1
|
Foka FET, Mufhandu HT. Current ARTs, Virologic Failure, and Implications for AIDS Management: A Systematic Review. Viruses 2023; 15:1732. [PMID: 37632074 PMCID: PMC10458198 DOI: 10.3390/v15081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapies (ARTs) have revolutionized the management of human immunodeficiency virus (HIV) infection, significantly improved patient outcomes, and reduced the mortality rate and incidence of acquired immunodeficiency syndrome (AIDS). However, despite the remarkable efficacy of ART, virologic failure remains a challenge in the long-term management of HIV-infected individuals. Virologic failure refers to the persistent detectable viral load in patients receiving ART, indicating an incomplete suppression of HIV replication. It can occur due to various factors, including poor medication adherence, drug resistance, suboptimal drug concentrations, drug interactions, and viral factors such as the emergence of drug-resistant strains. In recent years, extensive efforts have been made to understand and address virologic failure in order to optimize treatment outcomes. Strategies to prevent and manage virologic failure include improving treatment adherence through patient education, counselling, and supportive interventions. In addition, the regular monitoring of viral load and resistance testing enables the early detection of treatment failure and facilitates timely adjustments in ART regimens. Thus, the development of novel antiretroviral agents with improved potency, tolerability, and resistance profiles offers new options for patients experiencing virologic failure. However, new treatment options would also face virologic failure if not managed appropriately. A solution to virologic failure requires a comprehensive approach that combines individualized patient care, robust monitoring, and access to a range of antiretroviral drugs.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| |
Collapse
|
2
|
HIV and Drug-Resistant Subtypes. Microorganisms 2023; 11:microorganisms11010221. [PMID: 36677513 PMCID: PMC9861097 DOI: 10.3390/microorganisms11010221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a human viral infectious disease caused by the positive-sense single-stranded (ss) RNA Human Immunodeficiency Virus (HIV) (Retroviridae family, Ortervirales order). HIV-1 can be distinguished into various worldwide spread groups and subtypes. HIV-2 also causes human immunodeficiency, which develops slowly and tends to be less aggressive. HIV-2 only partially homologates to HIV-1 despite the similar derivation. Antiretroviral therapy (ART) is the treatment approved to control HIV infection, based on multiple antiretroviral drugs that belong to different classes: (i) NNRTIs, (ii) NRTIs, (iii) PIs, (iv) INSTIs, and (v) entry inhibitors. These drugs, acting on different stages of the HIV life cycle, decrease the patient's total burden of HIV, maintain the function of the immune system, and prevent opportunistic infections. The appearance of several strains resistant to these drugs, however, represents a problem today that needs to be addressed as best as we can. New outbreaks of strains show a widespread geographic distribution and a highly variable mortality rate, even affecting treated patients significantly. Therefore, novel treatment approaches should be explored. The present review discusses updated information on HIV-1- and HIV-2-resistant strains, including details on different mutations responsible for drug resistance.
Collapse
|
3
|
Ferrari D, Spagnuolo V, Manca M, Bigoloni A, Muccini C, Banfi G, Locatelli M, Castagna A. Increased dose of dolutegravir as a potential rescue therapy in multi-experienced patients. Antivir Ther 2020; 24:69-72. [PMID: 30353884 DOI: 10.3851/imp3275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The pilot Phase IIb VIKING study suggested that dolutegravir (DTG), an HIV integrase inhibitor (INI), is efficacious in INI-resistant patients at the 50 mg twice-daily dose. However, DTG response was most reduced in subjects carrying resistance-associated mutations at position G140 and Q148. These mutations can cause a 10-20-fold reduced susceptibility to DTG as well as a 96% lower odds of achieving HIV-1 RNA <50 copies/ml at week 24 if compared with those with no mutations at these positions. METHODS Five multi-experienced patients harbouring the mutation complex G140-Q148, resistant to at least three drug classes, and previously exposed to DTG 50 mg twice daily, were treated with an increased dose of DTG (100 mg twice daily) in association with an optimized background regimen (OBR) based on their individual viral genotyping assays. The blood concentration of DTG was measured in order to determine whether a solubility issue is related with this high dosage. RESULTS Four out of five patients attained an HIV-1 RNA <50 copies/ml at week 48 and no relevant adverse events were detected. The measured DTG blood concentration was that expected for the administered dosage, ruling out any solubility concerns. CONCLUSIONS For the first time 100 mg twice daily of DTG was administered to five multi-experienced patients harbouring the mutation complex G140-Q148. Although a small number of patients were tested, the results show a potential for a high-dose regimen of DTG as a rescue therapy in patients harbouring integrase strand transfer inhibitor resistant viruses.
Collapse
Affiliation(s)
- Davide Ferrari
- SCVSA Department, University of Parma, Parma, Italy.,Laboratory Medicine Service, San Raffaele Hospital, Milan, Italy
| | - Vincenzo Spagnuolo
- Clinic of Infectious Diseases, San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Manca
- Laboratory Medicine Service, San Raffaele Hospital, Milan, Italy
| | - Alba Bigoloni
- Clinic of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | - Camilla Muccini
- Clinic of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | - Giuseppe Banfi
- Vita-Salute San Raffaele University, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Antonella Castagna
- Clinic of Infectious Diseases, San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Reduced Susceptibility to VIRIP-Based HIV-1 Entry Inhibitors Has a High Genetic Barrier and Severe Fitness Costs. J Virol 2018; 92:JVI.00733-18. [PMID: 29925662 DOI: 10.1128/jvi.00733-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023] Open
Abstract
VIRIP has been identified as natural HIV-1 inhibitor targeting the gp41 fusion peptide. An optimized analogue (VIR-576) was effective in a phase I/II clinical trial and initial studies showed that HIV-1 resistance to VIRIP-based inhibitors has a high genetic barrier. Partially resistant CXCR4 (X4)-tropic HIV-1 NL4-3 variants could be obtained, however, after more than 15 months of passaging in MT-4 cells in the presence of another derivative (VIR-353). Sequence analyses identified the accumulation of seven mutations across the HIV-1 envelope glycoprotein but outside the gp41 fusion peptide. The authors suggested that the three initial alterations conferred resistance, while subsequent changes restored viral fitness. Here, we introduced these mutations individually and in combination into X4- and CCR5 (R5)-tropic HIV-1 constructs and determined their impact on VIR-353 and VIR-576 susceptibility, viral infectivity, replication fitness, and fusogenicity. We found that essentially all seven mutations contribute to reduced susceptibility to VIRIP-based inhibitors. HIV-1 constructs containing ≥4 changes were substantially more resistant to both VIRIP-based inhibitors and the VRC34.01 antibody targeting the fusion peptide. However, they were also much less infectious and fusogenic than those harboring only the three initial alterations. Furthermore, the additional changes attenuated rather than rescued HIV-1 replication in primary human cells. Thus, the genetic barrier to HIV-1 resistance against VIRIP-based inhibitors is higher than previously suggested, and mutations reducing viral susceptibility come at a severe fitness cost that was not rescued during long-term cell culture passage.IMPORTANCE Many viral pathogens are critically dependent on fusion peptides (FPs) that are inserted into the cellular membrane for infection. Initially, it was thought that FPs cannot be targeted for therapy because they are hardly accessible. However, an optimized derivative (VIR-576) of an endogenous fragment of α1-antitrypsin, named VIRIP, targeting the gp41 FP reduced viral loads in HIV-1-infected individuals. Characterization of HIV-1 variants selected during long-term cell-culture passage in the presence of a VIRIP derivative suggested that just three mutations in the HIV-1 Env protein might be sufficient for VIRIP resistance and that four subsequent changes restored viral fitness. Here, we show that all seven mutations contribute to reduced viral susceptibility to VIRIP-based inhibitors and demonstrate that the additional changes strongly impair rather than rescue HIV-1 infectivity, fusogenicity, and replication fitness. High genetic barrier to resistance and severe fitness cost support further clinical development of this class of antiviral agents.
Collapse
|
5
|
Smoleń-Dzirba J, Rosińska M, Kruszyński P, Bratosiewicz-Wąsik J, Wojtyczka R, Janiec J, Szetela B, Beniowski M, Bociąga-Jasik M, Jabłonowska E, Wąsik TJ, The Cascade Collaboration In EuroCoord A. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland. Med Sci Monit 2017; 23:682-694. [PMID: 28167814 PMCID: PMC5310230 DOI: 10.12659/msm.898656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. Material/Methods Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. Results Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). Conclusions Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa.
