1
|
Fan M, Guo M, Chen G, Rakotondrabe TF, Muema FW, Hu G. Exploring potential inhibitors of acetylcholinesterase, lactate dehydrogenases, and glutathione reductase from Hagenia abyssinica (Bruce) J.F. Gmel. based on multi-target ultrafiltration-liquid chromatography-mass spectrometry and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118356. [PMID: 38763372 DOI: 10.1016/j.jep.2024.118356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Felix Wambua Muema
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| |
Collapse
|
2
|
Hassan YR, El-Shiekh RA, El Hefnawy HM, Michael CG. Irvingia gabonensis baill. (African Mango): A comprehensive review of its ethnopharmacological significance, unveiling its long-standing history and therapeutic potential. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117942. [PMID: 38395180 DOI: 10.1016/j.jep.2024.117942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill. (IG) is a multipurpose tree native to tropical Africa such as Equatorial Guinea, Nigeria, Gabon, and Cameroon with high ethnomedicinal values. AIM OF THE STUDY This review emphasizes the ethnopharmacological significance, phytochemical, and functional properties of African mango, focusing on its potential for human health and industrial applications. MATERIALS AND METHODS Literature published on IG was traced by different databases, including the Egyptian Knowledge Bank database (EKB), ScienceDirect, PubMed, Google Scholars, Research Gate, Web of Science, Elsevier, and Scopus. Numerous keywords were used to achieve an inclusive search in the databases, like 'African Mango', 'Bush Mango', 'Irvingia gabonensis', 'Wild Mango', 'Dika Nut', 'Phytochemistry', 'Traditional uses', 'Functional foods', 'Polyphenols', 'Ogbono', 'Ellagic acid and its derivatives', and 'Pharmacological activities'. RESULTS Different parts of IG have been employed in traditional medicine and recorded a great success. The ripe fruit pulp was consumed fresh or processed into juice and wine documented for anti-diarrheal, anti-diabetic, anti-ulcer, hepatoprotective, antimicrobial, and anti-inflammatory properties. The kernels, which are widely traded and incorporated into traditional dishes, remain an integral part of culinary traditions. Seeds have folkloric uses for weight loss and are popular as blood thinners and anti-diabetics. Where the bark is reported for dysentery, colic, scabies, toothache, and various skin conditions. In Senegal, the stem bark is employed for gonorrhea, hepatic disorders, and gastrointestinal ailments. The leaves possess the potential to enhance renal and hepatic functions, safeguarding these vital organs against the detrimental effects of toxic substances. Pulp is rich in vitamin C, carbohydrates, and proteins. Oil is the major constituent of the seed, which is mainly composed of myristic and lauric acids. The defatted extracts are characterized by flavonoid glycosides and ellagic acid derivatives. Despite their widespread use, IG extracts are still inadequately characterized phytochemically and merit further investigation within the realm of scientific research. Encouragingly, toxicity studies have demonstrated the relative safety of IG extract at the administered doses. CONCLUSION The review extends our knowledge of the health benefits of IG, where these effects could be attributed to the phytochemicals present.
Collapse
Affiliation(s)
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | | |
Collapse
|
3
|
Memariani H, Memariani M, Ghasemian A. Quercetin as a Promising Antiprotozoan Phytochemical: Current Knowledge and Future Research Avenues. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7632408. [PMID: 38456097 PMCID: PMC10919984 DOI: 10.1155/2024/7632408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Despite tremendous advances in the prevention and treatment of infectious diseases, only few antiparasitic drugs have been developed to date. Protozoan infections such as malaria, leishmaniasis, and trypanosomiasis continue to exact an enormous toll on public health worldwide, underscoring the need to discover novel antiprotozoan drugs. Recently, there has been an explosion of research into the antiprotozoan properties of quercetin, one of the most abundant flavonoids in the human diet. In this review, we tried to consolidate the current knowledge on the antiprotozoal effects of quercetin and to provide the most fruitful avenues for future research. Quercetin exerts potent antiprotozoan activity against a broad spectrum of pathogens such as Leishmania spp., Trypanosoma spp., Plasmodium spp., Cryptosporidium spp., Trichomonas spp., and Toxoplasma gondii. In addition to its immunomodulatory roles, quercetin disrupts mitochondrial function, induces apoptotic/necrotic cell death, impairs iron uptake, inhibits multiple enzymes involved in fatty acid synthesis and the glycolytic pathways, suppresses the activity of DNA topoisomerases, and downregulates the expression of various heat shock proteins in these pathogens. In vivo studies also show that quercetin is effective in reducing parasitic loads, histopathological damage, and mortality in animals. Future research should focus on designing effective drug delivery systems to increase the oral bioavailability of quercetin. Incorporating quercetin into various nanocarrier systems would be a promising approach to manage localized cutaneous infections. Nevertheless, clinical trials are needed to validate the efficacy of quercetin in treating various protozoan infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Hegazy MM, Afifi WM, Metwaly AM, Radwan MM, Abd-Elraouf M, Mehany ABM, Ahmed E, Enany S, Ezzeldin S, Ibrahim AE, El Deeb S, Mostafa AE. Antitrypanosomal, Antitopoisomerase-I, and Cytotoxic Biological Evaluation of Some African Plants Belonging to Crassulaceae; Chemical Profiling of Extract Using UHPLC/QTOF-MS/MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248809. [PMID: 36557948 PMCID: PMC9785725 DOI: 10.3390/molecules27248809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
In our continuous study for some African plants as a source for antitrypanosomally and cytotoxic active drugs, nine different plants belonging to the Crassulaceae family have been selected for the present study. Sedum sieboldii leaves extract showed an antitrypanosomal activity against Trypanosoma brucei with an IC50 value of 8.5 µg/mL. In addition, they have cytotoxic activities against (HCT-116), (HEPG-2) and (MCF-7), with IC50 values of 28.18 ± 0.24, 22.05 ± 0.66, and 26.47 ± 0.85 µg/mL, respectively. Furthermore, the extract displayed inhibition against Topoisomerase-1 with an IC50 value of 1.31 µg/mL. It showed the highest phenolics and flavonoids content among the other plants' extracts. In order to identify the secondary metabolites which may be responsible for such activities, profiling of the polar secondary metabolites of S. sieboldii extract via Ultra-Performance Liquid Chromatography coupled to High-Resolution QTOF-MS operated in negative and positive ionization modes, which revealed the presence of 46 metabolites, including flavonoids, phenolic acids, anthocyanidins, coumarin, and other metabolites.
