a new target for antifungal strategies. EUKARYOTIC CELL 2014; 13:342-52. [PMID: 24442891 DOI: 10.1128/ec.00313-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.
Collapse
|
26
|
Schaenman JM, Khuu T, Kubak BM. Fungi as Eukaryotes: Understanding the Antifungal Effects of Immunosuppressive Drugs. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-013-0169-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Amphotericin B- and voriconazole-echinocandin combinations against Aspergillus spp.: Effect of serum on inhibitory and fungicidal interactions. Antimicrob Agents Chemother 2013; 57:4656-63. [PMID: 23856768 DOI: 10.1128/aac.00597-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Antifungal combination therapy with voriconazole or amphotericin B and an echinocandin is often employed as primary or salvage therapy for management particularly of refractory aspergillosis. The pharmacodynamic interactions of amphotericin B- and voriconazole-based combinations with the three echinocandins caspofungin, micafungin, and anidulafungin in the presence of serum were tested against 15 Aspergillus fumigatus complex, A. flavus complex, and A. terreus complex isolates to assess both their growth-inhibitory and fungicidal activities. The in vitro activity of each drug alone and in combination at a 1:1 fixed concentration ratio was tested with a broth microdilution colorimetric method, and interactions were assessed by isobolographic analysis. Synergy was found for all amphotericin B- and voriconazole-based combinations, with amphotericin B-based combinations showing strong inhibitory synergistic interactions (interaction indices of 0.20 to 0.52) and with voriconazole-based combinations demonstrating strong fungicidal synergistic interactions (interaction indices of 0.10 to 0.29) (P < 0.001). Drug- and species-specific differences were found, with caspofungin and the A. fumigatus complex exhibiting the weakest synergistic interactions. In the presence of serum, the synergistic interactions were reduced in the order (from largest to smallest decrease) micafungin > anidulafungin > caspofungin, and A. flavus complex > A. fumigatus complex > A. terreus complex, resulting in additive interactions, particularly for inhibitory activities of amphotericin B-echinocandin combinations and fungicidal activities of voriconazole-echinocandin combinations. Drug- and species-specific differences were found in the presence of serum for inhibitory activities of antifungal drugs, with the lowest interaction indices being observed for amphotericin B-caspofungin (median, 0.77) and for the A. terreus complex (median, 0.56). The present in vitro data showed that serum had a major impact on synergistic interactions of amphotericin B-echinocandin and voriconazole-echinocandin combinations, resulting in additive interactions and explaining the indifferent outcomes usually observed in vivo.
Collapse
|
28
|
Genetic bypass of Aspergillus nidulans crzA function in calcium homeostasis. G3-GENES GENOMES GENETICS 2013; 3:1129-41. [PMID: 23665873 PMCID: PMC3704241 DOI: 10.1534/g3.113.005983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After dephosphorylation by the phosphatase calcineurin, the fungal transcription factor CrzA enters the nucleus and activates the transcription of genes responsible for calcium homeostasis and many other calcium-regulated activities. A lack of CrzA confers calcium-sensitivity to the filamentous fungus Aspergillus nidulans. To further understand calcium signaling in filamentous fungi and to identify genes that interact genetically with CrzA, we selected for mutations that were able to suppress crzAΔ calcium intolerance and identified three genes. Through genetic mapping, gene sequencing, and mutant rescue, we were able to identify these as cnaB (encoding the calcineurin regulatory subunit), folA (encoding an enzyme involved in folic acid biosynthesis, dihydroneopterin aldolase), and scrC (suppression of crzA-, encoding a hypothetical protein). By using a calcium indicator, Fluo-3, we were able to determine that the wild-type and the suppressor strains were either able to regulate intracellular calcium levels or were able to take up and or store calcium correctly. The increased expression of calcium transporters, pmcA and/or pmcB, in suppressor mutants possibly enabled tolerance to high levels of calcium. Our results suggest that a cnaB suppressor mutation confers calcium tolerance to crzAΔ strains through restoration of calcium homeostasis. These results stress that in A. nidulans there are calcineurin-dependent and CrzA-independent pathways. In addition, it is possible that CrzA is able to contribute to the modulation of folic acid biosynthesis.