Collapse
Affiliation(s)
- Joanna Smoleń-Dzirba
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Magdalena Rosińska
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Piotr Kruszyński
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Jolanta Bratosiewicz-Wąsik
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Robert Wojtyczka
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Janusz Janiec
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Hepatology, and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Marek Beniowski
- Outpatient Clinic for AIDS Diagnostics and Therapy, Specialistic Hospital in Chorzów, Chorzów, Poland
| | - Monika Bociąga-Jasik
- Department of Infectious Diseases, Jagiellonian University Medical College, Cracow, Poland
| | - Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Łódź, Łódź, Poland
| | - Tomasz J Wąsik
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
6
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
De Feo CJ, Wang W, Hsieh ML, Zhuang M, Vassell R, Weiss CD. Resistance to N-peptide fusion inhibitors correlates with thermodynamic stability of the gp41 six-helix bundle but not HIV entry kinetics. Retrovirology 2014; 11:86. [PMID: 25274545 PMCID: PMC4190581 DOI: 10.1186/s12977-014-0086-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) undergoes conformational changes that mediate fusion between virus and host cell membranes. These changes involve transient exposure of two heptad-repeat domains (HR1 and HR2) in the gp41 subunit and their subsequent self-assembly into a six-helix bundle (6HB) that drives fusion. Env residues and features that influence conformational changes and the rate of virus entry, however, are poorly understood. Peptides corresponding to HR1 and HR2 (N and C peptides, respectively) interrupt formation of the 6HB by binding to the heptad repeats of a fusion-intermediate conformation of Env, making the peptides valuable probes for studying Env conformational changes. RESULTS Using a panel of Envs that are resistant to N-peptide fusion inhibitors, we investigated relationships between virus entry kinetics, 6HB stability, and resistance to peptide fusion inhibitors to elucidate how HR1 and HR2 mutations affect Env conformational changes and virus entry. We found that gp41 resistance mutations increased 6HB stability without increasing entry kinetics. Similarly, we show that increased 6HB thermodynamic stability does not correlate with increased entry kinetics. Thus, N-peptide fusion inhibitors do not necessarily select for Envs with faster entry kinetics, nor does faster entry kinetics predict decreased potency of peptide fusion inhibitors. CONCLUSIONS These findings provide new insights into the relationship between 6HB stability and viral entry kinetics and mechanisms of resistance to inhibitors targeting fusion-intermediate conformations of Env. These studies further highlight how residues in HR1 and HR2 can influence virus entry by altering stability of the 6HB and possibly other conformations of Env that affect rate-limiting steps in HIV entry.
Collapse
Affiliation(s)
- Christopher J De Feo
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Meng-Lun Hsieh
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Michigan State University, Department of Biochemistry and Molecular Biology, Lansing, MI, 48824, USA.
| | - Min Zhuang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Russell Vassell
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
8
|
Sargeant DP, Hedden MW, Deverasetty S, Strong CL, Alaniz IJ, Bartlett AN, Brandon NR, Brooks SB, Brown FA, Bufi F, Chakarova M, David RP, Dobritch KM, Guerra HP, Levit KS, Mathew KR, Matti R, Maza DQ, Mistry S, Novakovic N, Pomerantz A, Rafalski TF, Rathnayake V, Rezapour N, Ross CA, Schooler SG, Songao S, Tuggle SL, Wing HJ, Yousif S, Schiller MR. The Geogenomic Mutational Atlas of Pathogens (GoMAP) web system. PLoS One 2014; 9:e92877. [PMID: 24675726 PMCID: PMC3968042 DOI: 10.1371/journal.pone.0092877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
We present a new approach for pathogen surveillance we call Geogenomics. Geogenomics examines the geographic distribution of the genomes of pathogens, with a particular emphasis on those mutations that give rise to drug resistance. We engineered a new web system called Geogenomic Mutational Atlas of Pathogens (GoMAP) that enables investigation of the global distribution of individual drug resistance mutations. As a test case we examined mutations associated with HIV resistance to FDA-approved antiretroviral drugs. GoMAP-HIV makes use of existing public drug resistance and HIV protein sequence data to examine the distribution of 872 drug resistance mutations in ∼ 502,000 sequences for many countries in the world. We also implemented a broadened classification scheme for HIV drug resistance mutations. Several patterns for geographic distributions of resistance mutations were identified by visual mining using this web tool. GoMAP-HIV is an open access web application available at http://www.bio-toolkit.com/GoMap/project/
Collapse
Affiliation(s)
- David P. Sargeant
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Michael W. Hedden
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Sandeep Deverasetty
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Christy L. Strong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Izua J. Alaniz
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Alexandria N. Bartlett
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Nicholas R. Brandon
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Steven B. Brooks
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Frederick A. Brown
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Flaviona Bufi
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Monika Chakarova
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Roxanne P. David
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Karlyn M. Dobritch
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Horacio P. Guerra
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kelvy S. Levit
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kiran R. Mathew
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Ray Matti
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Dorothea Q. Maza
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Sabyasachy Mistry
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Nemanja Novakovic
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Austin Pomerantz
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Timothy F. Rafalski
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Viraj Rathnayake
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Noura Rezapour
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Christian A. Ross
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Steve G. Schooler
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Sarah Songao
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Sean L. Tuggle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Helen J. Wing
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Sandy Yousif
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Martin R. Schiller
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| |
Collapse
|
9
|
Reis MNDG, de Alcântara KC, Cardoso LPV, Stefani MMA. Polymorphisms in the HIV-1 gp41 env gene, natural resistance to enfuvirtide (T-20) and pol resistance among pregnant Brazilian women. J Med Virol 2013; 86:8-17. [PMID: 24037943 DOI: 10.1002/jmv.23738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2013] [Indexed: 12/22/2022]
Abstract
The selective pressure of antiretroviral drugs (ARVs) targeting HIV-1 pol can promote drug resistance mutations in other genomic regions, such as env. Drug resistance among women should be monitored to avoid horizontal and mother-to-child transmission. To describe natural resistance to T-20 (enfuvirtide), gp41 env polymorphisms, mutations in pol and HIV-1 subtypes, 124 pregnant women were recruited. For 98 patients, the gp41 env, protease (PR) and reverse transcriptase (RT) fragments were sequenced. The patients were ARV naïve (n = 30), taking mother-to-child transmission prophylaxis (n = 50), or being treated with highly active ARV therapy/HAART (n = 18). The Stanford and IAS/USA databases and other sources were used to analyze PR/RT, gp41 env resistance mutations. The HIV-1 genetic diversity was analyzed by REGA/phylogenetic analyses. The patients' median age was 25 years (range, 16-42), 18.4% had AIDS. The frequency of natural resistance to T-20 (N42D, L44M, and R46M-low-impact mutations) was 6.1% (6/98); 20.4% (20/98) had compensatory mutations in HR2. The prevalence of transmitted drug resistance in the pol was 13.3% (4/30), and the prevalence of secondary drug resistance was 33.3% (6/18). Two patients were infected with multidrug resistant/MDR viruses. The analysis of HIV-1 subtypes (PR/RT/gp41) revealed that 61.2% (60/98) were subtype B, 12.2% (12/98) were subtype C, 4.1% (4/98) were subtype F1, and 22.4% (22/98) were possible recombinants (BF1 = 20.4%; BC = 2%). Natural resistance to T-20 was not associated with pol resistance or previous ARV use. The high rate of secondary resistance, including MDR, indicates that the number of women that may need T-20 salvage therapy may be higher than anticipated.
Collapse
|
10
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
11
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Antiviral Res 2013; 98:93-120. [PMID: 23403210 DOI: 10.1016/j.antiviral.2013.01.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 12/15/2022]
Abstract
The introduction of potent combination therapies in the mid-90s had a tremendous effect on AIDS mortality. However, drug resistance has been a major factor contributing to antiretroviral therapy failure. Currently, there are 26 drugs approved for treating human immunodeficiency virus (HIV) infections, although some of them are no longer prescribed. Most of the available antiretroviral drugs target HIV genome replication (i.e. reverse transcriptase inhibitors) and viral maturation (i.e. viral protease inhibitors). Other drugs in clinical use include a viral coreceptor antagonist (maraviroc), a fusion inhibitor (enfuvirtide) and two viral integrase inhibitors (raltegravir and elvitegravir). Elvitegravir and the nonnucleoside reverse transcriptase inhibitor rilpivirine have been the most recent additions to the antiretroviral drug armamentarium. An overview of the molecular mechanisms involved in antiretroviral drug resistance and the role of drug resistance-associated mutations was previously presented (Menéndez-Arias, L., 2010. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 85, 210-231). This article provides now an updated review that covers currently approved drugs, new experimental agents (e.g. neutralizing antibodies) and selected drugs in preclinical or early clinical development (e.g. experimental integrase inhibitors). Special attention is dedicated to recent research on resistance to reverse transcriptase and integrase inhibitors. In addition, recently discovered interactions between HIV and host proteins and novel strategies to block HIV assembly or viral entry emerge as promising alternatives for the development of effective antiretroviral treatments.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa"-Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
12
|
Abstract
The efficacy of an antiretroviral (ARV) treatment regimen depends on the activity of the regimen's individual ARV drugs and the number of HIV-1 mutations required for the development of resistance to each ARV - the genetic barrier to resistance. ARV resistance impairs the response to therapy in patients with transmitted resistance, unsuccessful initial ARV therapy and multiple virological failures. Genotypic resistance testing is used to identify transmitted drug resistance, provide insight into the reasons for virological failure in treated patients, and help guide second-line and salvage therapies. In patients with transmitted drug resistance, the virological response to a regimen selected on the basis of standard genotypic testing approaches the responses observed in patients with wild-type viruses. However, because such patients are at a higher risk of harbouring minority drug-resistant variants, initial ARV therapy in this population should contain a boosted protease inhibitor (PI) - the drug class with the highest genetic barrier to resistance. In patients receiving an initial ARV regimen with a high genetic barrier to resistance, the most common reasons for virological failure are nonadherence and, potentially, pharmacokinetic factors or minority transmitted drug-resistant variants. Among patients in whom first-line ARVs have failed, the patterns of drug-resistance mutations and cross-resistance are often predictable. However, the extent of drug resistance correlates with the duration of uncontrolled virological replication. Second-line therapy should include the continued use of a dual nucleoside/nucleotide reverse transcriptase inhibitor (NRTI)-containing backbone, together with a change in the non-NRTI component, most often to an ARV belonging to a new drug class. The number of available fully active ARVs is often diminished with each successive treatment failure. Therefore, a salvage regimen is likely to be more complicated in that it may require multiple ARVs with partial residual activity and compromised genetic barriers of resistance to attain complete virological suppression. A thorough examination of the patient's ARV history and prior resistance tests should be performed because genotypic and/or phenotypic susceptibility testing is often not sufficient to identify drug-resistant variants that emerged during past therapies and may still pose a threat to a new regimen. Phenotypic testing is also often helpful in this subset of patients. ARVs used for salvage therapy can be placed into the following hierarchy: (i) ARVs belonging to a previously unused drug class; (ii) ARVs belonging to a previously used drug class that maintain significant residual antiviral activity; (iii) NRTI combinations, as these often appear to retain in vivo virological activity, even in the presence of reduced in vitro NRTI susceptibility; and rarely (iv) ARVs associated with previous virological failure and drug resistance that appear to have possibly regained their activity as a result of viral reversion to wild type. Understanding the basic principles of HIV drug resistance is helpful in guiding individual clinical decisions and the development of ARV treatment guidelines.
