1
|
Han Z, Wang X, Wu Z, Li C. Study of the Allosteric Mechanism of Human Mitochondrial Phenylalanyl-tRNA Synthetase by Transfer Entropy via an Improved Gaussian Network Model and Co-evolution Analyses. J Phys Chem Lett 2023; 14:3452-3460. [PMID: 37010935 DOI: 10.1021/acs.jpclett.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We propose an improved transfer entropy approach called the dynamic version of the force constant fitted Gaussian network model based on molecular dynamics ensemble (dfcfGNMMD) to explore the allosteric mechanism of human mitochondrial phenylalanyl-tRNA synthetase (hmPheRS), one of the aminoacyl-tRNA synthetases that play a crucial role in translation of the genetic code. The dfcfGNMMD method can provide reliable estimates of the transfer entropy and give new insights into the role of the anticodon binding domain in driving the catalytic domain in aminoacylation activity and into the effects of tRNA binding and residue mutation on the enzyme activity, revealing the causal mechanism of the allosteric communication in hmPheRS. In addition, we incorporate the residue dynamic and co-evolutionary information to further investigate the key residues in hmPheRS allostery. This study sheds light on the mechanisms of hmPheRS allostery and can provide important information for related drug design.
Collapse
Affiliation(s)
- Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhixiang Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Cheng YY, Chen Z, Cao X, Ross TD, Falbel TG, Burton BM, Venturelli OS. Programming bacteria for multiplexed DNA detection. Nat Commun 2023; 14:2001. [PMID: 37037805 PMCID: PMC10086068 DOI: 10.1038/s41467-023-37582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
DNA is a universal and programmable signal of living organisms. Here we develop cell-based DNA sensors by engineering the naturally competent bacterium Bacillus subtilis (B. subtilis) to detect specific DNA sequences in the environment. The DNA sensor strains can identify diverse bacterial species including major human pathogens with high specificity. Multiplexed detection of genomic DNA from different species in complex samples can be achieved by coupling the sensing mechanism to orthogonal fluorescent reporters. We also demonstrate that the DNA sensors can detect the presence of species in the complex samples without requiring DNA extraction. The modularity of the living cell-based DNA-sensing mechanism and simple detection procedure could enable programmable DNA sensing for a wide range of applications.
Collapse
Affiliation(s)
- Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhengyi Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler D Ross
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana M Burton
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Alkatheri AH, Yap PSX, Abushelaibi A, Lai KS, Cheng WH, Erin Lim SH. Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics (Basel) 2023; 12:190. [PMID: 36830101 PMCID: PMC9951906 DOI: 10.3390/antibiotics12020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Multidrug resistance (MDR) has become an increasing threat to global health because bacteria can develop resistance to antibiotics over time. Scientists worldwide are searching for new approaches that go beyond traditional antibiotic discovery and development pipelines. Advances in genomics, however, opened up an unexplored therapeutic opportunity for the discovery of new antibacterial agents. Genomic approaches have been used to discover several novel antibiotics that target critical processes for bacterial growth and survival, including histidine kinases (HKs), LpxC, FabI, peptide deformylase (PDF), and aminoacyl-tRNA synthetases (AaRS). In this review, we will discuss the use of microbial genomics in the search for innovative and promising drug targets as well as the mechanisms of action for novel antimicrobial agents. We will also discuss future directions on how the utilization of the microbial genomics approach could improve the odds of antibiotic development having a more successful outcome.
Collapse
Affiliation(s)
- Asma Hussain Alkatheri
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Aisha Abushelaibi
- Office of Campus Director, Abu Dhabi Colleges, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
4
|
Cheng B, Cai Z, Luo Z, Luo S, Luo Z, Cheng Y, Yu Y, Guo J, Ju Y, Gu Q, Xu J, Jiang X, Li G, Zhou H. Structure-Guided Design of Halofuginone Derivatives as ATP-Aided Inhibitors Against Bacterial Prolyl-tRNA Synthetase. J Med Chem 2022; 65:15840-15855. [PMID: 36394909 DOI: 10.1021/acs.jmedchem.2c01496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are promising antimicrobial targets due to their essential roles in protein translation, and expanding their inhibitory mechanisms will provide new opportunities for drug discovery. We report here that halofuginone (HF), an herb-derived medicine, moderately inhibits prolyl-tRNA synthetases (ProRSs) from various pathogenic bacteria. A cocrystal structure of Staphylococcus aureus ProRS (SaProRS) with HF and an ATP analog was determined, which guided the design of new HF analogs. Compound 3 potently inhibited SaProRS at IC50 = 0.18 μM and Kd = 30.3 nM and showed antibacterial activities with an MIC of 1-4 μg/mL in vitro. The bacterial drug resistance to 3 only developed at a rate similar to or slower than those of clinically used antibiotics in vitro. Our study indicates that the scaffold and ATP-aided inhibitory mechanism of HF could apply to bacterial ProRS and also provides a chemical validation for using bacterial ProRS as an antibacterial target.
Collapse
Affiliation(s)
- Bao Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhengjun Cai
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ziqing Luo
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Siting Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yanfang Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ying Yu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junsong Guo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yingchen Ju
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xianxing Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
5
|
Wang H, Chen S. A streamlined process for discovery and characterization of inhibitors against phenylalanyl-tRNA synthetase of Mycobacterium tuberculosis. Methods Enzymol 2022; 679:275-293. [PMID: 36682865 DOI: 10.1016/bs.mie.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze aminoacylation of tRNAs to produce aminoacyl-tRNAs for protein synthesis. Bacterial aaRSs have distinctive features, play an essential role in channeling amino acids into biomolecular assembly, and are vulnerable to inhibition by small molecules. The aaRSs continue to be targets for potential antibacterial drug development. The first step of aaRS reaction is the activation of amino acid by hydrolyzing ATP to form an acyladenylate intermediate with the concomitant release of pyrophosphate. None-radioactive assays usually measure the rate of ATP consumption or phosphate generation, offering advantages in high-throughput drug screening. These simple aaRS enzyme assays can be adapted to study the mode of inhibition of natural or synthetic aaRS inhibitors. Taking phenylalanyl-tRNA synthetase (PheRS) of Mycobacterium tuberculosis (Mtb) as an example, we describe a process for identification and characterization of Mtb PheRS inhibitor.
Collapse
Affiliation(s)
- Heng Wang
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Shawn Chen
- Global Health Drug Discovery Institute, Haidian, Beijing, China.
| |
Collapse
|
6
|
Novel Thiadiazole-Based Molecules as Promising Inhibitors of Black Fungi and Pathogenic Bacteria: In Vitro Antimicrobial Evaluation and Molecular Docking Studies. Molecules 2022; 27:molecules27113613. [PMID: 35684551 PMCID: PMC9182183 DOI: 10.3390/molecules27113613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Novel 1,3,4-thiadiazole derivatives were synthesized through the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate and the appropriate hydrazonoyl halides in the presence of a few drops of diisopropylethylamine. The chemical structure of the newly fabricated compounds was inferred from their microanalytical and spectral data. With the increase in microbial diseases, fungi remain a devastating threat to human health because of the resistance of microorganisms to antifungal drugs. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) have higher mortality rates in many populations. The present study aimed to find new antifungal agents using the disc diffusion method, and minimal inhibitory concentration (MIC) values were estimated by the microdilution assay. An in vitro experiment of six synthesized chemical compounds exhibited antifungal activity against Rhizopus oryzae; compounds with an imidazole moiety, such as the compound 7, were documented to have energetic antibacterial, antifungal properties. As a result of these findings, this research suggests that the synthesized compounds could be an excellent choice for controlling black fungus diseases. Furthermore, a molecular docking study was achieved on the synthesized compounds, of which compounds 2, 6, and 7 showed the best interactions with the selected protein targets.