Collapse
|
29
|
Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 2013; 9:222-31. [PMID: 23508188 DOI: 10.1038/nchembio.1205] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/07/2013] [Indexed: 01/01/2023]
Abstract
Here, we review the 'target-centric' genomic strategy to antimicrobial discovery and share our perspective on identification, validation and prioritization of potential antimicrobial drug targets in the context of emerging chemical biology, genomics and phenotypic screening strategies. We propose that coupling the dual processes of antimicrobial small-molecule screening and target identification in a whole-cell context is essential to empirically annotate 'druggable' targets and advance early stage antimicrobial discovery. We also advocate a systems-level approach to annotating synthetic-lethal genetic interactions comprehensively within yeast and bacteria models. The resulting genetic interaction networks provide a landscape to rationally predict and exploit drug synergy between cognate inhibitors. We posit that synergistic combination agents provide an important and largely unexploited strategy to 'repurpose' existing chemical space and simultaneously address issues of potency, spectrum, toxicity and drug resistance in early stages of antimicrobial drug discovery.
Collapse
|
30
|
Herbst S, Shah A, Carby M, Chusney G, Kikkeri N, Dorling A, Bignell E, Shaunak S, Armstrong-James D. A new and clinically relevant murine model of solid-organ transplant aspergillosis. Dis Model Mech 2013; 6:643-51. [PMID: 23264562 PMCID: PMC3634648 DOI: 10.1242/dmm.010330] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/16/2012] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections (IFIs) are a major cause of death in organ transplant patients. The murine hydrocortisone-mediated immunosuppression model of pulmonary aspergillosis is commonly used to characterise IFIs in these patients. However, this model does not take into account the effects of calcineurin inhibitors on transplant immunity to IFIs or the fungal calcineurin pathway, which is required for both virulence and antifungal drug resistance. To address these two issues, a new and clinically relevant transplant immunosuppression model of tacrolimus (FK506) and hydrocortisone-associated pulmonary aspergillosis was developed. We first characterised IFIs in 406 patients with a lung transplant. This showed that all of the patients with pulmonary aspergillosis were immunosuppressed with calcineurin inhibitors and steroids. Murine pharmacokinetic studies demonstrated that an ideal dose of 1 mg/kg/day of FK506 intraperitoneally produced blood trough levels in the human therapeutic range (5-12 ng/ml). There was increased mortality from pulmonary aspergillosis in a transplant-relevant immunosuppression model using both FK506 and hydrocortisone as compared with immunosuppression using hydrocortisone only. Lung histopathology showed neutrophil invasion and tracheobronchitis that was associated with reduced lung tumour necrosis factor-α (TNFα), JE (homologue of human MCP-1) and KC (homologue of human IL-8) at 24 hours, but increased lung TNFα, JE and KC at 48 hours when fungal burden was high. Furthermore, FK506 directly impaired fungal killing in alveolar macrophages in vitro, with FK506-mediated inhibition of the radial growth of Aspergillus fumigatus in vitro occurring at the low concentration of 5 ng/ml. Taken together, these findings show that the immunosuppressive activity of FK506 outweighs its antifungal activity in vivo. These observations demonstrate that FK506 impairs innate immune responses and leads to an incremental increase in susceptibility to IFIs when it is combined with steroids. This new and clinically relevant mouse model of invasive aspergillosis is a valuable addition to the further study of both fungal immunity and antifungal therapy in organ transplantation.
