1
|
Yuan Z. Research progress of CXCR3 inhibitors. Anticancer Drugs 2024; 35:36-45. [PMID: 37694856 DOI: 10.1097/cad.0000000000001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The human CXCR3 receptor was initially identified and cloned in the mid-1990s. In the process of understanding CXCR3, it gradually found that it plays an important role in the process of a variety of diseases, including inflammation, immune diseases, cancer, cardiovascular diseases, central nervous system diseases, etc., which attracted the attention of many researchers. Subsequently, some small molecule inhibitors targeting CXCR3 receptors were also developed. Unfortunately, no CXCR3 inhibitors have been approved for marketing by FDA. Up to now, only one CXCR3 small molecule inhibitor has entered the clinical trial stage, but it has not achieved ideal results in the end. Therefore, there is still much to think about and explore for the development of CXCR3 inhibitors. This article reviews the important role of CXCR3 in various physiological and pathological processes and some small molecule inhibitors of CXCR3.
Collapse
Affiliation(s)
- Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Anitha AK, Narayanan P, Ajayakumar N, Sivakumar KC, Kumar KS. Novel small synthetic HIV-1 V3 crown variants: CCR5 targeting ligands. J Biochem 2022; 172:149-164. [PMID: 35708645 PMCID: PMC9445593 DOI: 10.1093/jb/mvac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
The CC chemokine receptor 5 (CCR5) antagonism represents a promising pharmacological strategy for therapeutic intervention as it plays a significant role in reducing the severity and progression of a wide range of pathological conditions. Here we designed and generated peptide ligands targeting the chemokine receptor, CCR5, that were derived from the critical interaction sites of the V3 crown domain of envelope protein glycoprotein gp120 (TRKSIHIGPGRAFYTTGEI) of HIV-1 using computational biology approach and the peptide sequence corresponding to this region was taken as the template peptide, designated as TMP-1. The peptide variants were synthesized by employing Fmoc chemistry using polymer support and were labelled with rhodamine B to study their interaction with the CCR5 receptor expressed on various cells. TMP-1 and TMP-2 were selected as the high-affinity ligands from in vitro receptor-binding assays. Specific receptor-binding experiments in activated peripheral blood mononuclear cells and HOS.CCR5 cells indicated that TMP-1 and TMP-2 had significant CCR5 specificity. Further, the functional analysis of TMP peptides using chemotactic migration assay showed that both peptides did not mediate the migration of responsive cells. Thus, template
TMP-1 and TMP-2 represent promising CCR5 targeting peptide candidates.
Collapse
Affiliation(s)
- Anju Krishnan Anitha
- Chemical Biology Laboratory, Pathogen biology research program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| | - Pratibha Narayanan
- Chemical Biology Laboratory, Pathogen biology research program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| | - Neethu Ajayakumar
- Chemical Biology Laboratory, Pathogen biology research program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,University of Kerala, Thiruvananthapuram, Kerala, 695014, India
| | - Krishnankutty Chandrika Sivakumar
- Chemical Biology Laboratory, Pathogen biology research program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Kesavakurup Santhosh Kumar
- Chemical Biology Laboratory, Pathogen biology research program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|
3
|
Mirza MU, Saadabadi A, Vanmeert M, Salo-Ahen OMH, Abdullah I, Claes S, De Jonghe S, Schols D, Ahmad S, Froeyen M. Discovery of HIV entry inhibitors via a hybrid CXCR4 and CCR5 receptor pharmacophore-based virtual screening approach. Eur J Pharm Sci 2020; 155:105537. [PMID: 32890663 PMCID: PMC7467125 DOI: 10.1016/j.ejps.2020.105537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/10/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022]
Abstract
Chemokine receptors are key regulators of cell migration in terms of immunity and inflammation. Among these, CCR5 and CXCR4 play pivotal roles in cancer metastasis and HIV-1 transmission and infection. They act as essential co-receptors for HIV and furnish a route to the cell entry. In particular, inhibition of either CCR5 or CXCR4 leads very often the virus to shift to a more virulent dual-tropic strain. Therefore, dual receptor inhibition might improve the therapeutic strategies against HIV. In this study, we aimed to discover selective CCR5, CXCR4, and dual CCR5/CXCR4 antagonists using both receptor- and ligand-based computational methods. We employed this approach to fully incorporate the interaction attributes of the binding pocket together with molecular dynamics (MD) simulations and binding free energy calculations. The best hits were evaluated for their anti-HIV-1 activity against CXCR4- and CCR5-specific NL4.3 and BaL strains. Moreover, the Ca2+ mobilization assay was used to evaluate their antagonistic activity. From the 27 tested compounds, three were identified as inhibitors: compounds 27 (CCR5), 6 (CXCR4) and 3 (dual) with IC50 values ranging from 10.64 to 64.56 μM. The binding mode analysis suggests that the active compounds form a salt bridge with the glutamates and π-stacking interactions with the aromatic side chains binding site residues of the respective co-receptor. The presented hierarchical virtual screening approach provides essential aspects in identifying potential antagonists in terms of selectivity against a specific co-receptor. The compounds having multiple heterocyclic nitrogen atoms proved to be relatively more specific towards CXCR4 inhibition as compared to CCR5. The identified compounds serve as a starting point for further development of HIV entry inhibitors through synthesis and quantitative structure-activity relationship studies.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Atefeh Saadabadi
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Michiel Vanmeert
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Sciences, University Malaya, Kuala Lumpur 59100, Malaysia
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Sciences, University Malaya, Kuala Lumpur 59100, Malaysia
| | - Matheus Froeyen
- Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Suttisintong K, Kaewchangwat N, Thanayupong E, Nerungsi C, Srikun O, Pungpo P. Recent Progress in the Development of HIV-1 Entry Inhibitors: From Small Molecules to Potent Anti-HIV Agents. Curr Top Med Chem 2019; 19:1599-1620. [DOI: 10.2174/1568026619666190712204050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 01/21/2023]
Abstract
Viral entry, the first process in the reproduction of viruses, primarily involves attachment of the viral envelope proteins to membranes of the host cell. The crucial components that play an important role in viral entry include viral surface glycoprotein gp120, viral transmembrane glycoprotein gp41, host cell glycoprotein (CD4), and host cell chemokine receptors (CCR5 and CXCR4). Inhibition of the multiple molecular interactions of these components can restrain viruses, such as HIV-1, from fusion with the host cell, blocking them from reproducing. This review article specifically focuses on the recent progress in the development of small-molecule HIV-1 entry inhibitors and incorporates important aspects of their structural modification that lead to the discovery of new molecular scaffolds with more potency.