Collapse
|
7
|
Noureldin NA, Richards J, Kothayer H, Baraka MM, Eladl SM, Wootton M, Simons C. Phenylalanyl tRNA synthetase (PheRS) substrate mimics: design, synthesis, molecular dynamics and antimicrobial evaluation. RSC Adv 2022; 12:2511-2524. [PMID: 35425259 PMCID: PMC8979089 DOI: 10.1039/d1ra06439h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
Nineteen novel compounds were designed to mimic Phe-AMP, as a new hope to find novel antibacterial agents and combat the antibiotic resistance. E. faecalis PheS homology model was constructed to study the mimics–enzyme interactions in more detail.
Collapse
Affiliation(s)
- Nada A. Noureldin
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Jennifer Richards
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Mohammed M. Baraka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Sobhy M. Eladl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig P. C., 44519, Egypt
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| |
Collapse
|
8
|
Privalsky TM, Soohoo AM, Wang J, Walsh CT, Wright GD, Gordon EM, Gray NS, Khosla C. Prospects for Antibacterial Discovery and Development. J Am Chem Soc 2021; 143:21127-21142. [PMID: 34860516 PMCID: PMC8855840 DOI: 10.1021/jacs.1c10200] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rising prevalence of multidrug-resistant bacteria is an urgent health crisis that can only be countered through renewed investment in the discovery and development of antibiotics. There is no panacea for the antibacterial resistance crisis; instead, a multifaceted approach is called for. In this Perspective we make the case that, in the face of evolving clinical needs and enabling technologies, numerous validated antibacterial targets and associated lead molecules deserve a second look. At the same time, many worthy targets lack good leads despite harboring druggable active sites. Creative and inspired techniques buoy discovery efforts; while soil screening efforts frequently lead to antibiotic rediscovery, researchers have found success searching for new antibiotic leads by studying underexplored ecological niches or by leveraging the abundance of available data from genome mining efforts. The judicious use of "polypharmacology" (i.e., the ability of a drug to alter the activities of multiple targets) can also provide new opportunities, as can the continued search for inhibitors of resistance enzymes with the capacity to breathe new life into old antibiotics. We conclude by highlighting available pharmacoeconomic models for antibacterial discovery and development while making the case for new ones.
Collapse
Affiliation(s)
- Thomas M. Privalsky
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Alexander M. Soohoo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 United States
| | - Christopher T. Walsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Eric M. Gordon
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Nathanael S. Gray
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
9
|
Noureldin NA, Richards J, Kothayer H, Baraka MM, Eladl SM, Wootton M, Simons C. Design, computational studies, synthesis and in vitro antimicrobial evaluation of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues. BMC Chem 2021; 15:58. [PMID: 34711258 PMCID: PMC8555319 DOI: 10.1186/s13065-021-00785-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023] Open
Abstract
Background Two series of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues were designed and synthesised as novel antimicrobial drugs through inhibition of phenylalanyl-tRNA synthetase (PheRS), which is a promising antimicrobial target. Compounds were designed to mimic the structural features of phenylalanyl adenylate (Phe-AMP) the PheRS natural substrate. Methods A 3D conformational alignment for the designed compounds and the PheRS natural substrate revealed a high level of conformational similarity, and a molecular docking study indicated the ability of the designed compounds to occupy both Phe-AMP binding pockets. A molecular dynamics (MD) simulation comparative study was performed to understand the binding interactions with PheRS from different bacterial microorganisms. The synthetic pathway of the designed compounds proceeded in five steps starting from benzimidazole. The fourteen synthesised compounds 5a-d, 6a-c, 8a-d and 9a-c were purified, fully characterised and obtained in high yield. Results In vitro antimicrobial evaluation against five bacterial strains showed a moderate activity of compound 8b with MIC value of 32 μg/mL against S. aureus, while all the synthesised compounds showed weak activity against both E. faecalis and P. aeruginosa (MIC 128 μg/mL). Conclusion Compound 8b provides a lead compound for further structural development to obtain high affinity PheRS inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-021-00785-8.
Collapse
Affiliation(s)
- Nada A Noureldin
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt.
| | - Jennifer Richards
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Mohammed M Baraka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Sobhy M Eladl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, P.C. 44519, Egypt
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Claire Simons
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
10
|
Michalska K, Jedrzejczak R, Wower J, Chang C, Baragaña B, Gilbert IH, Forte B, Joachimiak A. Mycobacterium tuberculosis Phe-tRNA synthetase: structural insights into tRNA recognition and aminoacylation. Nucleic Acids Res 2021; 49:5351-5368. [PMID: 33885823 PMCID: PMC8136816 DOI: 10.1093/nar/gkab272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, responsible for ∼1.5 million fatalities in 2018, is the deadliest infectious disease. Global spread of multidrug resistant strains is a public health threat, requiring new treatments. Aminoacyl-tRNA synthetases are plausible candidates as potential drug targets, because they play an essential role in translating the DNA code into protein sequence by attaching a specific amino acid to their cognate tRNAs. We report structures of M. tuberculosis Phe-tRNA synthetase complexed with an unmodified tRNAPhe transcript and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. High-resolution models reveal details of two modes of tRNA interaction with the enzyme: an initial recognition via indirect readout of anticodon stem-loop and aminoacylation ready state involving interactions of the 3′ end of tRNAPhe with the adenylate site. For the first time, we observe the protein gate controlling access to the active site and detailed geometry of the acyl donor and tRNA acceptor consistent with accepted mechanism. We biochemically validated the inhibitory potency of the adenylate analog and provide the most complete view of the Phe-tRNA synthetase/tRNAPhe system to date. The presented topography of amino adenylate-binding and editing sites at different stages of tRNA binding to the enzyme provide insights for the rational design of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jacek Wower
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Beatriz Baragaña
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Barbara Forte
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
11
|
Wang H, Xu M, Engelhart CA, Zhang X, Yan B, Pan M, Xu Y, Fan S, Liu R, Xu L, Hua L, Schnappinger D, Chen S. Rediscovery of PF-3845 as a new chemical scaffold inhibiting phenylalanyl-tRNA synthetase in Mycobacterium tuberculosis. J Biol Chem 2021; 296:100257. [PMID: 33837735 PMCID: PMC7948948 DOI: 10.1016/j.jbc.2021.100257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains the deadliest pathogenic bacteria worldwide. The search for new antibiotics to treat drug-sensitive as well as drug-resistant tuberculosis has become a priority. The essential enzyme phenylalanyl-tRNA synthetase (PheRS) is an antibacterial drug target because of the large differences between bacterial and human PheRS counterparts. In a high-throughput screening of 2148 bioactive compounds, PF-3845, which is a known inhibitor of human fatty acid amide hydrolase, was identified inhibiting Mtb PheRS at Ki ∼ 0.73 ± 0.06 μM. The inhibition mechanism was studied with enzyme kinetics, protein structural modeling, and crystallography, in comparison to a PheRS inhibitor of the noted phenyl–thiazolylurea–sulfonamide class. The 2.3-Å crystal structure of Mtb PheRS in complex with PF-3845 revealed its novel binding mode, in which a trifluoromethyl–pyridinylphenyl group occupies the phenylalanine pocket, whereas a piperidine–piperazine urea group binds into the ATP pocket through an interaction network enforced by a sulfate ion. It represents the first non-nucleoside bisubstrate competitive inhibitor of bacterial PheRS. PF-3845 inhibits the in vitro growth of Mtb H37Rv at ∼24 μM, and the potency of PF-3845 increased against an engineered strain Mtb pheS–FDAS, suggesting on target activity in mycobacterial whole cells. PF-3845 does not inhibit human cytoplasmic or mitochondrial PheRS in biochemical assay, which can be explained from the crystal structures. Further medicinal chemistry efforts focused on the piperidine–piperazine urea moiety may result in the identification of a selective antibacterial lead compound.