Collapse
Affiliation(s)
- Susanne Herbst
- Departments of Medicine, Infectious Diseases and Immunity, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Anand Shah
- Departments of Medicine, Infectious Diseases and Immunity, Imperial College London, Du Cane Road, London W12 0NN, UK
- The Royal Brompton and Harefield NHS Trust, Sidney Street, London SW3 6NP, UK
| | - Martin Carby
- The Royal Brompton and Harefield NHS Trust, Sidney Street, London SW3 6NP, UK
| | - Gary Chusney
- Leslie Brent Laboratory, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Naresh Kikkeri
- Department of Pathology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Anthony Dorling
- MRC Centre for Transplantation, Kings College London, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Elaine Bignell
- Department of Microbiology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sunil Shaunak
- Departments of Medicine, Infectious Diseases and Immunity, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Darius Armstrong-James
- Departments of Medicine, Infectious Diseases and Immunity, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
31
|
Aguado JM, Varo E, Usetti P, Pozo JC, Moreno A, Catalán M, Len O, Blanes M, Solé A, Muñoz P, Montejo M. Safety of anidulafungin in solid organ transplant recipients. Liver Transpl 2012; 18:680-5. [PMID: 22328277 DOI: 10.1002/lt.23410] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was the evaluation of the safety of anidulafungin in adult solid organ transplantation (SOT) recipients. During the study period (14 months), we included all consecutive SOT recipients from 14 centers who received anidulafungin for at least 48 hours for the treatment of invasive fungal infections (IFIs) or as prophylaxis. Relevant clinical and analytical information on clinical charts was reviewed. Clinical side effects, liver function tests, and serum creatinine levels were assessed at least weekly. The need for the modification of immunosuppressive drugs was also recorded by the investigators. All patients were followed for at least 1 week after the end of treatment (EOT) or until death. Eighty-six SOT recipients were evaluated (56 transplant recipients, 20 lung transplant recipients, 8 kidney transplant recipients, and 2 heart transplant recipients). Sixty-two patients (72%) received anidulafungin for prophylaxis, and 24 (28%) received anidulafungin for the treatment of IFIs [candidemia/invasive candidiasis (16) or invasive aspergillosis (8)]. At the baseline, only 5% of the patients were neutropenic (<500 neutrophils/mL). There was no need for the modification of immunosuppressive drug doses because of anidulafungin therapy. No patient discontinued anidulafungin because of severe adverse effects. While receiving anidulafungin, 1 patient developed mild liver toxicity, but the liver function normalized without the discontinuation of anidulafungin. At EOT, the median serum creatinine, aspartate aminotransferase, and alanine aminotransferase levels were significantly lower than the baseline levels, even in liver transplant recipients and patients who had higher baseline levels of serum creatinine. In conclusion, these results show that anidulafungin is a well-tolerated drug in SOT recipients.
Collapse
Affiliation(s)
- J M Aguado
- 12 de Octubre University Hospital, Avenida Andalucía Km 5400, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Singh S, Gupta S, Singh B, Sharma SK, Gupta VK, Sharma GL. Proteomic characterization of Aspergillus fumigatus treated with an antifungal coumarin for identification of novel target molecules of key pathways. J Proteome Res 2012; 11:3259-68. [PMID: 22533410 DOI: 10.1021/pr300006j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic coumarin, N,N,N-triethyl-11-(4-methyl-2-oxo-2H-chromen-7-yloxy)-11-oxoundecan-1-aminium bromide (SCD-1), having potent activity against pathogenic Aspergilli (MIC90 15.62 μg/mL), was investigated to identify its molecular targets in the pathogen. The proteome of Aspergillus fumigatus was developed after treatment with sublethal doses of compound and analyzed. The results demonstrated 143 differentially expressed proteins on treatment with SCD-1. The expression of four proteins, namely cell division control protein, ubiquitin-like activating enzyme, vacuolar ATP synthase catalytic subunit A, and UTP-glucose-1-phosphate uridylyltransferase of A. fumigatus, was completely inhibited, whereas there were 13 newly expressed and 96 overexpressed proteins, mainly belonging to stress pathway. The treatment of A. fumigatus with SCD-1 also led to attenuation of proteins involved in cell replication and other important biosynthetic processes, including riboflavin biosynthesis, which has been pathogen-specific. In addition to key enzymatic players and antioxidants, nine hypothetical proteins were also identified, seven of which have been novel, being described for the first time. As no cellular functions have yet been described for these hypothetical proteins, their alteration in response to SCD-1 provides significant information about their putative roles in pathogen defense.