Collapse
Affiliation(s)
- Mostafa M. Hegazy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Wael M. Afifi
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia 41636, Egypt
| | - Ahmed M. Metwaly
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed M. Radwan
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alexandria 21521, Egypt
| | - Muhamad Abd-Elraouf
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shahd Ezzeldin
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Adel E. Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt
| | - Sami El Deeb
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| | - Ahmad E. Mostafa
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
5
|
Das SS, Dubey AK, Verma PRP, Singh SK, Singh SK. Therapeutic Potential of Quercetin-Loaded Nanoemulsion against Experimental Visceral Leishmaniasis: In Vitro/ Ex Vivo Studies and Mechanistic Insights. Mol Pharm 2022; 19:3367-3384. [PMID: 35980291 DOI: 10.1021/acs.molpharmaceut.2c00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visceral leishmaniasis (VL) is one of the most fatal and neglected tropical diseases caused by Leishmania donovani (L. donovani). The applications of currently available chemotherapy (amphotericin B, miltefosine, and others) in VL treatment have been limited due to their poor bioavailability, unfavorable toxicity profile, and prolonged parenteral dosing. Quercetin (QT), a potent natural antioxidant, is a prominent target when conducting investigations on alternative therapies against L. donovani infections. However, the therapeutic applications of QT have been restricted due to its low solubility and bioavailability. In the present study, we developed and evaluated the antileishmanial activity (ALA) of quercetin-loaded nanoemulsion (QTNE) against L. donovani clinical strains. In vitro anti-promastigote assay results demonstrated that QTNE (IC50 6.6 μM, 48 h) significantly inhibited the growth of parasites more efficiently than the pure QT suspension in a dose- and time-dependent manner. Results of the anti-amastigote assay revealed that the infected macrophages (%) of QTNE were significantly more than those of the pure QT suspension at all concentrations (6.6, 26.4, and 52.8 μM; p < 0.05, p < 0.01 compared to the control). Moreover, the results of in vitro and ex vivo studies assisted in determining the mechanistic insights associated with the ALA of QTNE. The overall findings suggested that QTNE exhibited potential ALA by enhancing the intracellular ROS and nitric oxide levels, inducing distortion of membrane integrity and phosphatidylserine release (AV/PI), rupturing the parasite DNA (late apoptosis/necrosis process), and upregulating the immunomodulatory effects (IFN-γ and IL-10 levels). Additionally, QTNE showed superior biocompatibility against all of the treated healthy cells (PBMCs, PECs, and BMCs) as compared to the control. In conclusion, QTNE acts as a potential antileishmanial agent targeting both promastigote and intracellular amastigote forms of L. donovani, which thus opens a new avenue for the use of QTNE in VL therapy.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Amit Kumar Dubey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Vaishali 844102, Bihar, India.,Parasite Immunology Lab, Division of Microbiology, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna 800007, Bihar, India
| | - Priya Ranjan Prasad Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Shubhankar Kumar Singh
- Parasite Immunology Lab, Division of Microbiology, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna 800007, Bihar, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
6
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
7
|
Çelik T, Önderci M, Pehlivan M, Yumrutaş Ö, Üçkardeş F. In vitro scolicidal effects of Sideritis perfoliata extract against Echinococcus granulosus. Int J Clin Pract 2021; 75:e14498. [PMID: 34160106 DOI: 10.1111/ijcp.14498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/10/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cystic echinococcosis, caused by helminths within the genus Echinococcus, is mainly localised in the liver and lungs of affected hosts. Surgery has been the best choice for the treatment of hydatidosis and using effective scolicidal agents during hydatid surgery is required to prevent secondary infection. Several plant extracts have been shown to exert scolicidal efficacy. This study was designed to investigate the in vitro scolicidal activity of methanol extract of Sideritis perfoliata against the protoscolices of hydatid cysts. METHODS The protoscolices were collected from a liver of a sheep slaughtered in Adiyaman city slaughter, Turkey. Three concentrations of the aerial part extract of S perfoliata (0.1, 0.2 and 0.4 mg/mL) were assessed at three different exposure periods. All tests were carried in duplicate. The viability of protoscolices was assessed by the eosin exclusion test (0.1% eosin staining). RESULTS Scolicidal effect of S perfoliata extract at exposure periods of 10, 20 and 30 minutes was 29.6%, 32.5% and 43.6% at the concentration of 0.1%, 37.8%, 50% and 58.1% at concentration of 0.2 mg/mL, and 57.9%, 71.8% and 79.1% at the concentration of 0.4 mg/mL, respectively; indicating a longer time is required to display protoscolicidal effects. LC-MS/MS analysis showed that some phenolic acids, such as fumaric acid (260.13 mg/L), syringic acid (27.92 mg/L) and caffeic acid (26.84 mg/L), and a flavonoid, luteolin (11.23 mg/L) were detected in high concentrations in the extract. CONCLUSIONS This study has demonstrated that the methanol extract of S perfoliata has high scolicidal activity in vitro. However, research on the in vivo efficacy of S perfoliata extract and its potential side effects is required.
Collapse
Affiliation(s)
- Tuncay Çelik
- Department of Microbiology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Muhittin Önderci
- Department of Biochemistry, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Mustafa Pehlivan
- Department of Medicinal and Aromatic Plants, Nurdağı Vocational High School, University of Gaziantep, Gaziantep, Turkey
| | - Önder Yumrutaş
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Fatih Üçkardeş
- Department of Biostatistics, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
8
|
Efficacy of the Aqueous Extract of Azadirachta indica Against the Marine Parasitic Leech and Its Phytochemical Profiling. Molecules 2021; 26:molecules26071908. [PMID: 33805254 PMCID: PMC8037938 DOI: 10.3390/molecules26071908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Zeylanicobdella arugamensis (Hirudinea), a marine parasitic leech, not only resulted in the mortality of the host fish (Groupers) but also caused economic losses. The current study aimed to elucidate the antiparasitic efficacy of the aqueous extract of the Azadirachta indica leaves against Z. arugamensis and to profile the composition via LC-Q Exactive HF Orbitrap mass spectrometry. Different concentrations (25, 50 and 100 mg/mL) of A. indica extract were prepared and tested on the parasitic leeches. The total mortality of leeches was noticed with an exposure to the A. indica aqueous extract. The average times required for the aqueous extract at concentrations of 25, 50 and 100 mg/mL to kill the leeches were 42.65 ± 9.20, 11.69 ± 1.11 and 6.45 ± 0.45 min, respectively, in a dose-dependent manner. The Orbitrap mass spectrometry analysis indicated the presence of five flavonoids (myricetin 3-O-galactoside, trifolin, isorhamnetin, quercetin and kaempferol), four aromatics (4-methoxy benzaldehyde, scopoletin, indole-3-acrylic acid and 2,4-quinolinediol), three phenolics (p-coumaric acid, ferulic acid and phloretin) and two terpenoids (pulegone and caryophyllene oxide). Thus, our study indicates that A. indica aqueous extract is a good source of metabolites with the potential to act as a biocontrol agent against the marine parasitic leech in aquaculture.
Collapse
|
9
|
Afifi W, Hegazy M, Metwaly A, Mostafa A, Radwan M, M. Mehany A, Ahmed E, Enany S, Magdeldin S, ElSohly M. Biological and chemical evaluation of some African plants belonging to Kalanchoe species: Antitrypanosomal, cytotoxic, antitopoisomerase I activities and chemical profiling using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometer. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_232_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Nvau JB, Alenezi S, Ungogo MA, Alfayez IAM, Natto MJ, Gray AI, Ferro VA, Watson DG, de Koning HP, Igoli JO. Antiparasitic and Cytotoxic Activity of Bokkosin, A Novel Diterpene-Substituted Chromanyl Benzoquinone From Calliandra portoricensis. Front Chem 2020; 8:574103. [PMID: 33282826 PMCID: PMC7705231 DOI: 10.3389/fchem.2020.574103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022] Open
Abstract
Calliandra portoricensis is a medicinal plant growing freely in Nigeria. It is used traditionally to treat tuberculosis, as an anthelmintic and an abortifacient. Phytochemical fractionation and screening of its root extracts has yielded a novel (5-hydroxy-7-methoxy-4-oxo-1-chromanyl)-4-methoxy-p-benzoquinone (breverin)-substituted cassane diterpene, which was designated bokkosin. It was obtained from column chromatography of the ethyl acetate extract of the roots. The compound was characterized using IR, NMR (1D and 2D) and mass spectral data. Promising antiparasitic activity was observed against the kinetoplastid parasite Trypanosoma brucei brucei, as well as moderate activity against Trypanosoma congolense and Leishmania mexicana and low toxicity in mammalian cells, with the best in vitro EC50 values against T. b. brucei (0.69 μg/mL against a standard laboratory strain, and its multi-drug resistant clone (0.33 μg/mL). The effect on T. b. brucei in culture was rapid and dose-dependent, leading to apparently irreversible growth arrest and cell death after an exposure of just 2 h at 2 × or 4 × EC50. The identification of bokkosin constitutes the first isolation of this class of compound from any natural source and establishes the compound as a potential trypanocide that, considering its novelty, should now be tested for activity against other microorganisms as well.