Collapse
Affiliation(s)
- Heng Wang
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Min Xu
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Xi Zhang
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Baohua Yan
- Center of Protein Science Facility, Tsinghua University, Beijing, China
| | - Miaomiao Pan
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Yuanyuan Xu
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Shilong Fan
- Center of Protein Science Facility, Tsinghua University, Beijing, China
| | - Renhe Liu
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Lan Xu
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Lan Hua
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Shawn Chen
- Global Health Drug Discovery Institute, Haidian, Beijing, China.
| |
Collapse
|
12
|
Guo J, Chen B, Yu Y, Cheng B, Ju Y, Tang J, Cai Z, Gu Q, Xu J, Zhou H. Structure-guided optimization and mechanistic study of a class of quinazolinone-threonine hybrids as antibacterial ThrRS inhibitors. Eur J Med Chem 2020; 207:112848. [PMID: 32980741 DOI: 10.1016/j.ejmech.2020.112848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 09/12/2020] [Indexed: 11/20/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are an attractive class of antibacterial drug targets due to their essential roles in protein translation. While most traditional aaRS inhibitors target the binding pockets of substrate amino acids and/or ATP, we recently developed a class of novel tRNA-amino acid dual-site inhibitors including inhibitor 3 ((2S,3R)-2-amino-N-((E)-4-(6,7-dichloro-4-oxoquinazolin-3(4H)-yl)but-2-en-1-yl)-3-hydroxybutanamide) against threonyl-tRNA synthetase (ThrRS). Here, the binding modes and structure-activity relationships (SARs) of these inhibitors were analyzed by the crystal structures of Salmonella enterica ThrRS (SeThrRS) in complex with three of them. Based on the cocrystal structures, twelve quinazolinone-threonine hybrids were designed and synthesized, and their affinities, enzymatic inhibitory activities, and cellular potencies were evaluated. The best derivative 8g achieved a Kd value of 0.40 μM, an IC50 value of 0.50 μM against SeThrRS and MIC values of 16-32 μg/mL against the tested bacterial strains. The cocrystal structure of the SeThrRS-8g complex revealed that 8g induced a bended conformation for Met332 by forming hydrophobic interactions, which better mimicked the binding of tRNAThr to ThrRS. Moreover, the inhibitory potency of 8g was less impaired than a reported ATP competitive inhibitor at high concentrations of ATP, supporting our hypothesis that tRNA site inhibitors are likely superior to ATP site inhibitors in vivo, where ATP typically reaches millimolar concentrations.
Collapse
Affiliation(s)
- Junsong Guo
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingyi Chen
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Yu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bao Cheng
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingchen Ju
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jieyu Tang
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhengjun Cai
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jun Xu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Discovery of novel tRNA-amino acid dual-site inhibitors against threonyl-tRNA synthetase by fragment-based target hopping. Eur J Med Chem 2020; 187:111941. [DOI: 10.1016/j.ejmech.2019.111941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022]
|
14
|
Exploring the binding sites of Staphylococcus aureus phenylalanine tRNA synthetase: A homology model approach. J Mol Graph Model 2017; 73:36-47. [PMID: 28235746 DOI: 10.1016/j.jmgm.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 11/24/2022]
Abstract
Increased resistance of MRSA (multidrug resistance Staphylococcus aureus) to anti-infective drugs is a threat to global health necessitating the development of anti-infectives with novel mechanisms of action. Phenylalanine tRNA synthetase (PheRS) is a unique enzyme of the aminoacyl-tRNA synthetases (aaRSs), which are essential enzymes for protein biosynthesis. PheRS is an (αb)2 tetrameric enzyme composed of two alpha subunits (PheS) and two larger beta subunits (PheT). Our potential target in the drug development for the treatment of MRSA infections is the phenylalanine tRNA synthetase alpha subunit that contains the binding site for the natural substrate. There is no crystal structure available for S. aureus PheRS, therefore comparative structure modeling is required to establish a putative 3D structure for the required enzyme enabling development of new inhibitors with greater selectivity. The S. aureus PheRS alpha subunit homology model was constructed using Molecular Operating Environment (MOE) software. Staphylococcus haemolyticus PheRS was the main template while Thermus thermophilus PheRS was utilised to predict the enzyme binding with tRNAphe. The model has been evaluated and compared with the main template through Ramachandran plots, Verify 3D and Protein Statistical Analysis (ProSA). The query protein active site was predicted from its sequence using a conservation analysis tool. Docking suitable ligands using MOE into the constructed model were used to assess the predicted active sites. The docked ligands involved the PheRS natural substrate (phenylalanine), phenylalanyl-adenylate and several described S. aureus PheRS inhibitors.
Collapse
|
15
|
Saint-Léger A, Ribas de Pouplana L. A new set of assays for the discovery of aminoacyl-tRNA synthetase inhibitors. Methods 2016; 113:34-45. [PMID: 27989759 DOI: 10.1016/j.ymeth.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Current biochemical methods available to monitor the activity of aminoacyl-tRNA synthetases (ARS) are ill-suited to high-throughput screening approaches for the identification of small-molecule inhibitors of these enzymes. In an attempt to improve the limitations of current assays we have developed a suite of new methods designed to streamline the discovery of new ARS antagonists. This set of assays includes approaches to monitor ARS activity in vitro, in human cells, and in bacteria. They are applicable to several ARSs from any given organism, can be easily adapted to very high-throughput set-ups, and allow for a multi-factorial selection of drug candidates.