Collapse
Affiliation(s)
- Michele W Tang
- Stanford University, Division of Infectious Diseases, Stanford, CA 94305-5107, USA.
| | | |
Collapse
|
13
|
Naturally occurring resistance mutations to HIV-1 entry inhibitors in subtypes B, C, and CRF31_BC. J Clin Virol 2012; 54:6-10. [PMID: 22336085 DOI: 10.1016/j.jcv.2012.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/30/2011] [Accepted: 01/09/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Entry inhibitors are a class of antiretroviral (ARV) drugs that prevent HIV replication by blocking viral entry into the host cell. The investigation of naturally occurring mutations associated with entry inhibitors across subtypes is required because genetic differences between HIV-1 variants may influence the emergence of drug resistance. Despite the importance of subtype C, which predominates globally, the majority of studies include only subtype B strains. OBJECTIVES To investigate the presence of natural resistance mutations to entry inhibitors in HIV-1 subtypes B, C, and CRF31_BC strains. STUDY DESIGN Eighty samples were collected from antiretroviral-naïve patients. The gp41 gene from 67 patients and the gp120 gene from 65 patients were partially sequenced. Resistance mutations to entry inhibitors Enfuvirtide, Maraviroc, and Vicriviroc were screened. RESULTS ENF resistance-associated mutations of HR1 and HR2 on gp41 were not associated with any subtype. However, the major polymorphisms detected in HR1: N42S, L54M, and A67T were most prevalent in subtype C (p<0.001). Mutations A316T and R315Q in gp120, which are related to MVC and VCV reduced susceptibility respectively, were predominant in subtype C (p<0.05). CONCLUSIONS This study shows that many more resistance-associated mutations to entry inhibitors in ARV-naïve patients occur in subtype C compared with subtype B strains. However, further studies will be necessary to elucidate if the differential genetic background of HIV subtypes can affect the efficacy of treatment with entry inhibitors.
Collapse
|
14
|
Is there a future for antiviral fusion inhibitors? Curr Opin Virol 2012; 2:50-9. [DOI: 10.1016/j.coviro.2012.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
|
15
|
Mutations of Gln64 in the HIV-1 gp41 N-terminal heptad repeat render viruses resistant to peptide HIV fusion inhibitors targeting the gp41 pocket. J Virol 2011; 86:589-93. [PMID: 22013063 DOI: 10.1128/jvi.05066-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To prove that the peptidic HIV-1 fusion inhibitors containing the pocket-binding domain (PBD) mainly target the hydrophobic pocket in the gp41 N-terminal heptad repeat (NHR), we constructed pseudoviruses by replacement of Q64 in the gp41 pocket region with Ala (Q64A) or Leu (Q64L). These viruses were highly resistant to C34 and CP32M containing the PBD, while they were susceptible to T20 (enfuvirtide) lacking the PBD but containing the GIV-motif-binding domain (GBD) and lipid-binding domain (LBD). They were also sensitive to C52L, which contains the PBD, GBD, and LBD. Those mutations may disrupt the hydrophilic interaction between Q64 in the NHR and N113 in the peptides containing the PBD. This report provides insights into the mechanisms of drug resistance, with implications for the design of novel HIV fusion and entry inhibitors.
Collapse
|
16
|
Genotypic analysis of the gp41 HR1 region from HIV-1 isolates from enfuvirtide-treated and untreated patients. J Acquir Immune Defic Syndr 2011; 57 Suppl 3:S197-201. [PMID: 21857318 DOI: 10.1097/qai.0b013e31821e9d29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the polymorphisms and resistance mutations in gp41 HR1 region of HIV-1. METHODS The study included 28 HIV-positive patients undergoing enfuvirtide (ENF) treatment or not from Porto Alegre, Rio Grande do Sul state, and Rio de Janeiro, Rio de Janeiro state, between 2006 and 2009. Resistance mutations and polymorphisms of the gp41 HR1 region were detected using the genomic DNA of 12 ENF-untreated patients and 16 patients in ENF treatment, encompassing subtypes B, C, and F1. Sample subtypes were determined by neighbor-joining phylogenetic analysis with a Kimura's two-parameter correction. RESULTS A high prevalence of polymorphisms unrelated to resistance was observed. Among ENF-untreated patients, 16% showed mutations related with resistance. Among patients in ENF treatment, 50% had resistance-related mutations. Overall, 17% of all isolates showed the N42S polymorphism related to ENF hypersusceptibility. The presence of ENF resistance mutations in the group of treated patients reduced viral load. The V38A substitution was the most frequent among treatment-experienced patients followed by the G36D/E, N42D, and V38M substitutions. CONCLUSIONS The V38A substitution in the gp41 HR region was the most common resistance mutation among ENF-treated patients and was associated with increased viral load.
Collapse
|
17
|
Bártolo I, Abecasis AB, Borrego P, Barroso H, McCutchan F, Gomes P, Camacho R, Taveira N. Origin and epidemiological history of HIV-1 CRF14_BG. PLoS One 2011; 6:e24130. [PMID: 21969855 PMCID: PMC3182163 DOI: 10.1371/journal.pone.0024130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/05/2011] [Indexed: 01/03/2023] Open
Abstract
Background CRF14_BG isolates, originally found in Spain, are characterized by CXCR4 tropism and rapid disease progression. This study aimed to identify the origin of CRF14_BG and reconstruct its epidemiological history based on new isolates from Portugal. Methodology/Principal Findings C2V3C3 env gene sequences were obtained from 62 samples collected in 1993–1998 from Portuguese HIV-1 patients. Full-length genomic sequences were obtained from three patients. Viral subtypes, diversity, divergence rate and positive selection were investigated by phylogenetic analysis. The molecular structure of the genomes was determined by bootscanning. A relaxed molecular clock model was used to date the origin of CRF14_BG. Geno2pheno was used to predict viral tropism. Subtype B was the most prevalent subtype (45 sequences; 73%) followed by CRF14_BG (8; 13%), G (4; 6%), F1 (2; 3%), C (2; 3%) and CRF02_AG (1; 2%). Three CRF14_BG sequences were derived from 1993 samples. Near full-length genomic sequences were strongly related to the CRF14_BG isolates from Spain. Genetic diversity of the Portuguese isolates was significantly higher than the Spanish isolates (0.044 vs 0.014, P<0.0001). The mean date of origin of the CRF14_BG cluster was estimated to be 1992 (range, 1989 and 1996) based on the subtype G genomic region and 1989 (range, 1984–1993) based on the subtype B genomic region. Most CRF14_BG strains (78.9%) were predicted to be CXCR4. Finally, up to five amino acids were under selective pressure in subtype B V3 loop whereas only one was found in the CRF14_BG cluster. Conclusions CRF14_BG emerged in Portugal in the early 1990 s soon after the beginning of the HIV-1 epidemics, spread to Spain in late 1990 s as a consequence of IVDUs migration and then to the rest of Europe. CXCR4 tropism is a general characteristic of this CRF that may have been selected for by escape from neutralizing antibody response.
Collapse
Affiliation(s)
- Inês Bártolo
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Caparica, Portugal
| | - Ana B. Abecasis
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Lisboa, Portugal
| | - Pedro Borrego
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Caparica, Portugal
| | - Helena Barroso
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Caparica, Portugal
| | - Francine McCutchan
- Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Perpétua Gomes
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Caparica, Portugal
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Lisboa, Portugal
- Laboratório de Biologia Molecular, Centro Hospitalar Lisboa Ocidental, Hospital Egas Moniz, Lisboa, Portugal
| | - Ricardo Camacho
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Lisboa, Portugal
- Laboratório de Biologia Molecular, Centro Hospitalar Lisboa Ocidental, Hospital Egas Moniz, Lisboa, Portugal
| | - Nuno Taveira
- Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Caparica, Portugal
- * E-mail:
| |
Collapse
|
18
|
Leung MYK, Cohen FS. Increasing hydrophobicity of residues in an anti-HIV-1 Env peptide synergistically improves potency. Biophys J 2011; 100:1960-8. [PMID: 21504732 DOI: 10.1016/j.bpj.2011.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 02/04/2023] Open
Abstract
T-20/Fuzeon/Enfuvirtide (ENF), a peptide inhibitor of HIV-1 infection, targets the grooves created by heptad repeat 2 (HR2) of Env's coiled-coil, but mutants resistant to ENF emerge. In this study, ENF-resistant mutants--V38A, N43D, N43D/S138A, Q40H/L45M--were combined with modified inhibitory peptides to identify what we believe to be novel ways to improve peptide efficacy. V38A did not substantially reduce infectivity, but was relatively resistant to inhibitory peptides. N43D was more resistant to inhibitory peptides than wild-type, but infectivity was reduced. The additional mutation S138A (N43D/S138A) increased infectivity and further reduced peptide inhibitory potency. It is concluded that S138A increased binding of HR2/ENF into grooves and that S138A compensated for electrostatic repulsion between N43D and HR2. The six-helix bundle structure indicated that E148A should increase hydrophobic interactions between the coiled-coil and peptide. Importantly, the modifications S138A and E148A in the same peptide retained potency against ENF-escape mutants. The double mutant's increase in potency was greater than the increases from the sum of S138A and E148A individually, showing that these two altered residues synergistically contributed to peptide binding. Isothermal titration calorimetry established that hydrophobic substitutions at positions S138 and E148 improved potency of inhibitory peptides against escape mutants by increasing enthalpic release of energy upon peptide binding.