Collapse
Affiliation(s)
- John B. Nvau
- Department of Chemistry, Plateau State University, Bokkos, Nigeria
| | - Samya Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Marzuq A. Ungogo
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Ibrahim A. M. Alfayez
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Manal J. Natto
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alexander I. Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Dave G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Harry P. de Koning
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - John O. Igoli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Department of Chemistry, Phytochemistry Research Group, University of Agriculture, Makurdi, Nigeria
| |
Collapse
|
11
|
Agostini M, Hininger-Favier I, Marcourt L, Boucherle B, Gao B, Hybertson BM, Bose SK, McCord JM, Millery A, Rome M, Ferreira Queiroz E, Wolfender JL, Gallet C, Boumendjel A. Phytochemical and Biological Investigation of Helianthemum nummularium, a High-Altitude Growing Alpine Plant Overrepresented in Ungulates Diets. PLANTA MEDICA 2020; 86:1185-1190. [PMID: 32645735 DOI: 10.1055/a-1197-2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Helianthemum nummularium is a European shrub growing at high altitude where it copes with a high level of stress. It was found to be overexpressed in ungulates diets compared to more abundant surrounding plants. These elements combined with the fact that H. nummularium from the Alps has never been investigated prompted us to study the phytochemical composition of its aerial parts. The analysis of the polar extract allowed for the isolation of eight compounds: p-hydroxybenzoic acid, tiliroside, kaempferol, astragalin, quercetin, plantainoside B, quercetin-3-O-glucoside, and quercetin-3-O-glucuronide. We investigated the effect of the polar extract and isolated compounds on nuclear factor erythroid 2-related factor 2 transcription factor, which regulates the expression of a wide variety of cytoprotective genes. We found that the ethanolic extract activates the expression of nuclear factor erythroid 2-related factor 2 in a dose-dependent manner, whereas the pure compounds were much less active. The activation of the nuclear factor erythroid 2-related factor 2 pathway by the plant extract could pave the way for studies to promote healthy aging through protection of cells against oxidative stress. Moreover, the isolated compounds could be investigated alone or in combination in the perspective of making the link between the ungulate's preference for this plant and possible use of it for self-medication.
Collapse
Affiliation(s)
| | - Isabelle Hininger-Favier
- Univ. Grenoble Alpes, Inserm, LBFA, Grenoble, France
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | | | - Bifeng Gao
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Pathways Bioscience, Aurora, CO, USA
| | | | | | | | - Annie Millery
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Maxime Rome
- Univ. Grenoble Alpes, CNRS, SAJF, Grenoble, France
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Christiane Gallet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | |
Collapse
|
12
|
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS OMEGA 2020; 5:11849-11872. [PMID: 32478277 PMCID: PMC7254783 DOI: 10.1021/acsomega.0c01818] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 05/03/2023]
Abstract
Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.
Collapse
Affiliation(s)
- Bahare Salehi
- Student
Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Laura Machin
- Institute
of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Lianet Monzote
- Parasitology
Department, Institute of Medicine Tropical
Pedro Kourí, Havana, Cuba
| | - Javad Sharifi-Rad
- Phytochemistry
Research Center, Shahid Beheshti University
of Medical Sciences, Tehran 1991953381, Iran
| | - Shahira M. Ezzat
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, Cairo 11562, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt
| | - Mohamed A. Salem
- Department
of Pharmacognosy, Faculty of Pharmacy, Menoufia
University, Gamal Abd
El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Rana M. Merghany
- Department
of Pharmacognosy, National Research Centre, Giza 12622, Egypt
| | - Nihal M. El Mahdy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Ceyda Sibel Kılıç
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak
University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
| | - Mehdi Sharifi-Rad
- Department
of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - Natália Martins
- Faculty of Medicine, University
of Porto, Porto 4200-319, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy,
and Centre
for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad
de Desarrollo Tecnológico,
UDT, Concepción 4070386, Chile
| | - William C. Cho
- Department
of Clinical Oncology, Queen
Elizabeth Hospital, 30
Gascoigne Road, Kowloon, Hong
Kong
| |
Collapse
|
13
|
Vivarini ADC, Lopes UG. The Potential Role of Nrf2 Signaling in Leishmania Infection Outcomes. Front Cell Infect Microbiol 2020; 9:453. [PMID: 31998662 PMCID: PMC6966304 DOI: 10.3389/fcimb.2019.00453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
Nrf2 [nuclear factor erythroid 2-related factor 2 (Nrf2)] regulates the expression of a plethora of genes involved in the response to oxidative stress due to inflammation, aging, and tissue damage, among other pathological conditions. Deregulation of this cytoprotective system may also interfere with innate and adaptive immune responses. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during initial phagocytosis of parasites, which could lead to the successful establishment of infection and promote susceptibility to diseases. A wide diversity of infections, mainly those caused by intracellular pathogens such as viruses, bacteria, and protozoan parasites, modulate the activation of Nrf2 by interfering with post-translational modifications, interactions between different protein complexes and the immune response. Nrf2 may be induced by pathogens via distinct pathways such as those involving the engagement of Toll-like receptors, the activation of PI3K/Akt, and endoplasmic reticulum stress. Recent studies have revealed the importance of Nrf2 on leishmaniasis. This mini-review discusses relevant findings that reveal the connection between Leishmania-induced modifications of the host pathways and their relevance to the modulation of the Nrf2-dependent antioxidative response to the infection.
Collapse
Affiliation(s)
- Aislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Boniface PK, Elizabeth FI. Flavonoid-derived Privileged Scaffolds in anti-Trypanosoma brucei Drug Discovery. Curr Drug Targets 2019; 20:1295-1314. [PMID: 31215385 DOI: 10.2174/1389450120666190618114857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human African Trypanosomiasis (HAT), also known as sleeping sickness is one of the 20 neglected tropical diseases listed by the World Health Organization, which lead to death if left untreated. This disease is caused by Trypanosoma brucei gambiense, which is the chronic form of the disease present in western and central Africa, and by T. brucei rhodesiense, which is the acute form of the disease located in eastern and southern Africa. Many reports have highlighted the effectiveness of flavonoid-based compounds against T. brucei. OBJECTIVE The present review summarizes the current standings and perspectives for the use of flavonoids as lead compounds for the potential treatment of HAT. METHODS A literature search was conducted for naturally occurring and synthetic anti-T brucei flavonoids by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, Springer, among others) from their inception until February 2019. RESULTS Flavonoids isolated from different parts of plants and species were reported to exhibit moderate to high in vitro antitrypanosomal activity against T. brucei. In addition, synthetic flavonoids revealed anti-T. brucei activity. Molecular interactions of bioactive flavonoids with T. brucei protein targets showed promising results. CONCLUSION According to in vitro anti-T brucei studies, there is evidence that flavonoids might be lead compounds for the potential treatment of HAT. However, toxicological studies, as well as the mechanism of action of the in vitro active flavonoids are needed to support their use as potential leads for the treatment of HAT.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira Igne Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Cataneo AHD, Tomiotto-Pellissier F, Miranda-Sapla MM, Assolini JP, Panis C, Kian D, Yamauchi LM, Colado Simão AN, Casagrande R, Pinge-Filho P, Costa IN, Verri WA, Conchon-Costa I, Pavanelli WR. Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability. Biomed Pharmacother 2019; 113:108745. [DOI: 10.1016/j.biopha.2019.108745] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022] Open
|
16
|
Tixeira R, Poon IKH. Disassembly of dying cells in diverse organisms. Cell Mol Life Sci 2019; 76:245-257. [PMID: 30317529 PMCID: PMC11105331 DOI: 10.1007/s00018-018-2932-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023]
Abstract
Programmed cell death (PCD) is a conserved phenomenon in multicellular organisms required to maintain homeostasis. Among the regulated cell death pathways, apoptosis is a well-described form of PCD in mammalian cells. One of the characteristic features of apoptosis is the change in cellular morphology, often leading to the fragmentation of the cell into smaller membrane-bound vesicles through a process called apoptotic cell disassembly. Interestingly, some of these morphological changes and cell disassembly are also noted in cells of other organisms including plants, fungi and protists while undergoing 'apoptosis-like PCD'. This review will describe morphologic features leading to apoptotic cell disassembly, as well as its regulation and function in mammalian cells. The occurrence of cell disassembly during cell death in other organisms namely zebrafish, fly and worm, as well as in other eukaryotic cells will also be discussed.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
17
|
Jucá MM, Cysne Filho FMS, de Almeida JC, Mesquita DDS, Barriga JRDM, Dias KCF, Barbosa TM, Vasconcelos LC, Leal LKAM, Ribeiro JE, Vasconcelos SMM. Flavonoids: biological activities and therapeutic potential. Nat Prod Res 2018; 34:692-705. [PMID: 30445839 DOI: 10.1080/14786419.2018.1493588] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids have aroused much interest in research, since they present a great diversity of biological activities observed in vitro, such as: antioxidant effect, modulation of the enzymatic activity and inhibition of cellular proliferation, exerting beneficial effects on the organism, as well as the use of its therapeutic potential. With wide distribution in the plant kingdom represent a class of phenolic compounds that differ in their chemical structure and particular characteristics. The objective of this review was to describe the relevant aspects of flavonoids, reporting the different known groups, the probable mechanisms by which they act, their pharmacological properties and to gain a better understanding of the reported beneficial health effects of these substances. This systematic review consisted of research using scientific databases such as Scopus, Science Direct, PubMed, SciVerse and SciELO, without time limitation. Some pharmacological properties of some flavonoids and their health benefits have been confirmed by previous studies.