Collapse
Affiliation(s)
- Adélaïde Saint-Léger
- Omnia Molecular S.L., c/ Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Omnia Molecular S.L., c/ Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c/ Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Pompilio A, Riviello A, Crocetta V, Di Giuseppe F, Pomponio S, Sulpizio M, Di Ilio C, Angelucci S, Barone L, Di Giulio A, Di Bonaventura G. Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus. Future Microbiol 2016; 11:1315-1338. [PMID: 27633726 DOI: 10.2217/fmb-2016-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibacterial and antibiofilm mechanisms of usnic acid (USN) against methicillin-resistant Staphylococcus aureus from cystic fibrosis patients. MATERIALS & METHODS The effects exerted by USN at subinhibitory concentrations on S. aureus Sa3 strain was evaluated by proteomic, real-time PCR and electron microscopy analyses. RESULTS & CONCLUSION Proteomic analysis showed that USN caused damage in peptidoglycan synthesis, as confirmed by microscopy. Real-time PCR analysis showed that antibiofilm activity of USN is mainly due to impaired adhesion to the host matrix binding proteins, and decreasing lipase and thermonuclease expression. Our data show that USN exerts anti-staphylococcal effects through multitarget inhibitory effects, thus confirming the rationale for considering it 'lead compound' for the treatment of cystic fibrosis infections.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Antonella Riviello
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Stefano Pomponio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Marilisa Sulpizio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Carmine Di Ilio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Luana Barone
- Department of Science, LIME, University Roma Tre, Viale G Marconi 446, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, LIME, University Roma Tre, Viale G Marconi 446, Rome, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| |
Collapse
|
17
|
Keasey SL, Natesan M, Pugh C, Kamata T, Wuchty S, Ulrich RG. Cell-free Determination of Binary Complexes That Comprise Extended Protein-Protein Interaction Networks of Yersinia pestis. Mol Cell Proteomics 2016; 15:3220-3232. [PMID: 27489291 DOI: 10.1074/mcp.m116.059337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/06/2022] Open
Abstract
Binary protein interactions form the basic building blocks of molecular networks and dynamic assemblies that control all cellular functions of bacteria. Although these protein interactions are a potential source of targets for the development of new antibiotics, few high-confidence data sets are available for the large proteomes of most pathogenic bacteria. We used a library of recombinant proteins from the plague bacterium Yersinia pestis to probe planar microarrays of immobilized proteins that represented ∼85% (3552 proteins) of the bacterial proteome, resulting in >77,000 experimentally determined binary interactions. Moderate (KD ∼μm) to high-affinity (KD ∼nm) interactions were characterized for >1600 binary complexes by surface plasmon resonance imaging of microarrayed proteins. Core binary interactions that were in common with other gram-negative bacteria were identified from the results of both microarray methods. Clustering of proteins within the interaction network by function revealed statistically enriched complexes and pathways involved in replication, biosynthesis, virulence, metabolism, and other diverse biological processes. The interaction pathways included many proteins with no previously known function. Further, a large assembly of proteins linked to transcription and translation were contained within highly interconnected subregions of the network. The two-tiered microarray approach used here is an innovative method for detecting binary interactions, and the resulting data will serve as a critical resource for the analysis of protein interaction networks that function within an important human pathogen.
Collapse
Affiliation(s)
- Sarah L Keasey
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702; §Biological Sciences Department, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Mohan Natesan
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Christine Pugh
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Teddy Kamata
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Stefan Wuchty
- ¶National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert G Ulrich
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| |
Collapse
|
18
|
Discovery and Analysis of Natural-Product Compounds Inhibiting Protein Synthesis in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:4820-9. [PMID: 27246774 DOI: 10.1128/aac.00800-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa This system has been used for high-throughput screening of a natural-compound library. Assays were developed for each component of the system to ascertain the specific target of inhibitory compounds. In high-throughput screens, 13 compounds were identified that inhibit protein synthesis with 50% inhibitory concentrations ranging from 0.3 to >80 μM. MICs were determined for the compounds against the growth of a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae Three of the compounds were observed to have broad-spectrum activity and inhibited a hypersensitive strain of P. aeruginosa with MICs of 8 to 16 μg/ml. The molecular target of each of the three compounds was determined to be PheRS. One compound was found to be bacteriostatic, and one compound was bactericidal against both Gram-positive and Gram-negative pathogens. The third compound was observed to be bacteriostatic against Gram-positive and bactericidal against Gram-negative bacteria. All three compounds were competitive with the substrate ATP; however, one compound was competitive, one was uncompetitive, and one noncompetitive with the amino acid substrate. Macromolecular synthesis assays confirm the compounds inhibit protein synthesis. The compounds were shown to be more than 25,000-fold less active than the control staurosporine in cytotoxicity MTT testing in human cell lines.
Collapse
|
19
|
Ravishankar S, Ambady A, Swetha RG, Anbarasu A, Ramaiah S, Sambandamurthy VK. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis. PLoS One 2016; 11:e0147188. [PMID: 26794499 PMCID: PMC4721953 DOI: 10.1371/journal.pone.0147188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/30/2015] [Indexed: 12/02/2022] Open
Abstract
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.
Collapse
Affiliation(s)
- Sudha Ravishankar
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, 560024, India
| | - Anisha Ambady
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, 560024, India
| | - Rayapadi G. Swetha
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | - Anand Anbarasu
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | - Sudha Ramaiah
- School of Biosciences & Technology, VIT University, Vellore, 632014, India
| | | |
Collapse
|
20
|
Hu Y, Palmer SO, Munoz H, Bullard JM. High Throughput Screen Identifies Natural Product Inhibitor of Phenylalanyl-tRNA Synthetase from Pseudomonas aeruginosa and Streptococcus pneumoniae. Curr Drug Discov Technol 2015; 11:279-92. [PMID: 25601215 DOI: 10.2174/1570163812666150120154701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa and Streptococcus pneumoniae are causative agents in a wide range of infections. Genes encoding proteins corresponding to phenylalanyl-tRNA synthetase (PheRS) were cloned from both bacteria. The two forms of PheRS were kinetically evaluated and the K(m)'s for P. aeruginosa PheRS with its three substrates, phenylalanine, ATP and tRNA(Phe) were determined to be 48, 200, and 1.2 µM, respectively, while the K(m)'s for S. pneumoniae PheRS with respect to phenylalanine, ATP and tRNA(Phe) were 21, 225 and 0.94 µM, respectively. P. aeruginosa and S. pneumoniae PheRS were used to screen a natural compound library and a single compound was identified that inhibited the function of both enzymes. The compound inhibited P. aeruginosa and S. pneumoniae PheRS with IC50's of 2.3 and 4.9 µM, respectively. The compound had a K(I) of 0.83 and 0.98 µM against P. aeruginosa and S. pneumoniae PheRS, respectively. The minimum inhibitory concentration (MIC) of the compound was determined against a panel of Gram positive and negative bacteria including efflux pump mutants and hyper-sensitive strains. MICs against wild-type P. aeruginosa and S. pneumoniae cells in culture were determined to be 16 and 32 µg/ml, respectively. The mechanism of action of the compound was determined to be competitive with the amino acid, phenylalanine, and uncompetitive with ATP. There was no inhibition of cytoplasmic protein synthesis, however, partial inhibition of the human mitochondrial PheRS was observed.
Collapse
Affiliation(s)
| | | | | | - James M Bullard
- Chemistry Department, SCIE. 3.320, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78541, USA.
| |
Collapse
|
21
|
Fang P, Guo M. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Life (Basel) 2015; 5:1703-25. [PMID: 26670257 PMCID: PMC4695845 DOI: 10.3390/life5041703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.