Collapse
Affiliation(s)
- Seema Singh
- Division of Diagnostics and Biochemistry, CSIR-Institute of Genomics and Integrative Biology , University Campus, Mall Road, Delhi-110007, India
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
It has been nearly a decade since caspofungin was approved for clinical use as the first echinocandin class antifungal agent, followed by micafungin and anidulafungin. The echinocandin drugs target the fungal cell wall by inhibiting the synthesis of β-1,3-D-glucan, a critical cell wall component of many pathogenic fungi. They are fungicidal for Candida spp. and fungistatic for moulds, such as Aspergillus fumigatus, where they induce abnormal morphology and growth properties. The echinocandins have a limited antifungal spectrum but are highly active against most Candida spp., including azole-resistant strains and biofilms. As they target glucan synthase, an enzyme absent in mammalian cells, the echinocandins have a favorable safety profile. They show potent MIC and epidemiological cutoff values against susceptible Candida and Aspergillus isolates, and the frequency of resistance is low. When clinical breakthrough occurs, it is associated with high MIC values and mutations in Fks subunits of glucan synthase, which can reduce the sensitivity of the enzyme to the drug by several thousand-fold. Such strains were not adequately captured by an early clinical breakpoint for susceptibility prompting a revised lower value, which addresses the FKS resistance mechanism and new pharmacokinetic/pharmacodynamic studies. Elevated MIC values unlinked to therapeutic failure can occur and result from adaptive cell behavior, which is FKS-independent and involves the molecular chaperone Hsp90 and the calcineurin pathway. Mutations in FKS1 and/or FKS2 alter the kinetic properties of glucan synthase, which reduces the relative fitness of mutant strains causing them to be less pathogenic. The echinocandin drugs also modify the cell wall architecture exposing buried glucans, which in turn induce a variety of important host immune responses. Finally, the future for glucan synthase inhibitors looks bright with the development of new orally active compounds.
Collapse
Affiliation(s)
- David S Perlin
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, NJ 07103, USA.
| |
Collapse
|
34
|
Chen SCA, Lewis RE, Kontoyiannis DP. Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species. Virulence 2011; 2:280-95. [PMID: 21701255 PMCID: PMC3173675 DOI: 10.4161/viru.2.4.16764] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Conventional antineoplastic, novel immunosuppressive agents and antibiotics used in cancer treatment can directly affect the growth, development and virulence of Candida and Aspergillus species. Cytotoxic and cisplatin compounds have anti-Candida activity and may be synergistic with antifungal drugs; they also inhibit Candida and Aspergillus filamentation/conidation and effect increased virulence in vitro. Glucocorticoids enhance Candida adherence to epithelial cells, germination in serum and in vitro secretion of phospholipases and proteases, as well as growth of A. fumigatus. Calcineurin and target of rapamycin inhibitors perturb Candida and Aspergillus morphogenesis, stress responses and survival in serum, reduce azole tolerance in Candida, but yield conflicting in vivo data. Inhibition of candidal heat shock protein 90 and candidal-specific histone deacetylase represent feasible therapeutic approaches for candidiasis. Tyrosine kinase inhibitors inhibit fungal cell entry into epithelial cells and phagocytosis. Quinolone and other antibiotics may augment activity of azole and polyene agents. The correlation of in vitro effects with clinically meaningful in vivo systems is warranted.