Collapse
Affiliation(s)
- Mércia Marques Jucá
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Dara da Silva Mesquita
- Health Science Center, School of Medicine, University Centre Christus, Fortaleza, Brazil
| | | | - Kátia Cilene Ferreira Dias
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Talita Matias Barbosa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Luna Costa Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - José Eduardo Ribeiro
- Health Science Center, School of Medicine, University Centre Christus, Fortaleza, Brazil
| | | |
Collapse
|
18
|
Antiparasitic effect of the Psidium guajava L. (guava) and Psidium brownianum MART. EX DC. (araçá-de-veado) extracts. Food Chem Toxicol 2018; 119:275-280. [DOI: 10.1016/j.fct.2018.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022]
|
19
|
Martínez-Castillo M, Pacheco-Yepez J, Flores-Huerta N, Guzmán-Téllez P, Jarillo-Luna RA, Cárdenas-Jaramillo LM, Campos-Rodríguez R, Shibayama M. Flavonoids as a Natural Treatment Against Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:209. [PMID: 29988403 PMCID: PMC6024094 DOI: 10.3389/fcimb.2018.00209] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
Over the past 20 years, gastrointestinal infections in developing countries have been a serious health problem and are the second leading cause of morbidity among all age groups. Among pathogenic protozoans that cause diarrheal disease, the parasite Entamoeba histolytica produces amebic colitis as well as the most frequent extra-intestinal lesion, an amebic liver abscess (ALA). Usually, intestinal amebiasis and ALA are treated with synthetic chemical compounds (iodoquinol, paromomycin, diloxanide furoate, and nitroimidazoles). Metronidazole is the most common treatment for amebiasis. Although the efficacy of nitroimidazoles in killing amebas is known, the potential resistance of E. histolytica to this treatment is a concern. In addition, controversial studies have reported that metronidazole could induce mutagenic effects and cerebral toxicity. Therefore, natural and safe alternative drugs against this parasite are needed. Flavonoids are natural polyphenolic compounds. Flavonoids depend on malonyl-CoA and phenylalanine to be synthesized. Several flavonoids have anti-oxidant and anti-microbial properties. Since the 1990s, several works have focused on the identification and purification of different flavonoids with amebicidal effects, such as, -(-)epicatechin, kaempferol, and quercetin. In this review, we investigated the effects of flavonoids that have potential amebicidal activity and that can be used as complementary and/or specific therapeutic strategies against E. histolytica trophozoites. Interestingly, it was found that these natural compounds can induce morphological changes in the amebas, such as chromatin condensation and cytoskeletal protein re-organization, as well as the upregulation and downregulation of fructose-1,6-bisphosphate aldolase, glyceraldehyde-phosphate dehydrogenase, and pyruvate:ferredoxin oxidoreductase (enzymes of the glycolytic pathway). Although the specific molecular targets, bioavailability, route of administration, and doses of some of these natural compounds need to be determined, flavonoids represent a very promising and innocuous strategy that should be considered for use against E. histolytica in the era of microbial drug resistance.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Judith Pacheco-Yepez
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Nadia Flores-Huerta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Paula Guzmán-Téllez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rosa A Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Luz M Cárdenas-Jaramillo
- Coordinación de Morfología, Departamento de Formación Básica Disciplinaria, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
20
|
Borsari C, Luciani R, Pozzi C, Poehner I, Henrich S, Trande M, Cordeiro-da-Silva A, Santarem N, Baptista C, Tait A, Di Pisa F, Dello Iacono L, Landi G, Gul S, Wolf M, Kuzikov M, Ellinger B, Reinshagen J, Witt G, Gribbon P, Kohler M, Keminer O, Behrens B, Costantino L, Tejera Nevado P, Bifeld E, Eick J, Clos J, Torrado J, Jiménez-Antón MD, Corral MJ, Alunda JM, Pellati F, Wade RC, Ferrari S, Mangani S, Costi MP. Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs. J Med Chem 2016; 59:7598-616. [PMID: 27411733 DOI: 10.1021/acs.jmedchem.6b00698] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flavonoids represent a potential source of new antitrypanosomatidic leads. Starting from a library of natural products, we combined target-based screening on pteridine reductase 1 with phenotypic screening on Trypanosoma brucei for hit identification. Flavonols were identified as hits, and a library of 16 derivatives was synthesized. Twelve compounds showed EC50 values against T. brucei below 10 μM. Four X-ray crystal structures and docking studies explained the observed structure-activity relationships. Compound 2 (3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-chromen-4-one) was selected for pharmacokinetic studies. Encapsulation of compound 2 in PLGA nanoparticles or cyclodextrins resulted in lower in vitro toxicity when compared to the free compound. Combination studies with methotrexate revealed that compound 13 (3-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one) has the highest synergistic effect at concentration of 1.3 μM, 11.7-fold dose reduction index and no toxicity toward host cells. Our results provide the basis for further chemical modifications aimed at identifying novel antitrypanosomatidic agents showing higher potency toward PTR1 and increased metabolic stability.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Ina Poehner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , 69118 Heidelberg, Germany
| | - Stefan Henrich
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , 69118 Heidelberg, Germany
| | - Matteo Trande
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology , 4150-180 Porto, Portugal
| | - Nuno Santarem
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology , 4150-180 Porto, Portugal
| | - Catarina Baptista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology , 4150-180 Porto, Portugal
| | - Annalisa Tait
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Lucia Dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Markus Wolf
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Jeanette Reinshagen
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Manfred Kohler
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Birte Behrens
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Luca Costantino
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | | | - Eugenia Bifeld
- Bernhard Nocht Institute for Tropical Medicine , D-20359 Hamburg, Germany
| | - Julia Eick
- Bernhard Nocht Institute for Tropical Medicine , D-20359 Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine , D-20359 Hamburg, Germany
| | - Juan Torrado
- Complutense University of Madrid , 28040 Madrid, Spain
| | - María D Jiménez-Antón
- Complutense University of Madrid , 28040 Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre , 28041 Madrid, Spain
| | - María J Corral
- Complutense University of Madrid , 28040 Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre , 28041 Madrid, Spain
| | - José Ma Alunda
- Complutense University of Madrid , 28040 Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre , 28041 Madrid, Spain
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University , 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University ,69120 Heidelberg, Germany
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
21
|
Calixto Júnior JT, de Morais SM, Gomez CV, Molas CC, Rolon M, Boligon AA, Athayde ML, de Morais Oliveira CD, Tintino SR, Henrique Douglas MC. Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast "Cerrado". Saudi J Biol Sci 2016; 23:434-40. [PMID: 27081371 PMCID: PMC4818332 DOI: 10.1016/j.sjbs.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 11/15/2022] Open
Abstract
This work describes the antiparasitic and cytotoxic activities of three plant species from the Cerrado biome, Northeastern Brazil. Significant antiparasitic inhibition was observed against Trypanosoma cruzi (63.86%), Leishmania brasiliensis (92.20%) and Leishmania infantum (95.23%) when using ethanol extract from leaves of Guazuma ulmifolia Lam. (Malvaceae), at a concentration of 500 μg/mL. However, low levels of inhibition were observed when assessing leishmanicidal and trypanocidal (Clone CL-B5) activities of crude ethanol extracts from leaves and bast tissue of Luehea paniculata (Malvaceae) and leaves and bark of Prockia crucis (Salicaceae) at a concentration of 500 μg/mL. The extracts revealed the presence of phenolic acids such as gallic acid, chlorogenic acid, caffeic acid and rosmarinic acid, as well as flavonoids such as rutin, luteolin, apigenin and quercetin - the latter detected only in G. ulmifolia. G. ulmifolia extract displayed higher leishmanicidal activity probably due to the presence of quercetin, a potent known leishmanicidal compound. A cytotoxicity test indicated values over 50% at the highest concentration (1000 μg/mL) for all natural products, which were considered cytotoxic. This points out the need for further tests to enable future in vivo trials, including antineoplastic activity on human tumor cells.