Collapse
Affiliation(s)
- Michael Y K Leung
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
19
|
Baatz F, Nijhuis M, Lemaire M, Riedijk M, Wensing AMJ, Servais JY, van Ham PM, Hoepelman AIM, Koopmans PP, Sprenger HG, Devaux C, Schmit JC, Perez Bercoff D. Impact of the HIV-1 env genetic context outside HR1-HR2 on resistance to the fusion inhibitor enfuvirtide and viral infectivity in clinical isolates. PLoS One 2011; 6:e21535. [PMID: 21760896 PMCID: PMC3132734 DOI: 10.1371/journal.pone.0021535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/01/2011] [Indexed: 11/21/2022] Open
Abstract
Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which determinants remains elusive. To quantify the direct role of the env context in resistance to enfuvirtide and in viral infectivity, we compared enfuvirtide susceptibility and infectivity of recombinant viral pairs harboring the HR1–HR2 region or the full Env ectodomain of longitudinal env clones from 5 heavily treated patients failing enfuvirtide therapy. Prior to enfuvirtide treatment onset, no env carried known resistance mutations and full Env viruses were on average less susceptible than HR1–HR2 recombinants. All escape clones carried at least one of G36D, V38A, N42D and/or N43D/S in HR1, and accordingly, resistance increased 11- to 2800-fold relative to baseline. Resistance of full Env recombinant viruses was similar to resistance of their HR1–HR2 counterpart, indicating that HR1 and HR2 are the main contributors to resistance. Strictly X4 viruses were more resistant than strictly R5 viruses, while dual-tropic Envs featured similar resistance levels irrespective of the coreceptor expressed by the cell line used. Full Env recombinants from all patients gained infectivity under prolonged drug pressure; for HR1–HR2 viruses, infectivity remained steady for 3/5 patients, while for 2/5 patients, gains in infectivity paralleled those of the corresponding full Env recombinants, indicating that the env genetic context accounts mainly for infectivity adjustments. Phylogenetic analyses revealed that quasispecies selection is a step-wise process where selection of enfuvirtide resistance is a dominant factor early during therapy, while increased infectivity is the prominent driver under prolonged therapy.
Collapse
Affiliation(s)
- Franky Baatz
- Laboratory of Retrovirology, CRP-Santé, Luxembourg, Luxembourg
| | - Monique Nijhuis
- Department of Virology, Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
| | - Morgane Lemaire
- Laboratory of Retrovirology, CRP-Santé, Luxembourg, Luxembourg
| | - Martiene Riedijk
- Department of Virology, Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
- Department of Internal Medicine and Infectious Diseases, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Petra M. van Ham
- Department of Virology, Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
| | - Andy I. M. Hoepelman
- Department of Internal Medicine and Infectious Diseases, UMC Utrecht, Utrecht, The Netherlands
| | - Peter P. Koopmans
- Division Infectious Diseases, Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Herman G. Sprenger
- Division of Infectious Diseases, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Carole Devaux
- Laboratory of Retrovirology, CRP-Santé, Luxembourg, Luxembourg
| | | | | |
Collapse
|
20
|
Charpentier C, Jenabian MA, Piketty C, Karmochkine M, Tisserand P, Laureillard D, Bélec L, Si-Mohamed A, Weiss L. Dynamics of enfuvirtide resistance mutations in enfuvirtide-experienced patients remaining in virological failure under salvage therapy. ACTA ACUST UNITED AC 2011; 43:373-9. [DOI: 10.3109/00365548.2011.552520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Integrase and Fusion Inhibitors Transmitted Drug Resistance in Naive Patients With Recent Diagnosis of HIV-1 Infection. J Acquir Immune Defic Syndr 2011; 56:e51-4. [DOI: 10.1097/qai.0b013e3181fcc0f1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Alencar CS, Nishiya AS, Ferreira S, Giret MTM, Diaz RS, Sabino EC. Evaluation of primary resistance to HIV entry inhibitors among brazilian patients failing reverse transcriptase/protease inhibitors treatment reveal high prevalence of maraviroc resistance-related mutations. AIDS Res Hum Retroviruses 2010; 26:1267-71. [PMID: 20977300 DOI: 10.1089/aid.2010.0057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Entry inhibitor is a new class of drugs that target the viral envelope protein. This region is variable; hence resistance to these drugs may be present before treatment. The aim of this study was to analyze the frequency of patients failing treatment with transcriptase reverse and protease inhibitors that would respond to the entry inhibitors Enfuvirtide, Maraviroc, and BMS-806. The study included 100 HIV-1 positive patients from one outpatient clinic in the city of Sao Paulo, for whom a genotype test was requested due to treatment failure. Proviral DNA was amplified and sequenced for regions of gp120 and gp41. A total of 80 could be sequenced and from those, 73 (91.3%), 5 (6.3%) and 2 (2.5%) were classified as subtype B, F, and recombinants (B/ F and B/C), respectively. CXCR4 co-receptor use was predicted in 30% of the strains. Primary resistance to Enfuvirtide was found in 1.3%, following the AIDS Society consensus list, and 10% would be considered resistant if a broader criterion was used. Resistance to BMS-806 was higher; 6 (7.5%), and was associated to non-B strains. Strikingly, 27.5% of samples harbored one or more mutation among A316T, I323V, and S405A, which have been related to decreased susceptibility of Maraviroc; 15% of them among viruses predictive to be R5. A more common mutation was A316T, which was associated to the Brazilian B strain harboring the GWGR motif at the tip of V3 loop and their derivative sequences. These results may be impact guidelines for genotype testing and treatment in Brazil.
Collapse
Affiliation(s)
- Cecília S. Alencar
- Infectious Diseases Division, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ricardo S. Diaz
- Infectious Diseases Division, Federal University of São Paulo, São Paulo, Brazil
| | - Ester C. Sabino
- Fundação Pró-Sangue, Hemocentro, São Paulo, Brazil
- Division of Hematology and Hemotherapy, University of Sao Paulo, Brazil
| |
Collapse
|
23
|
Izumi K, Nakamura S, Nakano H, Shimura K, Sakagami Y, Oishi S, Uchiyama S, Ohkubo T, Kobayashi Y, Fujii N, Matsuoka M, Kodama EN. Characterization of HIV-1 resistance to a fusion inhibitor, N36, derived from the gp41 amino-terminal heptad repeat. Antiviral Res 2010; 87:179-86. [PMID: 20438763 DOI: 10.1016/j.antiviral.2010.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 11/15/2022]
Abstract
A transmembrane glycoprotein of HIV-1, gp41, plays a central role in membrane fusion of HIV-1 and host cells. Peptides derived from the amino- and carboxyl-terminal heptad repeat (N-HR and C-HR, respectively) of gp41 inhibit this fusion. The mechanism of resistance to enfuvirtide, a C-HR-derived peptide, is well defined; however the mechanism of resistance to N-HR-derived peptides remains unclear. We characterized an HIV-1 isolate resistant to the N-HR-derived peptide, N36. This HIV-1 acquired a total of four amino acid substitutions, D36G, N126K and E137Q in gp41, and P183Q in gp120. Among these substitutions, N126K and/or E137Q conferred resistance to not only N36, but also C34, which is the corresponding C-HR-derived peptide fusion inhibitor. We performed crystallographic and biochemical analysis of the 6-helix bundle formed by synthetic gp41-derived peptides containing the N126K/E137Q substitutions. The structure of the 6-helix bundle with N126K/E137Q was identical to that in wild-type HIV-1 except for the presence of a new hydrogen bond. Denaturing experiments revealed that the stability of the 6-helix bundle of N126K/E137Q is greater than in the wild-type. These results suggest that the stabilizing effect of N126K/E137Q provides resistance to N36 and C34.
Collapse
Affiliation(s)
- Kazuki Izumi
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bai X, Wilson KL, Seedorff JE, Ahrens D, Green J, Davison DK, Jin L, Stanfield-Oakley SA, Mosier SM, Melby TE, Cammack N, Wang Z, Greenberg ML, Dwyer JJ. Impact of the enfuvirtide resistance mutation N43D and the associated baseline polymorphism E137K on peptide sensitivity and six-helix bundle structure. Biochemistry 2010; 47:6662-70. [PMID: 18507398 DOI: 10.1021/bi702509d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enfuvirtide (ENF), the first human immunodeficiency virus type 1 (HIV-1) fusion inhibitor approved for clinical use, acts by binding to gp41 heptad repeat 1 (HR1) and preventing its interaction with the viral HR2 region. Treatment-emergent resistance to ENF has been mapped to residues within HR1, and these mutations decrease its susceptibility to ENF and may reduce viral fitness and pathogenesis, although the mechanism for these effects is not clear. N43D, a common ENF resistance mutation, was found in in vitro assays to cause a 5-50-fold in antiviral activity. We introduced this mutation into peptide models and determined the impact of this mutation by circular dichroism and X-ray crystallography. We find that the mutation results in a decrease in the thermal stability of the six-helix bundle and causes a significant change in the HR1-HR2 interface, including a loss of HR2 helicity. These data form a mechanistic basis for the decrease in ENF sensitivity and six-helix bundle stability. The E137K polymorphism, generally present at baseline in patients who develop N43D, partially compensates for the loss of stability, and we show that these residues likely form an ion pair. These data form a framework for understanding the impact of resistance mutations on viral fitness and pathogenesis and provide a pathway for the development of novel fusion inhibitor peptides.