Collapse
Affiliation(s)
- Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
22
|
Parvege MM, Rahman M, Hossain MS. Genome-wide Analysis of Mycoplasma hominis for the Identification of Putative Therapeutic Targets. Drug Target Insights 2014; 8:51-62. [PMID: 25574133 PMCID: PMC4263438 DOI: 10.4137/dti.s19728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 01/14/2023] Open
Abstract
Ever increasing propensity of antibiotic resistance among pathogenic bacteria raises the demand for the development of novel therapeutic agents to control this grave problem. Advances in the field of bioinformatics, genomics, and proteomics have greatly facilitated the discovery of alternative drugs by swift identification of new drug targets. In the present study, we employed comparative genomics and metabolic pathway analysis with an aim of identifying therapeutic targets in Mycoplasma hominis. Our study has revealed 40 annotated metabolic pathways, including five unique pathways of M. hominis. Our study also identified 179 essential proteins, including 59 proteins having no similarity with human proteins. Further filtering by molecular weight, subcellular localization, functional analysis, and protein network interaction, we identified 57 putative candidates for which new drugs can be developed. Druggability analysis for each of the identified targets has prioritized 16 proteins as suitable for potential drug development.
Collapse
Affiliation(s)
- Md Masud Parvege
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Monzilur Rahman
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
23
|
Abibi A, Ferguson AD, Fleming PR, Gao N, Hajec LI, Hu J, Laganas VA, McKinney DC, McLeod SM, Prince DB, Shapiro AB, Buurman ET. The role of a novel auxiliary pocket in bacterial phenylalanyl-tRNA synthetase druggability. J Biol Chem 2014; 289:21651-62. [PMID: 24936059 DOI: 10.1074/jbc.m114.574061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antimicrobial activity of phenyl-thiazolylurea-sulfonamides against Staphylococcus aureus PheRS are dependent upon phenylalanine levels in the extracellular fluids. Inhibitor efficacy in animal models of infection is substantially diminished by dietary phenylalanine intake, thereby reducing the perceived clinical utility of this inhibitor class. The search for novel antibacterial compounds against Gram-negative pathogens led to a re-evaluation of this phenomenon, which is shown here to be unique to S. aureus. Inhibition of macromolecular syntheses and characterization of novel resistance mutations in Escherichia coli demonstrate that antimicrobial activity of phenyl-thiazolylurea-sulfonamides is mediated by PheRS inhibition, validating this enzyme as a viable drug discovery target for Gram-negative pathogens. A search for novel inhibitors of PheRS yielded three novel chemical starting points. NMR studies were used to confirm direct target engagement for phenylalanine-competitive hits. The crystallographic structure of Pseudomonas aeruginosa PheRS defined the binding modes of these hits and revealed an auxiliary hydrophobic pocket that is positioned adjacent to the phenylalanine binding site. Three viable inhibitor-resistant mutants were mapped to this pocket, suggesting that this region is a potential liability for drug discovery.
Collapse
Affiliation(s)
| | - Andrew D Ferguson
- the Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | | | - Ning Gao
- From the Departments of Biosciences and
| | | | - Jun Hu
- the Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | | | | | | | - D Bryan Prince
- the Department of Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451
| | | | | |
Collapse
|
24
|
Hu QH, Liu RJ, Fang ZP, Zhang J, Ding YY, Tan M, Wang M, Pan W, Zhou HC, Wang ED. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci Rep 2014; 3:2475. [PMID: 23959225 PMCID: PMC3747510 DOI: 10.1038/srep02475] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae causes bacterial pneumonia with high mortality and morbidity. The emergency of multidrug-resistant bacteria threatens the treatment of the disease. Leucyl-tRNA synthetase (LeuRS) plays an essential role in cellular translation and is an attractive drug target for antimicrobial development. Here we report the compound ZCL039, a benzoxaborole-based derivative of AN2690, as a potent anti-pneumococcal agent that inhibits S. pneumoniae LeuRS (SpLeuRS) activity. We show using kinetic, biochemical analyses combined with the crystal structure of ZCL039-AMP in complex with the separated SpLeuRS editing domain, that ZCL039 binds to the LeuRS editing active site which requires the presence of tRNA(Leu), and employs an uncompetitive inhibition mechanism. Further docking models establish that ZCL039 clashes with the eukaryal/archaeal specific insertion I4ae helix within editing domains. These findings demonstrate the potential of benzoxaboroles as effective LeuRS inhibitors for pneumococcus infection therapy, and provide future structure-guided drug design and optimization.
Collapse
Affiliation(s)
- Qing-Hua Hu
- 1] State Key Laboratory of Molecular Biology, Center for RNA research, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Butt AM, Nasrullah I, Tahir S, Tong Y. Comparative genomics analysis of Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates. PLoS One 2012; 7:e43080. [PMID: 22912793 PMCID: PMC3418265 DOI: 10.1371/journal.pone.0043080] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium ulcerans, the causative agent of Buruli ulcer, is the third most common mycobacterial disease after tuberculosis and leprosy. The present treatment options are limited and emergence of treatment resistant isolates represents a serious concern and a need for better therapeutics. Conventional drug discovery methods are time consuming and labor-intensive. Unfortunately, the slow growing nature of M. ulcerans in experimental conditions is also a barrier for drug discovery and development. In contrast, recent advancements in complete genome sequencing, in combination with cheminformatics and computational biology, represent an attractive alternative approach for the identification of therapeutic candidates worthy of experimental research. A computational, comparative genomics workflow was defined for the identification of novel therapeutic candidates against M. ulcerans, with the aim that a selected target should be essential to the pathogen, and have no homology in the human host. Initially, a total of 424 genes were predicted as essential from the M. ulcerans genome, via homology searching of essential genome content from 20 different bacteria. Metabolic pathway analysis showed that the most essential genes are associated with carbohydrate and amino acid metabolism. Among these, 236 proteins were identified as non-host and essential, and could serve as potential drug and vaccine candidates. Several drug target prioritization parameters including druggability were also calculated. Enzymes from several pathways are discussed as potential drug targets, including those from cell wall synthesis, thiamine biosynthesis, protein biosynthesis, and histidine biosynthesis. It is expected that our data will facilitate selection of M. ulcerans proteins for successful entry into drug design pipelines.
Collapse
Affiliation(s)
- Azeem Mehmood Butt
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- * E-mail: (AMB); (YT)
| | - Izza Nasrullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shifa Tahir
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
- * E-mail: (AMB); (YT)
| |
Collapse
|
27
|
Raatschen N, Elisabeth Bandow J. 2‐D Gel‐Based Proteomic Approaches to Antibiotic Drug Discovery. ACTA ACUST UNITED AC 2012; Chapter 1:Unit1F.2. [DOI: 10.1002/9780471729259.mc01f02s26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Reiß S, Pané-Farré J, Fuchs S, François P, Liebeke M, Schrenzel J, Lindequist U, Lalk M, Wolz C, Hecker M, Engelmann S. Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob Agents Chemother 2012; 56:787-804. [PMID: 22106209 PMCID: PMC3264241 DOI: 10.1128/aac.05363-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 10/30/2011] [Indexed: 01/21/2023] Open
Abstract
In the present study, we analyzed the response of S. aureus to mupirocin, the drug of choice for nasal decolonization. Mupirocin selectively inhibits the bacterial isoleucyl-tRNA synthetase (IleRS), leading to the accumulation of uncharged isoleucyl-tRNA and eventually the synthesis of (p)ppGpp. The alarmone (p)ppGpp induces the stringent response, an important global transcriptional and translational control mechanism that allows bacteria to adapt to nutritional deprivation. To identify proteins with an altered synthesis pattern in response to mupirocin treatment, we used the highly sensitive 2-dimensional gel electrophoresis technique in combination with mass spectrometry. The results were complemented by DNA microarray, Northern blot, and metabolome analyses. Whereas expression of genes involved in nucleotide biosynthesis, DNA metabolism, energy metabolism, and translation was significantly downregulated, expression of isoleucyl-tRNA synthetase, the branched-chain amino acid pathway, and genes with functions in oxidative-stress resistance (ahpC and katA) and putative roles in stress protection (the yvyD homologue SACOL0815 and SACOL1759 and SACOL2131) and transport processes was increased. A comparison of the regulated genes to known regulons suggests the involvement of the global regulators CodY and SigB in shaping the response of S. aureus to mupirocin. Of particular interest was the induced transcription of genes encoding virulence-associated regulators (i.e., arlRS, saeRS, sarA, sarR, sarS, and sigB), as well as genes directly involved in the virulence of S. aureus (i.e., fnbA, epiE, epiG, and seb).