Collapse
Affiliation(s)
- João Tavares Calixto Júnior
- Post Graduation Biotechnological Programme – RENORBIO, Laboratory of Natural Products, State University of Ceará, Itaperi Campus, Fortaleza, Ceará, Brazil
| | - Selene Maia de Morais
- Post Graduation Biotechnological Programme – RENORBIO, Laboratory of Natural Products, State University of Ceará, Itaperi Campus, Fortaleza, Ceará, Brazil
| | - Celeste Vega Gomez
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill, Asunción, Paraguay
| | - Cathia Coronel Molas
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill, Asunción, Paraguay
| | - Miriam Rolon
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Díaz Gill, Asunción, Paraguay
| | - Aline Augusti Boligon
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Margareth Linde Athayde
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | | | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará State, Brazil
| | | |
Collapse
|
22
|
Abugri DA, Witola WH, Jaynes JM, Toufic N. In vitro activity of Sorghum bicolor extracts, 3-deoxyanthocyanidins, against Toxoplasma gondii. Exp Parasitol 2016; 164:12-9. [PMID: 26855040 DOI: 10.1016/j.exppara.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
We investigated dried red leaf extracts of Sorghum bicolor for activity against Toxoplasma gondii tachyzoites. S. bicolor red leaf extracts were obtained by bioassay-guided fractionation using ethanol and ethyl acetate as solvents. Analysis of the crude and fractionated extracts from S. bicolor using electrospray ionization mass spectrometry (ESI-MS) showed that they contained significant amounts of apigeninidin, luteolinidin, 7-methoxyapigeninidin, 5-methoxyapigeninidin, 5-methoxyluteolinidin, 7-methoxyluteolinidin 5,7-dimethoxyapigeninidin or 5,7-dimethoxyluteolinidin, based on mass per charge (m/z). When tested in vitro, the IC50s for inhibitory activity against T. gondii tachyzoites' growth of the ethanol and ethyl acetate extracts were 2.3- and 4-fold, respectively, lower than their cytotoxic IC50s in mammalian cells. Ethyl acetate extracts fractionated in chloroform-methanol and chloroform had IC50s against T. gondii that were 56.1- and 3-fold lower than their respective cytotoxic IC50s in mammalian cells. These antiparasitic activities were found to be consistent with those of the respective pure 3-deoxyanthocyanidin compounds identified to be contained in the fractions in significant amounts. Further, we observed that, the position and number of methoxy groups possessed by the 3-deoyanthocyanidins influenced their antiparasitic activity. Together, our findings indicate that S. bicolor red-leaf 3-deoxyanthocyanidins-rich extracts have potent in vitro inhibitory activity against the proliferative stage of T. gondii parasites.
Collapse
Affiliation(s)
- Daniel A Abugri
- Department of Chemistry, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, USA; Department of Agricultural and Environmental Sciences, College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL, USA
| | - William H Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, USA.
| | - Jesse M Jaynes
- Department of Agricultural and Environmental Sciences, College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL, USA
| | - Nashar Toufic
- Department of Pathobiology, College of Veterinary Medicine, Nursing & Allied Health, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
23
|
Zimmermann S, Hall L, Riley S, Sørensen J, Amaro RE, Schnaufer A. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases. Nucleic Acids Res 2015; 44:e24. [PMID: 26400159 PMCID: PMC4756849 DOI: 10.1093/nar/gkv938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/12/2023] Open
Abstract
The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds.
Collapse
Affiliation(s)
- Stephan Zimmermann
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Laurence Hall
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean Riley
- The Scripps Research Institute, 4122 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Jesper Sørensen
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry and the National Biomedical Computation Resource, University of California, San Diego, CA 92093, USA
| | - Achim Schnaufer
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
24
|
Lage PS, Chávez-Fumagalli MA, Mesquita JT, Mata LM, Fernandes SOA, Cardoso VN, Soto M, Tavares CAP, Leite JPV, Tempone AG, Coelho EAF. Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum. Parasitol Res 2015; 114:4625-35. [PMID: 26346453 DOI: 10.1007/s00436-015-4708-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
The present study aimed to investigate the in vitro antileishmanial activity of strychnobiflavone flavonoid against Leishmania infantum, as well as its mechanism of action, and evaluate the ex vivo biodistribution profile of the flavonoid in naive BALB/c mice. The antileishmanial activity (IC50 value) of strychnobiflavone against stationary promastigote and amastigote-like stages of the parasites was of 5.4 and 18.9 μM, respectively; with a 50% cytotoxic concentration (CC50) value of 125.0 μM on murine macrophages, resulting in selectivity index (SI) of 23.2 and 6.6, respectively. Amphotericin B, used as a positive control, presented SI values of 7.6 and 3.3 for promastigote and amastigote-like stages of L. infantum, respectively. The strychnobiflavone was also effective in reducing in significant levels the percentage of infected macrophages, as well as the number of amastigotes per macrophage, after the treatment of infected macrophages using the flavonoid. By using different fluorescent probes, we investigated the bioenergetics metabolism of L. infantum promastigotes and demonstrated that the flavonoid caused the depolarization of the mitochondrial membrane potential, without affecting the production of reactive oxygen species. In addition, using SYTOX(®) green as a fluorescent probe, the strychnobiflavone demonstrated no interference in plasma membrane permeability. For the ex vivo biodistribution assays, the flavonoid was labeled with technetium-(99m) and studied in a mouse model by intraperitoneal route. After a single dose administration, the scintigraphic images demonstrated a highest uptake by the liver and spleen of the animals within 60 min, resulting in low concentrations after 24 h. The present study therefore demonstrated, for the first time, the antileishmanial activity of the strychnobiflavone against L. infantum, and suggests that the mitochondria of the parasites may be the possible target organelle. The preferential distribution of this compound into the liver and spleen of the animals could warrant its employ in the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Paula S Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Juliana T Mesquita
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, 01246-902, São Paulo, Brazil
| | - Laís M Mata
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carlos A P Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - João P V Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Andre G Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, 01246-902, São Paulo, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil.