Collapse
Affiliation(s)
- Xuefang Bai
- Protein Engineering Group and Virology Group, Trimeris, Inc., 3500 Paramount Parkway, Morrisville, North Carolina 27560, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Teixeira C, de Sá-Filho D, Alkmim W, Janini LM, Diaz RS, Komninakis S. Short communication: high polymorphism rates in the HR1 and HR2 gp41 and presence of primary resistance-related mutations in HIV type 1 circulating in Brazil: possible impact on enfuvirtide efficacy. AIDS Res Hum Retroviruses 2010; 26:307-11. [PMID: 20334566 DOI: 10.1089/aid.2008.0297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We analyzed the gp41 sequences of 80 HIV-infected enfuvirtide-naive individuals who were eligible to receive this antiretroviral according to Brazilian guidelines. We analyzed the genetic diversity of pol and the heptad repeat 1 and 2 (HR1 and HR2) regions of gp41, and compared the genetic profile of HR1 and HR2 found in PBMCs with the profile found in plasma. The similarity between sequences obtained from DNA and RNA in the HR1 and HR2 regions was, on average, 98.6% and 98.9%, respectively. We detected mutations related to enfuvirtide resistance (L44M or N43K) in HR1 DNA samples from three individuals (3.8%) and RNA samples from three individuals (4.6%). Other polymorphisms frequently detected were E137K (10% and 13.8%), L130I (8.8% and 9.2%), S129N (6.3% and 10.8%), L44M (2.5% and 4.6%), S138A (2.5% and 1.5%), and N43K (1.3% and 0%) in DNA and RNA, respectively. Subtype B was identified in 68.8% of the samples [protease (PR) B, reverse transcriptase (RT) B, gp41 B], subtype F in 5.0%, subtype C in 1.3%, and the remaining sequences presented with a mosaic profile. These results suggest that genotyping the gp41 region prior to introducing an expensive and complex approach, such as enfuvirtide, may be cost effective. Moreover, assessment of proviral DNA may be less expensive than RNA, as well as being sufficient for this purpose.
Collapse
Affiliation(s)
| | | | | | | | | | - Shirley Komninakis
- Federal University of São Paulo, São Paulo, Brazil
- Lusiada Foundation of Santos, São Paulo, Brazil
| |
Collapse
|
26
|
Pan C, Liu S, Jiang S. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics. J Formos Med Assoc 2010; 109:94-105. [DOI: 10.1016/s0929-6646(10)60029-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/28/2022] Open
|
27
|
Morozov V, Morozov A, Lagaye S. Short communication: Simultaneous substitutions of V38M and N43T-N44K in the gp41 heptad repeat 1 (HR1) disrupt HIV type 1 gPr160 endoproteolytic cleavage (*). AIDS Res Hum Retroviruses 2010; 26:73-7. [PMID: 20055586 DOI: 10.1089/aid.2009.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We cloned and sequenced gp41 HIV-1 from plasma of AIDS patients under HAART and T-20 (enfuvirtide, Fuzeon) therapy and revealed several T-20 resistance-associated mutations. Two mutations, a single V38A and a double N43T-N44K were the most frequent; however, they were not found together in one clone. We anticipated that simultaneous mutations of these three residues might play a vital role in the viral life cycle. To address this problem, we introduced N43T-N44K and V38M + N43T-N44K substitutions to a cloned gp41 and introduced modified gp41 into the pNL4-3 molecular clone. HEK293T cells were transfected with the obtained vectors and released viruses were examined for reverse transcriptase (RT) activity, infectivity on reporter TZM-bl cells, and in Western blotting. Nearly equal RT activity was demonstrated in viruses with and without mutations. However, viruses with the V38M + N43T-N44K mutations were not infectious and, as shown by Western blotting, gPr160 cleavage was impaired. These data suggest that V38M + N43T-N44K mutations perturbed the natural conformation of gPr160 in a way that access of furin to the cleavage site (REKR) was blocked. Therefore, the residues V38 + N43-N44 retain the gPr160 conformation in proximity to the furin cleavage site and, as a consequence, are critical for virus infectivity. These data may explain why viruses with V38M + N43T-N44K mutations were not previously detected in the plasma of T-20-experienced patients.
Collapse
Affiliation(s)
- V.A. Morozov
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Robert Koch-Institute, 13353 Berlin, Germany
| | - A.V. Morozov
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | - S. Lagaye
- Institut Cochin, UMR 8104 CNRS, U567 INSERM, Université Paris Descartes, 75014 Paris, France
| |
Collapse
|
28
|
Pang W, Tam SC, Zheng YT. Current peptide HIV type-1 fusion inhibitors. Antivir Chem Chemother 2009; 20:1-18. [PMID: 19794228 DOI: 10.3851/imp1369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
There are now 26 antiretroviral drugs and 6 fixed-dose combinations, including reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and fusion (or entry) inhibitors, approved by the US Food and Drug Administration for clinical use. Although they are clinically effective when used in combination, none of the existing drugs are considered ideal because of toxic side effects and the ascendance of inducing drug-resistant mutants. Development of new antiviral agents is essential. In the past decades, there has been great progress in understanding the structure of HIV type-1 (HIV-1) gp41 and the mechanism of HIV-1 entry into host cells. This opened up a promising avenue for rationally designed agents to interfere with this process. A number of fusion inhibitors have been developed to block HIV-1 replication. Enfuvirtide (T20) was one of those approved for clinical use. This signalled a new era in AIDS therapeutics. It is a synthetic polypeptide with potent inhibitory activity against HIV-1 infection. However, it is sensitive to proteolytic digestion and resistant virus strains are easily induced with multiple clinical use. One of the directions in designing new fusion inhibitors is to overcome these shortages. In the past years, large numbers of promising fusion inhibitory peptides have emerged. The antiviral activities are more potent or they can act differently from that of T20. Some of these new compounds have great potential to be further developed as therapeutic agents. This article reviewed some recent developments of these peptides and the possible role in anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory of Animal Models and Human Diseases Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
29
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res 2009; 85:210-31. [PMID: 19616029 DOI: 10.1016/j.antiviral.2009.07.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
Antiretroviral therapy has led to a significant decrease in human immunodeficiency virus (HIV)-related mortality. Approved antiretroviral drugs target different steps of the viral life cycle including viral entry (coreceptor antagonists and fusion inhibitors), reverse transcription (nucleoside and non-nucleoside inhibitors of the viral reverse transcriptase), integration (integrase inhibitors) and viral maturation (protease inhibitors). Despite the success of combination therapies, the emergence of drug resistance is still a major factor contributing to therapy failure. Viral resistance is caused by mutations in the HIV genome coding for structural changes in the target proteins that can affect the binding or activity of the antiretroviral drugs. This review provides an overview of the molecular mechanisms involved in the acquisition of resistance to currently used and promising investigational drugs, emphasizing the structural role of drug resistance mutations. The optimization of current antiretroviral drug regimens and the development of new drugs are still challenging issues in HIV chemotherapy. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
30
|
Combinations of the first and next generations of human immunodeficiency virus (HIV) fusion inhibitors exhibit a highly potent synergistic effect against enfuvirtide- sensitive and -resistant HIV type 1 strains. J Virol 2009; 83:7862-72. [PMID: 19493996 DOI: 10.1128/jvi.00168-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T20 (generic name, enfuvirtide; brand name, Fuzeon) is a first-generation human immunodeficiency virus (HIV) fusion inhibitor approved for salvage therapy of HIV-infected patients refractory to current antiretroviral drugs. However, its clinical use is limited because of rapid emergence of T20-resistant viruses in T20-treated patients. Therefore, T1249 and T1144 are being developed as the second- and third-generation HIV fusion inhibitors, respectively, with improved efficacy and drug resistance profiles. Here, we found that combinations of T20 with T1249 and/or T1144 resulted in exceptionally potent synergism (combination index, <0.01) against HIV-1-mediated membrane fusion by 2 to 3 orders of magnitude in dose reduction. Highly potent synergistic antiviral efficacy was also achieved against infection by laboratory-adapted and primary HIV-1 strains, including T20-resistant variants. The mechanism underlying the synergistic effect could be attributed to the fact that T20, T1249, and T1144 all contain different functional domains and have different primary binding sites in gp41. As such, they may work cooperatively to inhibit gp41 six-helix bundle core formation, thereby suppressing virus-cell fusion. Therefore, these findings strongly imply that, rather than replacing T20, combining it with HIV fusion inhibitors of different generations might produce synergistic activity against both T20-sensitive and -resistant HIV-1 strains, suggesting a new therapeutic strategy for the treatment of HIV-1 infection/AIDS.