Collapse
Affiliation(s)
- Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, University of Sydney, Westmead, NSW Australia
| | | | | |
Collapse
|
35
|
Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. Antimicrob Agents Chemother 2011; 55:2641-7. [PMID: 21422223 DOI: 10.1128/aac.00999-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paradoxical growth of Candida in vitro at echinocandin concentrations exceeding the MIC is well described, but the clinical relevance is unknown. We assessed echinocandin paradoxical effects against Candida bloodstream isolates (BSI) in the presence or absence of human serum and investigated regulatory mechanisms. As determined by broth microdilution, a paradoxical effect was evident for 60% (18/30), 23% (7/30), and 13% (4/30) of Candida albicans BSI exposed to caspofungin, anidulafungin, and micafungin, respectively, at achievable human serum concentrations (≤8 μg/ml). A paradoxical effect was not evident among 34 C. glabrata BSI and was observed only for caspofungin against C. parapsilosis (4%, 1/23). As determined in time-kill studies, a caspofungin paradoxical effect was demonstrated by C. albicans (2/3), C. glabrata (1/3), and C. parapsilosis (1/3), including BSI that were determined to be negative by microdilution. In 50% human serum, a paradoxical effect was eliminated at caspofungin concentrations up to 64 μg/ml for 100% (8/8) of the C. albicans BSI. A caspofungin paradoxical effect was also eliminated by chitin synthase inhibitor nikkomycin Z and at achievable concentrations of calcineurin pathway inhibitors, tacrolimus and cyclosporine. Moreover, these agents were synergistic with caspofungin against 100, 100, and 88% (7/8) of C. albicans, respectively, and exerted their own paradoxical effects. Finally, paradoxical growth was eliminated in C. albicans irs4- and inp51-null mutants, which lack phosphatidylinositol-(4,5)-bisphosphate 5'-phosphatase. Our findings suggest that the paradoxical effect is unlikely to be important in vivo but remains an important tool to study cell wall stress responses. We implicate the Irs4-Inp51 phosphatidylinositol-(4,5)-bisphosphate 5'-phosphatase as a novel regulator of paradoxical growth.
Collapse
|
36
|
|
37
|
Ben-Ami R, Lewis RE, Kontoyiannis DP. Enemy of the (immunosuppressed) state: an update on the pathogenesis of Aspergillus fumigatus infection. Br J Haematol 2010; 150:406-17. [PMID: 20618330 DOI: 10.1111/j.1365-2141.2010.08283.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillus fumigatus is an opportunistic filamentous fungus that is currently the most frequent cause of invasive fungal disease in immunosuppressed individuals. Recent advances in our understanding of the pathogenesis of invasive aspergillosis have highlighted the multifactorial nature of A. fumigatus virulence and the complex interplay between host and microbial factors. In this review, we outline current concepts of immune recognition and evasion, angioinvasion and angiogenesis, secondary metabolism and the fungal stress response, and their respective roles in this often lethal infection.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | |
Collapse
|
38
|
Soriani FM, Malavazi I, Savoldi M, Espeso E, Dinamarco TM, Bernardes LAS, Ferreira MES, Goldman MHS, Goldman GH. Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA. BMC Microbiol 2010; 10:12. [PMID: 20078882 PMCID: PMC2818617 DOI: 10.1186/1471-2180-10-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 01/15/2010] [Indexed: 11/13/2022] Open
Abstract
Background Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and ΔAfcrzA mutant strains. Results We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively). Decreased mRNA abundance in the ΔcrzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl2 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride. Conclusion We have performed a transcriptional profiling analysis of the A. fumigatus ΔAfcrzA mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin activity. Concomitantly with A. fumigatus AfrcnA molecular analysis, we decided to exploit the conserved features of A. nidulans calcineurin system and investigated the A. nidulans AnRcnA homologue. A. nidulans AnRcnA mutation is suppressing CnaA mutation and it is responsible for modulating the calcineurin activity and mRNA accumulation of genes encoding calcium transporters.