- Laboratório de Biotecnologia Aplicada ao Estudo das Leishmanioses, Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Nwodo NJ, Ibezim A, Ntie-Kang F, Adikwu MU, Mbah CJ. Anti-trypanosomal activity of nigerian plants and their constituents. Molecules 2015; 20:7750-71. [PMID: 25927903 PMCID: PMC6272792 DOI: 10.3390/molecules20057750] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022] Open
Abstract
African trypanosomiasis is a vector-borne parasitic disease causing serious risks to the lives of about 60 million people and 48 million cattle globally. Nigerian medicinal plants are known to contain a large variety of chemical structures and some of the plant extracts have been screened for antitrypanosomal activity, in the search for potential new drugs against the illness. We surveyed the literatures on plants and plant-derived products with antitrypanosomal activity from Nigerian flora published from 1990 to 2014. About 90 plants were identified, with 54 compounds as potential active agents and presented by plant families in alphabetical order. This review indicates that the Nigerian flora may be suitable as a starting point in searching for new and more efficient trypanocidal molecules.
Collapse
Affiliation(s)
- Ngozi Justina Nwodo
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria.
| | - Akachukwu Ibezim
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria.
| | - Fidele Ntie-Kang
- Department of Chemistry, Chemical and Bioactivity Information Centre, Faculty of Science, University of Buea, P.O. Box 63, Buea 00237, Cameroon.
| | | | - Chika John Mbah
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria.
| |
Collapse
|
26
|
Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites. PLoS One 2015; 10:e0125276. [PMID: 25915529 PMCID: PMC4411034 DOI: 10.1371/journal.pone.0125276] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses.
Collapse
|
27
|
From Bench to Bedside: Natural Products and Analogs for the Treatment of Neglected Tropical Diseases (NTDs). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63460-3.00002-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Camejo MI, Spencer LM, Núñez A. TNF-alpha in bulls experimentally infected with Trypanosoma vivax: a pilot study. Vet Immunol Immunopathol 2014; 162:192-7. [PMID: 25464824 DOI: 10.1016/j.vetimm.2014.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022]
Abstract
There are few studies about the immune response during trypanosomosis in cattle. The objective of this research was to evaluate the effect of experimental infection with Trypanosoma vivax (T. vivax) on serum levels of TNF-alpha in bulls and its relationship to hematocrit, body temperature and parasitemia. Two adult crossbred bulls were infected experimentally with T. vivax and two were used as controls. The bulls were evaluated during a 64 day period in terms of temperature, hematocrit, and parasitemia. Serum TNF-alpha levels were determined by ELISA, using an antibody specific for bovine. TNF-alpha in serum began rising on the seventh day after infection and reached a peak on day 40 of post-infection, then dropped. The lowest hematocrit levels corresponded to the upper levels of TNF-alpha, for each animal. In conclusion, the experimental infection of cattle with T. vivax promotes the release of TNF-alpha, demonstrating a pro-inflammatory immune response to this hemotropic parasite. Moreover, the lowest hematocrit levels coincide with high concentrations of TNF-alpha, suggesting that this cytokine can be linked to the observed anemia during the course of infection by T. vivax in cattle.
Collapse
Affiliation(s)
- María I Camejo
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela.
| | - Lilian M Spencer
- Departamento de Biología Celular, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela
| | - Armando Núñez
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela; Facultad de Ciencias Veterinarias, Universidad Nacional Experimental Rómulo Gallegos, San Juan de Los Morros, Estado Guárico, Venezuela
| |
Collapse
|
29
|
Peluso I, Manafikhi H, Reggi R, Palmery M. Interference of flavonoids with fluorescent intracellular probes: methodological implications in the evaluation of the oxidative burst by flow cytometry. Cytometry A 2014; 85:663-77. [PMID: 24889089 DOI: 10.1002/cyto.a.22490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/10/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022]
Abstract
The evaluation of oxidative burst is particularly relevant in many pathological and subclinical conditions. Flow cytometry provides quick and accurate measures of the reactive oxygen species production by leukocytes in most situations. However, spurious results, related to probes' efflux may be observed in several instances. Many factors affect the evaluation of the oxidative burst with fluorescent probes that require intracellular deacetylation and could be substrate of the multidrug resistance proteins (MDR). After discussing the implications of the efflux of fluorophores in the normalization strategies in flow cytometry assays, we have pointed out the possible interference of flavonoids with fluorescet probes' staining and signal. We have also reviewed the results from human intervention studies regarding the evaluation of oxidative burst with these probes. In vitro, at concentrations close to post-ingestion circulating levels, some flavonoids and their metabolites could interfere with probes' staining and fluorescence signal through different mechanisms, such as the inhibition of esterases, the modulation of the MDR-mediate efflux of probe and the inhibition of the oxidation of probe. These effects may explain the contrasting results obtained by human intervention studies. Finally, also inflammatory state or the use of drugs substrate of MDR proteins could affect the evaluation of the oxidative burst with intracellular probes.
Collapse
Affiliation(s)
- Ilaria Peluso
- Department of Physiology and Pharmacology, "V. Erspamer," "Sapienza" University of Rome, Italy
| | | | | | | |
Collapse
|
30
|
Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. JOURNAL OF NATURAL PRODUCTS 2013; 76:1505-1508. [PMID: 23876028 DOI: 10.1021/np400193m] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present study reports the mechanism of the antileishmanial activity of quercetin against the intracellular amastigote form of Leishmania amazonensis. Treatment with 1 reduced the infection index in L. amazonensis-infected macrophages in a dose-dependent manner, with an IC₅₀ value of 3.4 μM and a selectivity index of 16.8, and additionally increased ROS generation also in a dose-dependent manner. Quercetin has been described as a pro-oxidant that induces the production of reactive oxygen species, which can cause cell death. Taken together, these results suggest that ROS production plays a role in the mechanism of action of 1 in the control of intracellular amastigotes of L. amazonensis.
Collapse
Affiliation(s)
- Fernanda Fonseca-Silva
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Pavilhão Leônidas Deane, Manguinhos, 21045-900 Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
31
|
Drummond EM, Harbourne N, Marete E, Martyn D, Jacquier JC, O'Riordan D, Gibney ER. Inhibition of Proinflammatory Biomarkers in THP1 Macrophages by Polyphenols Derived From Chamomile, Meadowsweet and Willow bark. Phytother Res 2012; 27:588-94. [DOI: 10.1002/ptr.4753] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 01/04/2023]
Affiliation(s)
| | - Niamh Harbourne
- UCD Institute of Food and Health, UCD, Belfield, Dublin 4; Ireland
| | - Eunice Marete
- UCD Institute of Food and Health, UCD, Belfield, Dublin 4; Ireland
| | - Danika Martyn
- UCD Institute of Food and Health, UCD, Belfield, Dublin 4; Ireland
| | - JC Jacquier
- UCD Institute of Food and Health, UCD, Belfield, Dublin 4; Ireland
| | | | - Eileen R Gibney
- UCD Institute of Food and Health, UCD, Belfield, Dublin 4; Ireland
| |
Collapse
|
32
|
Towards Point-of-Care Diagnostic and Staging Tools for Human African Trypanosomiaisis. J Trop Med 2012; 2012:340538. [PMID: 22545057 PMCID: PMC3321554 DOI: 10.1155/2012/340538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
Human African trypanosomiasis is a debilitating disease prevalent in rural sub-Saharan Africa. Control of this disease almost exclusively relies on chemotherapy that should be driven by accurate diagnosis, given the unacceptable toxicity of the few available drugs. Unfortunately, the available diagnostics are characterised by low sensitivities due to the inherent low parasitaemia in natural infections. Demonstration of the trypanosomes in body fluids, which is a prerequisite before treatment, often follows complex algorithms. In this paper, we review the available diagnostics and explore recent advances towards development of novel point-of-care diagnostic tests.