Collapse
|
31
|
Nishikawa H, Nakamura S, Kodama E, Ito S, Kajiwara K, Izumi K, Sakagami Y, Oishi S, Ohkubo T, Kobayashi Y, Otaka A, Fujii N, Matsuoka M. Electrostatically constrained α-helical peptide inhibits replication of HIV-1 resistant to enfuvirtide. Int J Biochem Cell Biol 2009; 41:891-9. [DOI: 10.1016/j.biocel.2008.08.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 11/25/2022]
|
32
|
Ueno M, Kodama EN, Shimura K, Sakurai Y, Kajiwara K, Sakagami Y, Oishi S, Fujii N, Matsuoka M. Synonymous mutations in stem-loop III of Rev responsive elements enhance HIV-1 replication impaired by primary mutations for resistance to enfuvirtide. Antiviral Res 2009; 82:67-72. [DOI: 10.1016/j.antiviral.2009.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 12/16/2008] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
|
33
|
Dynamic patterns of human immunodeficiency virus type 1 integrase gene evolution in patients failing raltegravir-based salvage therapies. AIDS 2009; 23:455-60. [PMID: 19165083 DOI: 10.1097/qad.0b013e328323da60] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE : Evaluate HIV-1 subtype B integrase gene evolution in patients failing raltegravir (RAL)-based savage regimens by clonal analysis of the replicating viral quasispecies. DESIGN : Seven triple class failure HIV-1 (subtype B)-infected patients, followed at San Raffaele Hospital and enrolled in the RAL Expanded Access Program (MK0518-023), were evaluated. Patients were followed up for 24-48 weeks and due to the absence of other active drugs, RAL was maintained in their regimens even if resistance mutations were detected. METHODS : Immunologic and virologic parameters were recorded every 4 weeks, and amplification and clonal analysis of viral populations were performed at baseline and every 4-12 weeks in all patients. RESULTS : Resistance to RAL appeared initially associated with selection of single variants (Y143R, Q148R N155H) in the majority of patients; however, in three patients, complex patterns of viral mutations were observed. The clonal analysis of viral quasispecies allowed to describe the evolution of each viral population and the progressive accumulation of RAL resistance-associated mutations and polymorphisms associated with therapy failure. CONCLUSION : The complex patterns of resistance mutations observed, including novel variants evolved under continuous RAL pressure, suggesting that they are the result of the equilibrium between drug resistance and enzyme function. Despite the efficacy of this compound, our data discourage its use in a functional monotherapy and maintaining RAL even in presence of RAL resistance-associated mutations may lead to the progressive formation of viral reservoirs with multiple integrase inhibitor-resistant variants that may limit the future efficacy of other integrase inhibitors due to cross-resistance.
Collapse
|
34
|
Abstract
The entry of viruses into target cells involves a complex series of sequential steps, with opportunities for inhibition at every stage. Entry inhibitors exert their biological properties by inhibiting protein-protein interactions either within the viral envelope (Env) glycoproteins or between viral Env and host-cell receptors. The nature of resistance to entry inhibitors also differs from compounds inhibiting enzymatic targets due to their different modes of action and the relative variability in Env sequences both temporally and between patients. Two drugs that target HIV-1 entry, enfuvirtide and maraviroc, are now licensed for treatment of HIV-1 infection. The efficacy of these drugs validates entry as a point of intervention in viral life cycles and, in the context of HIV treatment, contributes to the growing armamentarium of antivirals which, in multidrug combinations, can effectively inhibit viral replication and prevent disease progression.
Collapse
Affiliation(s)
- Tom Melby
- Clinical Virology Associates, 101 E. Ellerbee St. Durham, NC 27704, USA.
| | | |
Collapse
|
35
|
Samuele A, Kataropoulou A, Viola M, Zanoli S, La Regina G, Piscitelli F, Silvestri R, Maga G. Non-nucleoside HIV-1 reverse transcriptase inhibitors di-halo-indolyl aryl sulfones achieve tight binding to drug-resistant mutants by targeting the enzyme-substrate complex. Antiviral Res 2008; 81:47-55. [PMID: 18984007 DOI: 10.1016/j.antiviral.2008.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/07/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
Indolyl aryl sulfone (IAS) non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) have been previously shown to effectively inhibit wild-type (wt) and drug-resistant human immunodeficiency virus type 1 (HIV-1) replication. IASs proved to act through different mechanisms of action, depending on the nature and position of their chemical substituents. Here we describe selected novel IAS derivatives (di-halo-IASs). Our results show that these compounds are selective for the enzyme-substrate complex. The molecular basis for this selectivity was a different dissociation rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the resistant enzymes carrying the single mutations Lys103Asn, Leu100Ile, and Tyr181Ile (K103N, L100I, and Y181I), we found that one compound (RS1914) dissociated from the mutated enzymes almost 10-fold slower than from the wild type RT. These results demonstrate that IASs are very flexible molecules, interacting dynamically with the viral RT, and that this property can be successfully exploited to design inhibitors endowed with an enhanced binding to common NNRTI-resistant mutants.
Collapse
Affiliation(s)
- Alberta Samuele
- Department of DNA Enzymology and Molecular Virology, Institute of Molecular Genetics, National Research Council, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shafer RW, Schapiro JM. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev 2008; 10:67-84. [PMID: 18615118 PMCID: PMC2547476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
More than 200 mutations are associated with antiretroviral resistance to drugs belonging to six licensed antiretroviral classes. More than 50 reverse transcriptase mutations are associated with nucleoside reverse transcriptase inhibitor resistance including M184V, thymidine analog mutations, mutations associated with non-thymidine analog containing regimens, multi-nucleoside resistance mutations, and several recently identified accessory mutations. More than 40 reverse transcriptase mutations are associated with nonnucleoside reverse transcriptase inhibitor resistance including major primary and secondary mutations, non-polymorphic minor mutations, and polymorphic accessory mutations. More than 60 mutations are associated with protease inhibitor resistance including major protease, accessory protease, and protease cleavage site mutations. More than 30 integrase mutations are associated with the licensed integrase inhibitor raltegravir and the investigational inhibitor elvitegravir. More than 15 gp41 mutations are associated with the fusion inhibitor enfuvirtide. CCR5 inhibitor resistance results from mutations that promote gp120 binding to an inhibitor-bound CCR5 receptor or CXCR4 tropism; however, the genotypic correlates of these processes are not yet well characterized.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
37
|
Garcia-Perez J, Perez-Olmeda M, Sanchez-Palomino S, Perez-Romero P, Alcami J. A new strategy based on recombinant viruses for assessing the replication capacity of HIV-1. HIV Med 2008; 9:160-71. [PMID: 18217999 DOI: 10.1111/j.1468-1293.2007.00540.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In heavily pretreated patients, resistance mutations arise in both protease (PR) and reverse transcriptase (RT) sequences; however, the relative impact of PR and RT mutations on viral fitness cannot be evaluated with the majority of systems. To address this issue we have developed a model based on recombinant viruses (RVs) that allows the analysis of the replication capacity (RC) of viral populations in which PR and RT are cloned either in combination or separately. METHODS RVs were generated for full-length polymerase (pol) gene, PR or RT sequences from nine naïve and 14 heavily pretreated HIV-infected patients in therapeutic failure. The relative RC was assessed by comparing luciferase activity between mutant RV and wild-type (wt) isolates. RESULTS A strong decrease (>60%) in the RC of the pol RV population was observed in the 14 heavily pretreated patients as compared with the wt RVs. The analysis of PR and RT RVs from these patients showed that the decrease in RC was mainly attributable to PR sequences in three of these 14 patients and to RT sequences in seven of these patients. In the four remaining patients, PR and RT sequences independently reduced the RC of the RVs to similar extents. CONCLUSIONS Different patterns of mutations in either PR or RT have a strong impact on RC in highly experienced HIV-infected patients.
Collapse
Affiliation(s)
- J Garcia-Perez
- AIDS Immunopathology Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Trabaud MA, Cotte L, Labernardière JL, Lebel-Binay S, Icard V, Tardy JC, Trepo C, Andre P. Variants With Different Mutation Patterns Persist in the Quasispecies of Enfuvirtide-Resistant HIV-1 Population During and After Treatment In Vivo. J Acquir Immune Defic Syndr 2007; 46:134-44. [PMID: 17621239 DOI: 10.1097/qai.0b013e3181354710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genotypic and phenotypic resistance in 11 HIV-1-infected patients receiving enfuvirtide (ENF), as part of a salvage regimen, has been evaluated. METHODS Resistance mutations were detected by sequencing the gp41 ectodomain from plasma samples. During treatment, longitudinal samples from 1 patient were sequenced after limiting dilution of complementary DNA to isolate single genomes. Phenotypic resistance was evaluated with a new recombinant virus assay (PHENOSCRIPT; VIRalliance, Paris, France), allowing the determination of coreceptor use. RESULTS All patients experienced ENF failure. One to 4 mutations in the 36-to-45 gp41 region appeared during ENF therapy in all patients and disappeared after ENF removal. Mixtures of wild type and mutants unexpectedly persisted under ENF treatment, however, despite continued replication, leading to discordant results between genotypic and phenotypic data. Sequencing of isolated genomes from 1 patient confirmed that a wild-type first heptad repeat region (HR1) region was still present at the end of therapy. Several mutated variants coexisted at different time points, despite a tendency toward quasispecies reduction with time. CONCLUSION Individual variability of the mutation pattern and persistence of strains without mutation in the region mainly targeted by ENF resistance probably reflect the fact that resistance to ENF may rely on regions of gp41 or gp120 other than residues 36 to 45.