Collapse
Affiliation(s)
- Frederico M Soriani
- Centro de Ciência e Tecnologia do Bioetanol and Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, São Paulo, Ribeirão Preto 14040-903, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dannaoui E, Schwarz P, Lortholary O. In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. Antimicrob Agents Chemother 2009; 53:3549-51. [PMID: 19451295 PMCID: PMC2715618 DOI: 10.1128/aac.00184-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/07/2009] [Accepted: 05/09/2009] [Indexed: 01/09/2023] Open
Abstract
The in vitro interaction of antifungals with immunosuppressive drugs was evaluated against zygomycetes. The combination of amphotericin B with cyclosporine, rapamycin, or tacrolimus was synergistic for 90%, 70%, and 30% of the isolates, respectively. For posaconazole, itraconazole, and ravuconazole, synergy was more frequently observed with cyclosporine than with rapamycin or tacrolimus and antagonistic interactions were rarely noted. In summary, calcineurin inhibitors and rapamycin can be synergistic in vitro with amphotericin B and azoles against zygomycetes.
Collapse
Affiliation(s)
- Eric Dannaoui
- Centre National de Référence Mycologie et Antifongiques, Unité de Mycologie Moléculaire, CNRS URA3012, Institut Pasteur, 25 Rue du Dr. Roux, 75724 Paris, Cedex 15, France.
| | | | | |
Collapse
|
40
|
Phenotypic analysis of genes whose mRNA accumulation is dependent on calcineurin in Aspergillus fumigatus. Fungal Genet Biol 2009; 46:791-802. [PMID: 19573616 DOI: 10.1016/j.fgb.2009.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/21/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
Calcineurin plays an important role in the control of cell morphology and virulence in fungi. Calcineurin is a serine/threonine-specific protein phosphatase heterodimer consisting of a catalytic subunit A and a regulatory subunit B. A mutant of Aspergillus fumigatus lacking the calcineurin A (calA) catalytic subunit exhibited defective hyphal morphology related to apical extension and branching growth, which resulted in drastically decreased filamentation. Here, we investigated which pathways are influenced by A. fumigatus calcineurin during proliferation by comparatively determining the transcriptional profile of A. fumigatus wild type and DeltacalA mutant strains. Our results showed that the mitochondrial copy number is reduced in the DeltacalA mutant strain, and the mutant has increased alternative oxidase (aoxA) mRNA accumulation and activity. Furthermore, we identified four genes that encode transcription factors that have increased mRNA expression in the DeltacalA mutant. Deletion mutants for these transcription factors had reduced susceptibility to itraconazole, caspofungin, and sodium dodecyl sulfate (SDS).
Collapse
|
41
|
Grim SA, Clark NM. The role of adjuvant agents in treating fungal diseases. CURRENT FUNGAL INFECTION REPORTS 2009. [DOI: 10.1007/s12281-009-0016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Cramer RA, Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. EUKARYOTIC CELL 2008; 7:1085-97. [PMID: 18456861 PMCID: PMC2446674 DOI: 10.1128/ec.00086-08] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 04/17/2008] [Indexed: 11/20/2022]
Abstract
The calcineurin pathway is a critical signal transduction pathway in fungi that mediates growth, morphology, stress responses, and pathogenicity. The importance of the calcineurin pathway in fungal physiology creates an opportunity for the development of new antifungal therapies that target this critical signaling pathway. In this study, we examined the role of the zinc finger transcription factor Crz1 homolog (CrzA) in the physiology and pathogenicity of the opportunistic human fungal pathogen Aspergillus fumigatus. Genetic replacement of the crzA locus in A. fumigatus resulted in a strain with significant defects in conidial germination, polarized hyphal growth, cell wall structure, and asexual development that are similar to but with differences from defects seen in the A. fumigatus DeltacnaA (calcineurin A) strain. Like the DeltacnaA strain, the DeltacrzA strain was incapable of causing disease in an experimental persistently neutropenic inhalational murine model of invasive pulmonary aspergillosis. Our results suggest that CrzA is an important downstream effector of calcineurin that controls morphology in A. fumigatus, but additional downstream effectors that mediate calcineurin signal transduction are likely present in this opportunistic fungal pathogen. In addition, the importance of CrzA to the production of disease is critical, and thus CrzA is an attractive fungus-specific antifungal target for the treatment of invasive aspergillosis.