Collapse
|
33
|
Srivastava RM, Srivastava S, Singh M, Bajpai VK, Ghosh JK. Consequences of alteration in leucine zipper sequence of melittin in its neutralization of lipopolysaccharide-induced proinflammatory response in macrophage cells and interaction with lipopolysaccharide. J Biol Chem 2011; 287:1980-95. [PMID: 22128186 DOI: 10.1074/jbc.m111.302893] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bee venom antimicrobial peptide, melittin, besides showing versatile activity against microorganisms also neutralizes lipopolysaccharide (LPS)-induced proinflammatory responses in macrophage cells. However, how the amino acid sequence of melittin contributes in its anti-inflammatory properties is mostly unknown. To determine the importance of the leucine zipper sequence of melittin in its neutralization of LPS-induced inflammatory responses in macrophages and interaction with LPS, anti-inflammatory properties of melittin and its three analogues and their interactions with LPS were studied in detail. Two of these analogues, namely melittin Mut-1 (MM-1) and melittin Mut-2 (MM-2), possess leucine to alanine substitutions in the single and double heptadic leucine residue(s) of melittin, respectively, whereas the third analogue is a scrambled peptide (Mel-SCR) that contains the amino acid composition of melittin with minor rearrangement in its leucine zipper sequence. Although MM-1 partly inhibited the production of proinflammatory cytokines in RAW 264.7 and rat primary macrophage cells in the presence of LPS, MM-2 and Mel-SCR were negligibly active. A progressive decrease in interaction of melittin with LPS, aggregation in LPS, and dissociation of LPS aggregates with alteration in the leucine zipper sequence of melittin was observed. Furthermore, with alteration in the leucine zipper sequence of melittin, these analogues failed to exhibit cellular responses associated with neutralization of LPS-induced inflammatory responses in macrophage cells by melittin. The data indicated a probable important role of the leucine zipper sequence of melittin in neutralizing LPS-induced proinflammatory responses in macrophage cells as well as in its interaction with LPS.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Molecular and Structural Biology Division, Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Council of Scientific and Industrial Research, Chattar Manzil Palace, P. O. Box 173, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
34
|
Abstract
Human African trypanosomiasis (HAT), or sleeping sickness, is a vector-borne disease that flourishes in impoverished, rural parts of sub-Saharan Africa. It is caused by infection with the protozoan parasite Trypanosoma brucei and is transmitted by tsetse flies of the genus Glossina. The majority of cases are caused by T. b. gambiense, which gives rise to the chronic, anthroponotic endemic disease in Western and Central Africa. Infection with T. b. rhodesiense leads to the acute, zoonotic form of Eastern and Southern Africa. The parasites live and multiply extracellularly in the blood and tissue fluids of their human host. They have elaborated a variety of strategies for invading hosts, to escape the immune system and to take advantage of host growth factors. HAT is a challenging and deadly disease owing to its complex epidemiology and clinical presentation and, if left untreated, can result in high death rates. As one of the most neglected tropical diseases, HAT is characterized by the limited availability of safe and cost-effective control tools. No vaccine against HAT is available, and the toxicity of existing old and cumbersome drugs precludes the adoption of control strategies based on preventive chemotherapy. As a result, the keystones of interventions against sleeping sickness are active and passive case-finding for early detection of cases followed by treatment, vector control and animal reservoir management. New methods to diagnose and treat patients and to control transmission by the tsetse fly are needed to achieve the goal of global elimination of the disease.
Collapse
Affiliation(s)
- D Malvy
- Travel Clinics and Division of Tropical Medicine and Imported Diseases, Department of Internal Medicine and Tropical Diseases, University Hospital Centre, Bordeaux, France.
| | | |
Collapse
|
35
|
Mitochondria and Trypanosomatids: Targets and Drugs. Pharm Res 2011; 28:2758-70. [DOI: 10.1007/s11095-011-0586-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/07/2011] [Indexed: 01/20/2023]
|
36
|
Coley AF, Dodson HC, Morris MT, Morris JC. Glycolysis in the african trypanosome: targeting enzymes and their subcellular compartments for therapeutic development. Mol Biol Int 2011; 2011:123702. [PMID: 22091393 PMCID: PMC3195984 DOI: 10.4061/2011/123702] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/16/2011] [Indexed: 12/16/2022] Open
Abstract
Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validated as therapeutic targets experimentally. These include enzymes directly involved in glucose metabolism (e.g., the trypanosome hexokinases), as well as cellular components required for development and maintenance of the essential subcellular compartments that house the major part of the pathway, the glycosomes.
Collapse
Affiliation(s)
- April F Coley
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
37
|
Chongtham N, Bisht MS, Haorongbam S. Nutritional Properties of Bamboo Shoots: Potential and Prospects for Utilization as a Health Food. Compr Rev Food Sci Food Saf 2011. [DOI: 10.1111/j.1541-4337.2011.00147.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 2011; 6:e14666. [PMID: 21346801 PMCID: PMC3035610 DOI: 10.1371/journal.pone.0014666] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/13/2011] [Indexed: 01/19/2023] Open
Abstract
Background Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects more than 12 million people worldwide. Quercetin has generated considerable interest as a pharmaceutical compound with a wide range of therapeutic activities. One such activity is exhibited against the bloodstream parasite Trypanosoma brucei and amastigotes of Leishmania donovani. However, the mechanism of protozoan action of quercetin has not been studied. Methodology/Principal Findings In the present study, we report here the mechanism for the antileishmanial activity of quercetin against Leishmania amazonensis promastigotes. Quercetin inhibited L. amazonensis promastigote growth in a dose- and time- dependent manner beginning at 48 hours of treatment and with maximum growth inhibition observed at 96 hours. The IC50 for quercetin at 48 hours was 31.4 µM. Quercetin increased ROS generation in a dose-dependent manner after 48 hours of treatment. The antioxidant GSH and NAC each significantly reduced quercetin-induced cell death. In addition, quercetin caused mitochondrial dysfunction due to collapse of mitochondrial membrane potential. Conclusions/Significance The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. Quercetin has been described as a pro-oxidant, generating ROS which are responsible for cell death in some cancer cells. Mitochondrial membrane potential loss can be brought about by ROS added directly in vitro or induced by chemical agents. Taken together, our results demonstrate that quercetin eventually exerts its antileishmanial effect on L. amazonensis promastigotes due to the generation of ROS and disrupted parasite mitochondrial function.
Collapse
|
39
|
Geng CH, Lin M, Wang WY, Ye JN. Determination of active ingredients in hawthorn and hawthorn piece by capillary electrophoresis with electrochemical detection. JOURNAL OF ANALYTICAL CHEMISTRY 2011. [DOI: 10.1134/s1061934808010140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Lüder CG, Campos-Salinas J, Gonzalez-Rey E, van Zandbergen G. Impact of protozoan cell death on parasite-host interactions and pathogenesis. Parasit Vectors 2010; 3:116. [PMID: 21126352 PMCID: PMC3003647 DOI: 10.1186/1756-3305-3-116] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/02/2010] [Indexed: 12/18/2022] Open
Abstract
PCD in protozoan parasites has emerged as a fascinating field of parasite biology. This not only relates to the underlying mechanisms and their evolutionary implications but also to the impact on the parasite-host interactions within mammalian hosts and arthropod vectors. During recent years, common functions of apoptosis and autophagy in protozoa and during parasitic infections have emerged. Here, we review how distinct cell death pathways in Trypanosoma, Leishmania, Plasmodium or Toxoplasma may contribute to regulation of parasite cell densities in vectors and mammalian hosts, to differentiation of parasites, to stress responses, and to modulation of the host immunity. The examples provided indicate crucial roles of PCD in parasite biology. The existence of PCD pathways in these organisms and the identification as being critical for parasite biology and parasite-host interactions could serve as a basis for developing new anti-parasitic drugs that take advantage of these pathways.