Collapse
|
39
|
Morozov VA, Morozov AV, Schürmann D, Schürmann D, Jessen H, Kücherer C. Transmembrane protein polymorphisms and resistance to T-20 (Enfuvirtide, Fuzeon®) in HIV-1 infected therapy-naive seroconverters and AIDS patients under HAART-T-20 therapy. Virus Genes 2007; 35:167-74. [PMID: 17440804 DOI: 10.1007/s11262-007-0098-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/16/2007] [Indexed: 11/29/2022]
Abstract
The human immunodeficiency virus type 1 fusion inhibitor T-20 (Enfuvirtide, Fuzeon) has recently been introduced into clinical practice. T-20 in combination with HAART efficiently inhibits HIV-1 replication, however T-20 resistance has been reported and the number of confirmed resistant-associated mutations is growing. In this study we aimed to analyze HIV-1 gp41 transmembrane protein (TM) variability and primary resistance to T-20 in plasma viruses from 10 HIV-1 subtype B infected homosexuals. Nine out of ten were documented seroconverters. Nine individuals (including one long time infected therapy naïve individual) were part of four linked virus infection chains. We also examined TM polymorphism in two AIDS patients under HAART and T-20 therapy. Obtained TM amplicons were examined for minor variants by clonal analysis.Sequences polymorphism of the N-terminal regions of the fusion domain (FD) and the heptad repeat 2 (HR2) domain were demonstrated in examined seroconverters. Analysis of the heptad repeat 1 (HR1) domain revealed T-20 resistance in cloned sequences from 3/10 individuals. In two individuals these mutations were present as minor viral quasispecies. Transmission of the resistant virus to the sexual partner was traced in virus infection chain.Baseline TM amplicons (population sequence) and clones from two patients under HAART did not contain T-20 resistance associated mutations. After onset of T-20 therapy only resistant viruses were identified in plasma from the patients. As shown by clonal analysis of plasma from one patient, treatment interruption results in viruses reverting to a T-20-sensitive genotype.
Collapse
Affiliation(s)
- Vladimir A Morozov
- HIV Variabilitat und moleculare Epidemiologie/P11, Robert Koch-Institut, 20 Nordufer, 13353, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Dykes C, Demeter LM. Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin Microbiol Rev 2007; 20:550-78. [PMID: 17934074 PMCID: PMC2176046 DOI: 10.1128/cmr.00017-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relative fitness of a variant, according to population genetics theory, is that variant's relative contribution to successive generations. Most drug-resistant human immunodeficiency virus type 1 (HIV-1) variants have reduced replication fitness, but at least some of these deficits can be compensated for by the accumulation of second-site mutations. HIV-1 replication fitness also appears to influence the likelihood of a drug-resistant mutant emerging during treatment failure and is postulated to influence clinical outcomes. A variety of assays are available to measure HIV-1 replication fitness in cell culture; however, there is no agreement regarding which assays best correlate with clinical outcomes. A major limitation is that there is no high-throughput assay that incorporates an internal reference strain as a control and utilizes intact virus isolates. Some retrospective studies have demonstrated statistically significant correlations between HIV-1 replication fitness and clinical outcomes in some patient populations. However, different studies disagree as to which clinical outcomes are most closely associated with fitness. This may be in part due to assay design, sample size limitations, and differences in patient populations. In addition, the strength of the correlations between fitness and clinical outcomes is modest, suggesting that, at present, it would be difficult to utilize these assays for clinical management.
Collapse
Affiliation(s)
- Carrie Dykes
- Infectious Diseases Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
41
|
Strockbine B, Rizzo RC. Binding of antifusion peptides with HIVgp41 from molecular dynamics simulations: quantitative correlation with experiment. Proteins 2007; 67:630-42. [PMID: 17335007 DOI: 10.1002/prot.21301] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptides based on C-terminal regions of the human immunodeficiency virus (HIV) viral protein gp41 represent an important new class of antiviral therapeutics called peptide fusion inhibitors. In this study, computational methods were used to model the binding of six peptides that contain residues that pack into a conserved hydrophobic pocket on HIVgp41, an attractive target site for the development of small molecule inhibitors. Free energies of binding were computed using molecular mechanics Generalized Born surface area (MM-GBSA) methods from molecular dynamics (MD) simulations, which employed either explicit (TIP3P) or continuum Generalized Born (GB) water models and strong correlations between experimental and computational affinities were obtained in both cases. Energy decomposition of the TIP3P-MD results (r2 = 0.75) reveals that variation in experimental affinity is highly correlated with changes in intermolecular van der Waals energies (deltaE(vdw)) on both a local (residue-based, r2 = 0.94) and global (peptide-based, r2 = 0.84) scale. The results show that differential association of C-peptides with HIVgp41 is driven solely by changes within the conserved pocket supporting the hypothesis that this region is an important drug target site. Such strong agreement with experiment is notable given the large size of the ligands (34 amino-acids) relative to the small range of experimental affinities (2 kcal/mol) and demonstrates good sensitivity of this computational method for simulating peptide fusion inhibitors. Finally, inspection of simulation trajectories identified a highly populated pi-type hydrogen bond, which formed between Gln575 on the receptor and the aromatic ring of peptide ligand Phe631, which could have important implications for drug design.
Collapse
Affiliation(s)
- Bentley Strockbine
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA
| | | |
Collapse
|
42
|
Neffe AT, Bilang M, Grüneberg I, Meyer B. Rational optimization of the binding affinity of CD4 targeting peptidomimetics with potential anti HIV activity. J Med Chem 2007; 50:3482-8. [PMID: 17602545 DOI: 10.1021/jm070206b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently reported the design and synthesis of a CD4 binding peptidomimetic with potential as HIV entry inhibitor. Variation of side chains and amino terminus provided first structure-activity relationships and confirmed the activity of the compounds as well as the correctness of our approach [Neffe, A. T.; Bilang, M.; Meyer, B. Org. Biomol. Chem. 2006, 4, 3259-3267]. Here we describe optimizations at the carboxy terminus of the peptidomimetic CD4 ligands resulting in the highest binding affinity of KD = 6 microM for compound 4 determined with surface plasmon resonance (SPR). Saturation transfer difference NMR experiments with two peptidomimetics give binding constants similar to the SPR experiments and verified the ligand binding epitope. The higher proteolytic stability of the peptidomimetics compared to the lead peptide is demonstrated in a pronase digestion assay. Comparison of modeling and analytical data shows good agreement of theoretical and practical experiments.
Collapse
Affiliation(s)
- Axel T Neffe
- Institute for Organic Chemistry, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany.
| | | | | | | |
Collapse
|
43
|
Peuchant O, Capdepont S, Ragnaud JM, Aurillac-Lavignolle V, Thiébaut R, Fleury H, Masquelier B. Primary Resistance to Enfuvirtide (T20) in recently HIV-1 Infected, Antiretroviral-Naive Patients from the ANRS Aquitaine Cohort. Antivir Ther 2007; 12:559-62. [PMID: 17668565 DOI: 10.1177/135965350701200413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Transmission of HIV-1 variants with resistance to reverse transcriptase (RT) and protease inhibitors has been widely characterized in developed countries. However, no clear evidence of primary resistance to HIV-1 fusion inhibitors has been shown so far. We wished to investigate the possibility of genotypic resistance to enfuvirtide (T20) in a cohort of antiretroviral-naive, recently infected patients. Methods We included patients from the Aquitaine Cohort with an estimated date of seroconversion in 2004 and 2005, a plasma sample obtained less than 18 months after seroconversion and no prior history of antiretroviral therapy. RT, protease and gp41 sequences were determined by direct population sequencing from plasma samples and drug resistance mutations were reported. Results A total of 55 patients were included in the study. The overall prevalence of transmitted HIV-1 resistance was 20%. Two patients had viruses with resistance mutations to T20. The first case had an N42D mutation in the HR1 region of the gp41, along with transmitted resistance mutations in the protease (D30N, M36I, N88D) and in the RT (M41L, L210W, T215D). The second case had a G36D HR1 mutation, with no evidence of other drug resistance mutations. Conclusion We have shown the first cases of primary resistance to T20 in recently infected patients in southwestern France. Epidemiological surveillance of the transmission of drug-resistant HIV-1 should include the resistance to T20.