Collapse
Affiliation(s)
- Robert A Cramer
- Duke University Medical Center, Box 3499, Pediatric Infectious Diseases, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. EUKARYOTIC CELL 2008; 7:747-64. [PMID: 18375617 DOI: 10.1128/ec.00041-08] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Singh N, Pursell KJ. Combination therapeutic approaches for the management of invasive aspergillosis in organ transplant recipients. Mycoses 2008; 51:99-108. [DOI: 10.1111/j.1439-0507.2007.01479.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Calcineurin inhibitor agents interact synergistically with antifungal agents in vitro against Cryptococcus neoformans isolates: correlation with outcome in solid organ transplant recipients with cryptococcosis. Antimicrob Agents Chemother 2007; 52:735-8. [PMID: 18070977 DOI: 10.1128/aac.00990-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synergistic interactions were observed between CIs and antifungal agents against 53 (90%) of 59 Cryptococcus neoformans isolates from solid organ transplant recipients with cryptococcosis and may account for better outcomes in patients with cryptococcosis receiving these immunosuppressive agents.
Collapse
|
46
|
In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob Agents Chemother 2007; 52:409-17. [PMID: 18056277 DOI: 10.1128/aac.01070-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combination therapy could be of use for the treatment of fungal infections, especially those caused by drug-resistant fungi. However, the methods and approaches used for data generation and result interpretation need further optimizing. The fractional inhibitory concentration index (FICI) is the most commonly used method, but it has several drawbacks in characterizing antifungal drug interaction. Alternatively, some new methods can be used such as the DeltaE model (difference between the predicted and measured fungal growth percentages) and the response surface approach, which uses the concentration-effect relationship over the whole concentration range instead of just the MIC. In the present study, in vitro interactions between tacrolimus (FK506) and three azoles-fluconazole (FLC), itraconazole (ITR), and voriconazole (VRC)-against Candida albicans were evaluated by the checkerboard microdilution method and time-killing test. The intensity of the interactions was determined by visual reading and the spectrophotometric method in a checkerboard assay, and the nature of the interactions was assessed by nonparametric models of FICI and DeltaE. Colony counting and colorimetric viable detection methods (2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium hydroxide} [XTT] reduction test) were used for evaluating the combination antifungal effects over time. Synergistic and indifferent effects were found for the combination of FK506 and azoles against azole-sensitive strains, while strong synergy was found against azole-resistant strains analyzed by FICI. The DeltaE model gave more consistent results with FICI. The positive interactions were also confirmed by the time-killing test. Our findings suggest a potential role for combination therapy with calcineurin pathway inhibitors and azoles to augment activity against resistant C. albicans.
Collapse
|
47
|
Teisseyre J, Kaliciński P, Markiewicz-Kijewska M, Szymczak M, Ismail H, Drewniak T, Nachulewicz P, Broniszczak D, Teisseyre M, Pawłowska J, Garczewska B. Aspergillosis in children after liver transplantation: Single center experience. Pediatr Transplant 2007; 11:868-75. [PMID: 17976121 DOI: 10.1111/j.1399-3046.2007.00754.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aspergillus infection in immunocompromised patients is associated with high morbidity and mortality. We retrospectively reviewed cases of Aspergillosis (A), in a series of 277 children who received LTx between 1990 and 2006. All children were given antifungal prophylaxis after transplantation. Aspergillosis was identified in 10 cases (3.6%) and diagnosis was confirmed when clinical symptoms were associated with identification of Aspergillus sp. or detection of galactomannan antigen. Incidence of Aspergillosis considerably decreased from 6.9% to 0.6% when liposomal amphotericin B was introduced as prophylaxis in high-risk patients. Mean time since LTx to Aspergillosis was 14.5 days. Histologically, Aspergillosis was diagnosed in two cases. Galactomannan antigen was present in two recipients. Aspergillus infection occurs usually within first 30 days after transplantation as a result of a combination of several risk factors. Following risk factors were observed: multiple antibiotic therapy, prolonged intensive care unit stay, poor graft function, retransplantation, relaparotomies, co-infection. Amphotericin B was administered in all cases. Two patients (20%) died because of Aspergillosis Liposomal Amphotericin B prophylaxis in high-risk children decreases the incidence of Aspergillus infection. High index of suspicion and early diagnosis followed by intensive treatment with amphotericin B facilitates achieving mortality rate lower than presented in other reports.