Collapse
Affiliation(s)
- Swantje Reiß
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Jan Pané-Farré
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Stephan Fuchs
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Patrice François
- Service of Infectious Diseases, University Hospital of Geneva, Department of Internal Medicine, Geneva, Switzerland
| | - Manuel Liebeke
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Jacques Schrenzel
- Service of Infectious Diseases, University Hospital of Geneva, Department of Internal Medicine, Geneva, Switzerland
| | - Ulrike Lindequist
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Michael Lalk
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Christiane Wolz
- Institut für Medizinische Mikrobiologie und Hygiene, Eberhard-Karls-Universität, Tübingen, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Susanne Engelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| |
Collapse
|
29
|
Fournier PE, Raoult D. Prospects for the future using genomics and proteomics in clinical microbiology. Annu Rev Microbiol 2012; 65:169-88. [PMID: 21639792 DOI: 10.1146/annurev-micro-090110-102922] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of genome sequences has revolutionized the fields of microbiology and infectious diseases. Indeed, more than 1,000 bacterial genomes and 3,000 viral genomes, including representatives of all significant human pathogens, have been sequenced to date. Owing to this tremendous amount of data, genomes are regarded as chimeras of sequence fragments from various origins. Coupled with novel proteomic analyses, genome sequencing has also resulted in unprecedented advances in pathogen diagnosis and genotyping and in the detection of virulence and antibiotic resistance. Herein, we review current achievements of genomics and proteomics and discuss potential developments for clinical microbiology laboratories.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Université de la Méditerranée, Marseille Cedex 5, 13385 France.
| | | |
Collapse
|
30
|
Wenzel M, Bandow JE. Proteomic signatures in antibiotic research. Proteomics 2011; 11:3256-68. [DOI: 10.1002/pmic.201100046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/13/2011] [Accepted: 03/22/2011] [Indexed: 11/06/2022]
|
31
|
Proteomic signature of fatty acid biosynthesis inhibition available for in vivo mechanism-of-action studies. Antimicrob Agents Chemother 2011; 55:2590-6. [PMID: 21383089 DOI: 10.1128/aac.00078-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty acid biosynthesis is a promising novel antibiotic target. Two inhibitors of fatty acid biosynthesis, platencin and platensimycin, were recently discovered and their molecular targets identified. Numerous structure-activity relationship studies for both platencin and platensimycin are currently being undertaken. We established a proteomic signature for fatty acid biosynthesis inhibition in Bacillus subtilis using platencin, platensimycin, cerulenin, and triclosan. The induced proteins, FabHA, FabHB, FabF, FabI, PlsX, and PanB, are enzymes involved in fatty acid biosynthesis and thus linked directly to the target pathway. The proteomic signature can now be used to assess the in vivo mechanisms of action of compounds derived from structure-activity relationship programs, as demonstrated for the platensimycin-inspired chromium bioorganometallic PM47. It will further serve as a reference signature for structurally novel natural and synthetic antimicrobial compounds with unknown mechanisms of action. In summary, we described a proteomic signature in B. subtilis consisting of six upregulated proteins that is diagnostic of fatty acid biosynthesis inhibition and thus can be applied to advance antibacterial drug discovery programs.
Collapse
|
32
|
Abstract
The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 955 S. Springfield Ave., Unit C403, Springfield, NJ 07081, USA.
| |
Collapse
|
33
|
|
34
|
Thoden JB, Holden HM, Paritala H, Firestine SM. Structural and functional studies of Aspergillus clavatus N(5)-carboxyaminoimidazole ribonucleotide synthetase . Biochemistry 2010; 49:752-60. [PMID: 20050602 DOI: 10.1021/bi901599u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N(5)-Carboxyaminoimidazole ribonucleotide synthetase (N(5)-CAIR synthetase), a key enzyme in microbial de novo purine biosynthesis, catalyzes the conversion of aminoimidazole ribonucleotide (AIR) to N(5)-CAIR. To date, this enzyme has been observed only in microorganisms, and thus, it represents an ideal target for antimicrobial drug development. Here we report the cloning, crystallization, and three-dimensional structural analysis of Aspergillus clavatus N(5)-CAIR synthetase solved in the presence of either Mg(2)ATP or MgADP and AIR. These structures, determined to 2.1 and 2.0 A, respectively, revealed that AIR binds in a pocket analogous to that observed for other ATP-grasp enzymes involved in purine metabolism. On the basis of these models, a site-directed mutagenesis study was subsequently conducted that focused on five amino acid residues located in the active site region of the enzyme. These investigations demonstrated that Asp 153 and Lys 353 play critical roles in catalysis without affecting substrate binding. All other mutations affected substrate binding and, in some instances, catalysis as well. Taken together, the structural and kinetic data presented here suggest a catalytic mechanism whereby Mg(2)ATP and bicarbonate first react to form the unstable intermediate carboxyphosphate. This intermediate subsequently decarboxylates to CO(2) and inorganic phosphate, and the amino group of AIR, through general base assistance by Asp 153, attacks CO(2) to form N(5)-CAIR.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
35
|
Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect Immun 2010; 78:1873-83. [PMID: 20212088 DOI: 10.1128/iai.01439-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In most bacteria, nutrient limitations provoke the stringent control through the rapid synthesis of the alarmones pppGpp and ppGpp. Little is known about the stringent control in the human pathogen Staphylococcus aureus, partly due to the essentiality of the major (p)ppGpp synthase/hydrolase enzyme RSH (RelA/SpoT homolog). Here, we show that mutants defective only in the synthase domain of RSH (rsh(syn)) are not impaired in growth under nutrient-rich conditions. However, these mutants were more sensitive toward mupirocin and were impaired in survival when essential amino acids were depleted from the medium. RSH is the major enzyme responsible for (p)ppGpp synthesis in response to amino acid deprivation (lack of Leu/Val) or mupirocin treatment. Transcriptional analysis showed that the RSH-dependent stringent control in S. aureus is characterized by repression of genes whose products are predicted to be involved in the translation machinery and by upregulation of genes coding for enzymes involved in amino acid metabolism and transport which are controlled by the repressor CodY. Amino acid starvation also provoked stabilization of the RNAs coding for major virulence regulators, such as SaeRS and SarA, independently of RSH. In an animal model, the rsh(syn) mutant was shown to be less virulent than the wild type. Virulence could be restored by the introduction of a codY mutation into the rsh(syn) mutant. These results indicate that stringent conditions are present during infection and that RSH-dependent derepression of CodY-regulated genes is essential for virulence in S. aureus.