Collapse
Affiliation(s)
- Carsten Gk Lüder
- Institute for Medical Microbiology, Georg-August-University, Kreuzbergring 57, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
41
|
Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 2010; 3:107. [PMID: 21083891 PMCID: PMC3136144 DOI: 10.1186/1756-3305-3-107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
Collapse
Affiliation(s)
- Despina Smirlis
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Bas, Sofias Ave,, 11521 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
42
|
Dodson HC, Lyda TA, Chambers JW, Morris MT, Christensen KA, Morris JC. Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. Exp Parasitol 2010; 127:423-8. [PMID: 20971104 DOI: 10.1016/j.exppara.2010.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/22/2010] [Accepted: 10/14/2010] [Indexed: 12/01/2022]
Abstract
Hexokinases from the African trypanosome, Trypanosoma brucei, are attractive targets for the development of anti-parasitic drugs, in part because the parasite utilizes glycolysis exclusively for ATP production during the mammalian infection. Here, we have demonstrated that the bioflavanoid quercetin (QCN), a known trypanocide, is a mixed inhibitor of Trypanosoma brucei hexokinase 1 (TbHK1) (IC(50) = 4.1 ± 0.8μM). Spectroscopic analysis of QCN binding to TbHK1, taking advantage of the intrinsically fluorescent single tryptophan (Trp177) in TbHK1, revealed that QCN quenches emission of Trp177, which is located near the hinge region of the enzyme. ATP similarly quenched Trp177 emission, while glucose had no impact on fluorescence. Supporting the possibility that QCN toxicity is a consequence of inhibition of the essential hexokinase, in live parasites QCN fluorescence localizes to glycosomes, the subcellular home of TbHK1. Additionally, RNAi-mediated silencing of TbHK1 expression expedited QCN induced death, while over-expressing TbHK1 protected trypanosomes from the compound. In summary, these observations support the suggestion that QCN toxicity is in part attributable to inhibition of the essential TbHK1.
Collapse
Affiliation(s)
- Heidi C Dodson
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
43
|
Jiménez-Ruiz A, Alzate JF, Macleod ET, Lüder CGK, Fasel N, Hurd H. Apoptotic markers in protozoan parasites. Parasit Vectors 2010; 3:104. [PMID: 21062457 PMCID: PMC2993696 DOI: 10.1186/1756-3305-3-104] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022] Open
Abstract
The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Collapse
Affiliation(s)
- Antonio Jiménez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Worthen C, Jensen BC, Parsons M. Diverse effects on mitochondrial and nuclear functions elicited by drugs and genetic knockdowns in bloodstream stage Trypanosoma brucei. PLoS Negl Trop Dis 2010; 4:e678. [PMID: 20454560 PMCID: PMC2864271 DOI: 10.1371/journal.pntd.0000678] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/23/2010] [Indexed: 01/01/2023] Open
Abstract
Background The options for treating the fatal disease human African trypanosomiasis are limited to a few drugs that are toxic or facing increasing resistance. New drugs that kill the causative agents, subspecies of Trypanosoma brucei, are therefore urgently needed. Little is known about the cellular mechanisms that lead to death of the pathogenic bloodstream stage. Methodology/Principal Findings We therefore conducted the first side by side comparison of the cellular effects of multiple death inducers that target different systems in bloodstream form parasites, including six drugs (pentamidine, prostaglandin D2, quercetin, etoposide, camptothecin, and a tetrahydroquinoline) and six RNAi knockdowns that target distinct cellular functions. All compounds tested were static at low concentrations and killed at high concentrations. Dead parasites were rapidly quantified by forward and side scatter during flow cytometry, as confirmed by ethidium homodimer and esterase staining, making these assays convenient for quantitating parasite death. The various treatments yielded different combinations of defects in mitochondrial potential, reactive oxygen species, cell cycle, and genome segregation. No evidence was seen for phosphatidylserine exposure, a marker of apoptosis. Reduction in ATP levels lagged behind decreases in live cell number. Even when the impact on growth was similar at 24 hours, drug-treated cells showed dramatic differences in their ability to further proliferate, demonstrating differences in the reversibility of effects induced by the diverse compounds. Conclusions/Significance Parasites showed different phenotypes depending on the treatment, but none of them were clear predictors of whether apparently live cells could go on to proliferate after drugs were removed. We therefore suggest that clonal proliferation assays may be a useful step in selecting anti-trypanosomal compounds for further development. Elucidating the genetic or biochemical events initiated by the compounds with the most profound effects on subsequent proliferation may identify new means to activate death pathways. The parasite Trypanosoma brucei causes human African trypanosomiasis, which is fatal unless treated. Currently used drugs are toxic, difficult to administer, and often are no longer effective due to drug resistance. The search for new drugs is long and expensive, and determining which compounds are worth pursuing is a key challenge in that process. In this study we sought to determine whether different compounds elicited different responses in the mammalian-infective stage of the parasite. We also examined whether genetic knockdown of parasite molecules led to similar responses. Our results show that, depending on the treatment, the replication of the parasite genomes, proper division of the cell, and mitochondrial function can be affected. Surprisingly, these different responses were not able to predict which compounds affected the long term proliferative potential of T. brucei. We found that some of the compounds had irreversible effects on the parasites within one day, so that even cells that appeared healthy could not proliferate. We suggest that determining which compounds set the parasites on a one-way journey to death may provide a means of identifying those that could lead to drugs with high efficacy.
Collapse
Affiliation(s)
- Christal Worthen
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Bryan C. Jensen
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Marilyn Parsons
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
45
|
Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:341-53. [DOI: 10.1016/j.cbpb.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/19/2010] [Accepted: 01/23/2010] [Indexed: 11/18/2022]
|
46
|
Effect and mechanism of AR-6 in experimental rheumatoid arthritis. Clin Exp Med 2009; 10:113-21. [DOI: 10.1007/s10238-009-0075-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
|
47
|
Cevallos-Cevallos JM, Rouseff R, Reyes-De-Corcuera JI. Untargeted metabolite analysis of healthy and Huanglongbing-infected orange leaves by CE-DAD. Electrophoresis 2009; 30:1240-7. [DOI: 10.1002/elps.200800594] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Ngantchou I, Nkwengoua E, Nganso Y, Nyasse B, Denier C, Hannaert V, Schneider B. Antitrypanosomal activity of polycarpol from Piptostigma preussi (Annonaceae). Fitoterapia 2009; 80:188-91. [DOI: 10.1016/j.fitote.2009.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 11/15/2022]
|
49
|
Pietsch K, Saul N, Menzel R, Stürzenbaum SR, Steinberg CEW. Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 2008; 10:565-78. [PMID: 19043800 DOI: 10.1007/s10522-008-9199-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 11/11/2008] [Indexed: 01/05/2023]
Abstract
The nematode Caenorhabditis elegans responds to flavonoid-rich diets with improved health and longevity. The precise mechanism(s) responsible for this remains to be identified, but is believed to be linked to the highly antioxidative properties of flavonoids. This study provides a dissection of lifespan modulation by the flavonoid quercetin. In detail, quercetin was shown not to act as a simple antimicrobial agent or exclusively via radical scavenging capacities. Likewise, lifespan extension had no effect on reproduction and body length. Furthermore, neither a caloric restriction mimetic nor a sirtuin (sir-2.1) dependence was identified as a likely mode of action. However, four genes were pinpointed to be required for the quercetin derived lifespan extension, namely age-1, daf-2, unc-43 and sek-1. The latter two have, to date, not been linked to quercetin-mediated lifespan extension.
Collapse
Affiliation(s)
- Kerstin Pietsch
- Department of Biology, Humboldt-Universität zu Berlin, Germany.
| | | | | | | | | |
Collapse
|
50
|
Yu ES, Min HJ, An SY, Won HY, Hong JH, Hwang ES. Regulatory mechanisms of IL-2 and IFNγ suppression by quercetin in T helper cells. Biochem Pharmacol 2008; 76:70-8. [DOI: 10.1016/j.bcp.2008.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 12/29/2022]
|