Collapse
Affiliation(s)
- Olivia Peuchant
- Department de Virologie et Immunologie Biologique, CHU de Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Chinnadurai R, Rajan D, Münch J, Kirchhoff F. Human immunodeficiency virus type 1 variants resistant to first- and second-version fusion inhibitors and cytopathic in ex vivo human lymphoid tissue. J Virol 2007; 81:6563-72. [PMID: 17428857 PMCID: PMC1900115 DOI: 10.1128/jvi.02546-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing approximately 10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Institute for Virology, University Clinic, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
45
|
Xu J, Lecanu L, Tan M, Yao W, Greeson J, Papadopoulos V. The benzamide derivative N-[1-(7-tert-Butyl-1H-indol-3-ylmethyl)-2-(4-cyclopropanecarbonyl-3-methyl-piperazin-1-yl)-2-oxo-ethyl]-4-nitro-benzamide (SP-10) reduces HIV-1 infectivity in vitro by modifying actin dynamics. Antivir Chem Chemother 2007; 17:331-42. [PMID: 17249247 DOI: 10.1177/095632020601700603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current treatments for patients infected with HIV are suboptimal. There is a need for new HIV therapies that act through different mechanisms than current treatments. We investigated the in vitro efficacy, safety and mechanism of action of the benzamide derivative N-[1-(7-tert-Butyl-1H-indol-3-ylmethyl)-2-(4-cyclopropanecarbonyl-3-methyl-piperazin-1-yl)-2-oxo-ethyl]-4-nitro-benzamide (SP-10), a potential new HIV treatment. When HIV-1-responsive engineered HeLa cells were pre-incubated for 48 h with either SP-10 or zidovudine (AZT), SP-10 was able to inhibit viral replication at much lower concentrations (IC50 = 0.036 nM) than AZT (IC50 = 27.4 nM). In contrast to AZT, SP-10 also inhibited replication of the multidrug-resistant HIV-1 strain MDR-769 in the HeLa cell model. In co-incubation experiments, SP-10 also inhibited the CCR5-sensitive HIV-1 BaL virus replication in human peripheral blood mononuclear cells. SP-10 displayed very low toxicity compared with current antiviral treatments. Confocal laser scanning microscopy and immunoprecipitation studies showed that SP-10 reduced the expression of CD4 and CCR5 on the surface of the host cell. SP-10 also reduced the level of gp120 binding to the cell surface. Confocal laser scanning microscopy studies showed that SP-10 blocked the formation of actin filaments (F-actin) and altered actin accumulation near the cell surface. These promising results suggest that SP-10 has a novel mechanism of action that enables effective inhibition of HIV-1 binding and cell entry. Further development of SP-10 as a new HIV treatment appears warranted.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
46
|
Razzolini F, Vicenti I, Saladini F, Micheli V, Romano L, Cargnel A, Zazzi M. Natural variability in the HR-1 and HR-2 domains of HIV type 1 gp41 from different clades circulating in Italy. AIDS Res Hum Retroviruses 2007; 23:558-63. [PMID: 17451345 DOI: 10.1089/aid.2006.0273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) HR-1 and HR-2 gp41 regions were sequenced in a total of 228 plasma or peripheral blood mononuclear cell samples obtained from an equal number of enfuvirtide-naive subjects for pol genotypic resistance testing in clinical practice. Phylogenetic analysis of the env sequences indicated that 102 belonged to subtype B and 95 to non-B subtypes (31 CRF02_AG, 21 F1, 14 C, 11 A1/A2/A3, 9 CRF01_AE, 9 others) while the remaining 31 were unique recombinant forms. There was considerable variability in the consensus sequence of different clades, particularly in HR-2. The HR-1 amino acid region 36-45, containing all of the enfuvirtide resistance mutations so far characterized, was well conserved except for position 42 where serine and asparagine were unevenly distributed in different subtypes. Enfuvirtide resistance mutations were not present in any sample, reinforcing the expectation that enfuvirtide is effective against many different HIV-1 clades and recombinants. However, some of the mutations outside the amino acid 36-45 region and provisionally suggested to play a role in modulating resistance were detected in a minority of cases. Molecular epidemiological surveys coupled with long-term observation of in vivo response to enfuvirtide and future fusion inhibitors are required to clarify the clinical significance of gp41 natural variability.
Collapse
Affiliation(s)
- Francesca Razzolini
- Section of Microbiology, Department of Molecular Biology, University of Siena, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Si-Mohamed A, Piketty C, Tisserand P, LeGoff J, Weiss L, Charpentier C, Kazatchkine MD, Bélec L. Increased polymorphism in the HR-1 gp41 env gene encoding the enfuvirtide (T-20) target in HIV-1 variants harboring multiple antiretroviral drug resistance mutations in the pol gene. J Acquir Immune Defic Syndr 2007; 44:1-5. [PMID: 17075396 DOI: 10.1097/01.qai.0000243118.59906.f4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sequence variations in HR-1 gp41 env gene region encoding the target for T-20 have previously been reported among patients naive to inhibitory fusion. OBJECTIVE To evaluate whether a previous therapeutic history of patients could have an impact on a differential evolution of the gp41 polymorphism. METHODS We assessed the genetic polymorphism within the critical HR-1 gp41 env gene region in HIV-1 variants from 108 T-20-naive patients (Groups I-III) and 12 patients receiving T-20 as part of a salvage regimen (Group IV). T-20-naive patients included 50 patients exhibiting variants harboring resistance mutations to NRTIs, NNRTIs, and PIs (Group I), 24 patients with variants harboring resistance mutations for NRTIs and/or NNRTIs (Group II), and 34 antiretroviral drug-naive patients (Group III). RESULTS In T-20-naive patients whose HIV harbored resistance mutations to NRTIs, NNRTIs, and/or PIs, the mean number of synonymous mutations (ds) per patient was decreased and the mean number of nonsynonymous (da) mutations per patient was increased, resulting in a significant decrease in the mean Sigmads/Sigmada ratio as compared with antiretroviral drug-naive patients (Group III; 4.1 vs. 11.6; P < 0.0001). The mean number of polymorphic mutations in HR-1 gp41 per patient was two-fold higher in patients exhibiting antiretroviral drug resistance mutations (Groups I and II) than in antiretroviral drug-naive patients (Group III; 0.41 vs. 0.20; P < 0.05). CONCLUSION Our observations indicate that the HR-1 gp41 T-20 target is subjected to high genetic variability, including intrinsic polymorphism and selection of T-20 resistance mutations under T-20 intake, that is increased by the presence of resistance mutations to NRTIs, NNRTIs, and/or PIs. Our data provide a basis for a potential impact of previous antiretroviral drug history on the therapeutic efficacy of T-20.
Collapse
Affiliation(s)
- Ali Si-Mohamed
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tolstrup M, Selzer-Plön J, Laursen AL, Bertelsen L, Gerstoft J, Duch M, Pedersen FS, Ostergaard L. Full fusion competence rescue of the enfuvirtide resistant HIV-1 gp41 genotype (43D) by a prevalent polymorphism (137K). AIDS 2007; 21:519-21. [PMID: 17301572 DOI: 10.1097/qad.0b013e3280187558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Martin Tolstrup
- Department of Infectious Diseases, Skejby Sygehus, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ribera E, Moreno S, Viciana P, Echevarría S, Flores J, Francés A, Gómez-Sirvent JL, González J, Hernández-Quero J, Lozano F, Mallolas J, Muñoz A, Ocampo A, Portilla J, Pulido F, Rivero A, Santos J, Soriano V, Antela A, Arazo P, Arribas JR, Cervantes M, Domingo P. Recomendaciones españolas sobre el uso adecuado de enfuvirtida. Enferm Infecc Microbiol Clin 2007; 25:131-42. [PMID: 17288910 DOI: 10.1157/13098573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enfuvirtide is a high-cost, parenterally administered drug commonly used in late phases of HIV infection, when its efficacy may be compromised. To optimize enfuvirtide use, consensus recommendations for this purpose have been formulated by 247 physicians attending patients with HIV infection in Spain. A literature review was performed in which grades of evidence and recommendations were defined according to the origin of the data (randomized clinical trials, non-randomized studies, expert opinion). Twenty-eight local consensus meetings were held between May and September 2005 to discuss the most important aspects related to the use of enfuvirtide, following a pre-established system used in all the meetings. The main conclusions were as follows: a) enfuvirtide use is often excessively delayed and is given to patients with little chance of treatment success; b) enfuvirtide is indicated in patients who require antiretroviral treatment and for whom an optimum treatment with three other fully effective drugs cannot be designed; c) the most important prognostic factor is the availability of at least one other completely active drug; d) there is no infallible method to avoid the development of local reactions, but measures are available to decrease their incidence and severity; and e) patient counseling and training for correct administration of the drug are essential to improve adherence, the repercussions of local reactions and, of course, the efficacy of the treatment.
Collapse
|
50
|
Baldwin CE, Berkhout B. Second site escape of a T20-dependent HIV-1 variant by a single amino acid change in the CD4 binding region of the envelope glycoprotein. Retrovirology 2006; 3:84. [PMID: 17134507 PMCID: PMC1698932 DOI: 10.1186/1742-4690-3-84] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 11/29/2006] [Indexed: 11/19/2022] Open
Abstract
Background We previously described the selection of a T20-dependent human immunodeficiency virus type-1 (HIV-1) variant in a patient on T20 therapy. The fusion inhibitor T20 targets the viral envelope (Env) protein by blocking a conformational switch that is critical for viral entry into the host cell. T20-dependent viral entry is the result of 2 mutations in Env (GIA-SKY), creating a protein that undergoes a premature conformational switch, and the presence of T20 prevents this premature switch and rescues viral entry. In the present study, we performed 6 independent evolution experiments with the T20-dependent HIV-1 variant in the absence of T20, with the aim to identify second site compensatory changes, which may provide new mechanistic insights into Env function and the T20-dependence mechanism. Results Escape variants with improved replication capacity appeared within 42 days in 5 evolution cultures. Strikingly, 3 cultures revealed the same single amino acid change in the CD4 binding region of Env (glycine at position 431 substituted for arginine: G431R). This mutation was sufficient to abolish the T20-dependence phenotype and restore viral replication in the absence of T20. The GIA-SKY-G431R escape variant produces an Env protein that exhibits reduced syncytia formation and reduced cell-cell fusion activity. The escape variant was more sensitive to an antibody acting on an early gp41 intermediate, suggesting that the G431R mutation helps preserve a pre-fusion Env conformation, similar to T20 action. The escape variant was also less sensitive to soluble CD4, suggesting a reduced CD4 receptor affinity. Conclusion The forced evolution experiments indicate that the premature conformational switch of the T20-dependent HIV-1 Env variant (GIA-SKY) can be corrected by a second site mutation in Env (GIA-SKY-G431R) that affects the interaction with the CD4 receptor.
Collapse
Affiliation(s)
- Chris E Baldwin
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, The Netherlands
| |
Collapse
|