Collapse
|
36
|
Philosof A, Sabehi G, Béjà O. Comparative analyses of actinobacterial genomic fragments from Lake Kinneret. Environ Microbiol 2009; 11:3189-200. [DOI: 10.1111/j.1462-2920.2009.02024.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Montgomery JI, Toogood PL, Hutchings KM, Liu J, Narasimhan L, Braden T, Dermyer MR, Kulynych AD, Smith YD, Warmus JS, Taylor C. Discovery and SAR of benzyl phenyl ethers as inhibitors of bacterial phenylalanyl-tRNA synthetase. Bioorg Med Chem Lett 2008; 19:665-9. [PMID: 19121937 DOI: 10.1016/j.bmcl.2008.12.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
A series of benzyl phenyl ethers (BPEs) is described that displays potent inhibition of bacterial phenylalanyl-tRNA synthetase. The synthesis, SAR, and select ADMET data are provided.
Collapse
Affiliation(s)
- Justin I Montgomery
- Pfizer Global Research and Development, Michigan Laboratories, Ann Arbor Campus, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Multiple resistant staphylococci that cause significant morbidity and mortality are the leading cause of nosocomial infections. Meanwhile, methicillin-resistant Staphylococcus aureus (MRSA) also spreads in the community, where highly virulent strains infect children and young adults who have no predisposing risk factors. Although some treatment options remain, the search for new antibacterial targets and lead compounds is urgently required to ensure that staphylococcal infections can be effectively treated in the future. Promising targets for new antibacterials are gene products that are involved in essential cell functions. In addition to antibacterials, active and passive immunization strategies are being developed that target surface components of staphylococci such as cell wall-linked adhesins, teichoic acids and capsule or immunodominant antigens.
Collapse
Affiliation(s)
- Knut Ohlsen
- University of Würzburg, Institute for Molecular Infection Biology, Röntgenring 11, 97070 Würzburg, Germany
| | - Udo Lorenz
- University of Würzburg, Centre for Operative Medicine, Department of Surgery I, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| |
Collapse
|
40
|
Evdokimov AG, Mekel M, Hutchings K, Narasimhan L, Holler T, McGrath T, Beattie B, Fauman E, Yan C, Heaslet H, Walter R, Finzel B, Ohren J, McConnell P, Braden T, Sun F, Spessard C, Banotai C, Al-Kassim L, Ma W, Wengender P, Kole D, Garceau N, Toogood P, Liu J. Rational protein engineering in action: the first crystal structure of a phenylalanine tRNA synthetase from Staphylococcus haemolyticus. J Struct Biol 2007; 162:152-69. [PMID: 18086534 DOI: 10.1016/j.jsb.2007.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/12/2007] [Accepted: 11/04/2007] [Indexed: 10/22/2022]
Abstract
In this article, we describe for the first time the high-resolution crystal structure of a phenylalanine tRNA synthetase from the pathogenic bacterium Staphylococcus haemolyticus. We demonstrate the subtle yet important structural differences between this enzyme and the previously described Thermus thermophilus ortholog. We also explain the structure-activity relationship of several recently reported inhibitors. The native enzyme crystals were of poor quality--they only diffracted X-rays to 3-5A resolution. Therefore, we have executed a rational surface mutagenesis strategy that has yielded crystals of this 2300-amino acid multidomain protein, diffracting to 2A or better. This methodology is discussed and contrasted with the more traditional domain truncation approach.
Collapse
Affiliation(s)
- Artem G Evdokimov
- Pfizer Global Research & Development, Michigan Laboratories, Ann Arbor, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dermyer M, Wise SC, Braden T, Holler TP. Simultaneous Screening of Multiple Bacterial tRNA Synthetases Using an Escherichia coli S30-Based Transcription and Translation Assay. Assay Drug Dev Technol 2007; 5:515-21. [PMID: 17767419 DOI: 10.1089/adt.2007.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The search for novel antibiotics to combat the growing threat of resistance has led researchers to screen libraries with coupled transcription and translation systems. In these systems, a bacterial cell lysate supplies the proteins necessary for transcription and translation, a plasmid encoding a reporter protein is added as a template, and a complex mixture of amino acids and cofactors is added to supply building blocks and energy to the assay. Firefly luciferase is typically used as the reporter protein in high-throughput screens because the luminescent signal is strong and, since bacterial lysates contain no luciferase, the background is negligible. The typical coupled transcription and translation assay is sensitive to inhibitors of RNA polymerase and to compounds that bind tightly to the ribosome. We have found a way to increase the information content of the screen by making the assay more sensitive to inhibitors of tRNA synthetases. Restricting the concentration of amino acids added to the reaction mixture allows the simultaneous screening of multiple tRNA synthetase enzymes along with the classic transcription and translation targets. In addition, this assay can be used as a convenient way to determine if an antibacterial compound of unknown mechanism inhibits translation through inhibition of a tRNA synthetase, and to identify which synthetase is the target.
Collapse
Affiliation(s)
- Michael Dermyer
- Pfizer Global Research and Development, Michigan Laboratories, Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
42
|
von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibacterial natural products in medicinal chemistry--exodus or revival? Angew Chem Int Ed Engl 2007; 45:5072-129. [PMID: 16881035 DOI: 10.1002/anie.200600350] [Citation(s) in RCA: 467] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To create a drug, nature's blueprints often have to be improved through semisynthesis or total synthesis (chemical postevolution). Selected contributions from industrial and academic groups highlight the arduous but rewarding path from natural products to drugs. Principle modification types for natural products are discussed herein, such as decoration, substitution, and degradation. The biological, chemical, and socioeconomic environments of antibacterial research are dealt with in context. Natural products, many from soil organisms, have provided the majority of lead structures for marketed anti-infectives. Surprisingly, numerous "old" classes of antibacterial natural products have never been intensively explored by medicinal chemists. Nevertheless, research on antibacterial natural products is flagging. Apparently, the "old fashioned" natural products no longer fit into modern drug discovery. The handling of natural products is cumbersome, requiring nonstandardized workflows and extended timelines. Revisiting natural products with modern chemistry and target-finding tools from biology (reversed genomics) is one option for their revival.