Collapse
Affiliation(s)
- Joanna Teisseyre
- Department of Pediatric Surgery and Organ Transplantation, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Steinbach WJ, Reedy JL, Cramer RA, Perfect JR, Heitman J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 2007; 5:418-30. [PMID: 17505522 DOI: 10.1038/nrmicro1680] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The number of immunocompromised patients with invasive fungal infections continues to increase and new antifungal therapies are not keeping pace with the growing incidence of these infections and their associated mortality. Calcineurin inhibition is currently used to exert effective immunosuppression following organ transplantation and in treating various other conditions. However, the calcineurin pathway is also intricately involved in the growth and pathogenesis of the three major fungal pathogens of humans, Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus, and the exploitation of fungal calcineurin pathways holds great promise for the future development of novel antifungal agents. This Review summarizes our current understanding of calcineurin biology in these fungal species, and its exciting potential role in treating invasive fungal infections.
Collapse
Affiliation(s)
- William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
49
|
Steinbach WJ, Cramer RA, Perfect BZ, Henn C, Nielsen K, Heitman J, Perfect JR. Calcineurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. Antimicrob Agents Chemother 2007; 51:2979-81. [PMID: 17502415 PMCID: PMC1932494 DOI: 10.1128/aac.01394-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Calcineurin mutation or inhibition enhanced the antifungal morphological effect of cell wall inhibitors caspofungin or nikkomycin Z against Aspergillus fumigatus. Quantification of 1,3-beta-d-glucan revealed decreased amounts in the calcineurin A (DeltacnaA) mutant. Calcineurin can be an excellent adjunct therapeutic target in combination with other cell wall inhibitors against A. fumigatus.
Collapse
Affiliation(s)
- William J Steinbach
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Singh N, Limaye AP, Forrest G, Safdar N, Muñoz P, Pursell K, Houston S, Rosso F, Montoya JG, Patton PR, Del Busto R, Aguado JM, Wagener MM, Husain S. Late-onset invasive aspergillosis in organ transplant recipients in the current era. Med Mycol 2006; 44:445-9. [PMID: 16882611 DOI: 10.1080/13693780600684494] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We assessed predictive factors and characteristics of patients with late-onset invasive aspergillosis in the current era of novel immunosuppressive agents. Forty transplant recipients with invasive aspergillosis were included in this prospective, observational study initiated in 2003 at our institutions. In 50% (20/40) of these patients, the infections were late-occurring. Receipt of sirolimus in conjunction with tacrolimus for refractory rejection or cardiac allograft vasculopathy (P=0.047) was significantly associated with late-onset infection. The use of depleting or non-depleting T or B-cell antibodies, either as induction or as antirejection therapy did not correlate with time to onset of invasive aspergillosis. Mortality at 90 days was 20% (4/20) for the patients with early-onset infection and 45% (9/20) for those with late-onset infection (P=0.17). Thus, nearly one-half of the Aspergillus infections in transplant recipients in the current era are late-occurring. These data have implications relevant for prophylactic strategies and guiding clinical management of transplant recipients presenting with pulmonary infiltrates.
Collapse
Affiliation(s)
- Nina Singh
- University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|