Collapse
Affiliation(s)
- Franz von Nussbaum
- Bayer HealthCare AG, Medicinal Chemistry Europe, 42096 Wuppertal, Germany.
| | | | | | | | | |
Collapse
|
43
|
Ochsner UA, Sun X, Jarvis T, Critchley I, Janjic N. Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents. Expert Opin Investig Drugs 2007; 16:573-93. [PMID: 17461733 DOI: 10.1517/13543784.16.5.573] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The emergence of resistance to existing antibiotics demands the development of novel antimicrobial agents directed against novel targets. Historically, bacterial cell wall synthesis, protein, and DNA and RNA synthesis have been major targets of very successful classes of antibiotics such as beta-lactams, glycopeptides, macrolides, aminoglycosides, tetracyclines, rifampicins and quinolones. Recently, efforts have been made to develop novel agents against validated targets in these pathways but also against new, previously unexploited targets. The era of genomics has provided insights into novel targets in microbial pathogens. Among the less exploited--but still promising--targets is the family of 20 aminoacyl-tRNA synthetases (aaRSs), which are essential for protein synthesis. These targets have been validated in nature as aaRS inhibition has been shown as the specific mode of action for many natural antimicrobial agents synthesized by bacteria and fungi. Therefore, aaRSs have the potential to be targeted by novel agents either from synthetic or natural sources to yield specific and selective anti-infectives. Numerous high-throughput screening programs aimed at identifying aaRS inhibitors have been performed over the last 20 years. A large number of promising lead compounds have been identified but only a few agents have moved forward into clinical development. This review provides an update on the present strategies to develop novel aaRS inhibitors as anti-infective drugs.
Collapse
Affiliation(s)
- Urs A Ochsner
- Replidyne, Inc., 1450 Infinite Dr, Louisville, CO 80027, USA.
| | | | | | | | | |
Collapse
|
44
|
Janin YL. Antituberculosis drugs: ten years of research. Bioorg Med Chem 2007; 15:2479-513. [PMID: 17291770 DOI: 10.1016/j.bmc.2007.01.030] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/26/2006] [Accepted: 01/17/2007] [Indexed: 02/03/2023]
Abstract
Tuberculosis is today amongst the worldwide health threats. As resistant strains of Mycobacterium tuberculosis have slowly emerged, treatment failure is too often a fact, especially in countries lacking the necessary health care organisation to provide the long and costly treatment adapted to patients. Because of lack of treatment or lack of adapted treatment, at least two million people will die of tuberculosis this year. Due to this concern, this infectious disease was the focus of renewed scientific interest in the last decade. Regimens were optimized and much was learnt on the mechanisms of action of the antituberculosis drugs used. Moreover, the quest for original drugs overcoming some of the problems of current regimens also became the focus of research programmes and many new series of M. tuberculosis growth inhibitors were reported. This review presents the drugs currently used in antituberculosis treatments and the most advanced compounds undergoing clinical trials. We then provide a description of their mechanism of action along with other series of inhibitors known to act on related biochemical targets. This is followed by other inhibitors of M. tuberculosis growth, including recently reported compounds devoid of a reported mechanism of action.
Collapse
Affiliation(s)
- Yves L Janin
- URA 2128 CNRS-Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
45
|
Bandow JE, Hecker M. Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:79, 81-101. [PMID: 17195472 DOI: 10.1007/978-3-7643-7567-6_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proteomic profiling provides a global view of the protein composition of the cell. In contrast to the static nature of the genome sequence, which provides the blueprint for all protein-based cellular building blocks, the proteome is highly dynamic. The protein composition is constantly adjusting to facilitate survival, growth, and reproduction in an ever-changing environment. In a quest to understand the regulation of cellular networks in bacteria and the role of individual proteins in the adaptation process, the proteomic response to stress and starvation was analyzed in wild-type and mutant strains. The knowledge derived from these proteomic studies was applied to investigating the bacterial response to antibiotics. It was found that proteomics presents a powerful tool for hypothesis generation regarding antibiotic mechanism of action.
Collapse
Affiliation(s)
- Julia E Bandow
- Pfizer Global Research and Development, Pfizer Inc., Ann Arbor, Michigan, USA.
| | | |
Collapse
|
46
|
Brandi L, Fabbretti A, Milon P, Carotti M, Pon CL, Gualerzi CO. Methods for identifying compounds that specifically target translation. Methods Enzymol 2007; 431:229-67. [PMID: 17923238 DOI: 10.1016/s0076-6879(07)31012-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This chapter presents methods and protocols suitable for the identification and characterization of inhibitors of the prokaryotic and/or eukaryotic translational apparatus as a whole or targeting specific, underexploited targets of the bacterial protein synthetic machinery such as translation initiation and aminoacylation. Some of the methods described have been used successfully for the high-throughput screening of libraries of natural or synthetic compounds and make use of model "universal" mRNAs that can be translated with similar efficiency by cellfree extracts of bacterial, yeast, and HeLa cells. Other methods presented here are suitable for secondary screening tests aimed at identifying a specific target of an antibiotic within the translational pathway of prokaryotic cells.
Collapse
|
47
|
von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibakterielle Naturstoffe in der medizinischen Chemie – Exodus oder Renaissance? Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600350] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Schmid MB. Crystallizing new approaches for antimicrobial drug discovery. Biochem Pharmacol 2006; 71:1048-56. [PMID: 16458857 DOI: 10.1016/j.bcp.2005.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 11/29/2022]
Abstract
Over the past decade, the sequences of microbial genomes have accumulated, changing the strategies for the discovery of novel anti-infective agents. Targets have become plentiful, yet new antimicrobial agents have been slow to emerge from this effort. In part, this reflects the long discovery and development times needed to bring new drugs to market. In addition, bottlenecks have been revealed in the antimicrobial drug discovery process at the steps of identifying good leads, and optimizing those leads into drug candidates. The fruit of structural genomics may provide opportunities to overcome these bottlenecks and fill the antimicrobial pipeline, by using the tools of structure guided drug discovery (SGDD).
Collapse
Affiliation(s)
- Molly B Schmid
- Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, USA.
| |
Collapse
|
49
|
Peláez F. The historical delivery of antibiotics from microbial natural products—Can history repeat? Biochem Pharmacol 2006; 71:981-90. [PMID: 16290171 DOI: 10.1016/j.bcp.2005.10.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 09/23/2005] [Accepted: 10/05/2005] [Indexed: 11/22/2022]
Abstract
Microbial natural products are the origin of most of the antibiotics on the market today. However, research in antibiotics and natural products has declined significantly during the last decade as a consequence of diverse factors, among which the lack of interest of industry in the field and the strong competition from collections of synthetic compounds as source of drug leads. As a consequence, there is an alarming scarcity of new antibiotic classes in the pipelines of the pharmaceutical industry. Still, microbial natural products remain the most promising source of novel antibiotics, although new approaches are required to improve the efficiency of the discovery process. The impact of microbial biodiversity, the influence of growth conditions on the production of secondary metabolites, the choice of the best approach at the screening step and the challenges faced during the isolation and identification of the active compounds are examined in this review as the critical factors contributing to success in the effort of antibiotic discovery from microbial natural products.
Collapse
Affiliation(s)
- Fernando Peláez
- Centro de Investigación Básica, Merck, Sharp & Dohme de España, S.A. Josefa Valcárcel 38, E-28027 Madrid, Spain.
| |
Collapse
|
50
|
Abstract
In the UK, 20,000 cases of Staphylococcus aureus bacteraemia are reported each year, half of which are antibiotic resistant and approximately 4% are fatal, exemplifying a worldwide phenomenon of tremendous economic and human impact. Novel treatments and prophylaxis are urgently required to combat such a serious threat. A common goal in the postgenomic era is to identify new targets for drug intervention (using small molecules) and immunologicals. Several promising cellular targets are now being developed in the quest to control such a life-threatening pathogen.
Collapse
Affiliation(s)
- Jorge García-Lara
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK, S10 2TN
| | | | | |
Collapse
|