Collapse
Affiliation(s)
- Khomson Suttisintong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Narongpol Kaewchangwat
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Eknarin Thanayupong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chakkrapan Nerungsi
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Onsiri Srikun
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, 85 Sathonlamark Road, Warinchamrap, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
5
|
Jiao X, Velasco-Velázquez MA, Wang M, Li Z, Rui H, Peck AR, Korkola JE, Chen X, Xu S, DuHadaway JB, Guerrero-Rodriguez S, Addya S, Sicoli D, Mu Z, Zhang G, Stucky A, Zhang X, Cristofanilli M, Fatatis A, Gray JW, Zhong JF, Prendergast GC, Pestell RG. CCR5 Governs DNA Damage Repair and Breast Cancer Stem Cell Expansion. Cancer Res 2018; 78:1657-1671. [PMID: 29358169 PMCID: PMC6331183 DOI: 10.1158/0008-5472.can-17-0915] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/13/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
The functional significance of the chemokine receptor CCR5 in human breast cancer epithelial cells is poorly understood. Here, we report that CCR5 expression in human breast cancer correlates with poor outcome. CCR5+ breast cancer epithelial cells formed mammospheres and initiated tumors with >60-fold greater efficiency in mice. Reintroduction of CCR5 expression into CCR5-negative breast cancer cells promoted tumor metastases and induced DNA repair gene expression and activity. CCR5 antagonists Maraviroc and Vicriviroc dramatically enhanced cell killing mediated by DNA-damaging chemotherapeutic agents. Single-cell analysis revealed CCR5 governs PI3K/Akt, ribosomal biogenesis, and cell survival signaling. As CCR5 augments DNA repair and is reexpressed selectively on cancerous, but not normal breast epithelial cells, CCR5 inhibitors may enhance the tumor-specific activities of DNA damage response-based treatments, allowing a dose reduction of standard chemotherapy and radiation.Significance: This study offers a preclinical rationale to reposition CCR5 inhibitors to improve the treatment of breast cancer, based on their ability to enhance the tumor-specific activities of DNA-damaging chemotherapies administered in that disease. Cancer Res; 78(7); 1657-71. ©2018 AACR.
Collapse
Affiliation(s)
- Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania
| | | | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania
| | - Zhiping Li
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James E Korkola
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Xuelian Chen
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | - Shaohua Xu
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Sandra Guerrero-Rodriguez
- Graduate Program in Biochemical Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Daniela Sicoli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhaomei Mu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Gang Zhang
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | - Andres Stucky
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | - Xi Zhang
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | - Massimo Cristofanilli
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Alessandro Fatatis
- Department of Pharmacology & Physiology, Drexel University, Philadelphia, Pennsylvania
| | - Joe W Gray
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Jiang F Zhong
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
6
|
Akgün E, Javed MI, Lunzer MM, Powers MD, Sham YY, Watanabe Y, Portoghese PS. Inhibition of Inflammatory and Neuropathic Pain by Targeting a Mu Opioid Receptor/Chemokine Receptor5 Heteromer (MOR-CCR5). J Med Chem 2015; 58:8647-57. [PMID: 26451468 DOI: 10.1021/acs.jmedchem.5b01245] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemokine release promotes cross-talk between opioid and chemokine receptors that in part leads to reduced efficacy of morphine in the treatment of chronic pain. On the basis of the possibility that a MOR-CCR5 heteromer is involved in such cross-talk, we have synthesized bivalent ligands (MCC series) that contain mu opioid agonist and CCR5 antagonist pharmacophores linked through homologous spacers (14-24 atoms). When tested on lipopolysaccharide-inflamed mice, a member of the series (MCC22; 3e) with a 22-atom spacer exhibited profound antinociception (i.t. ED50 = 0.0146 pmol/mouse) that was 2000× greater than morphine. Moreover, MCC22 was ~3500× more potent than a mixture of mu agonist and CCR5 antagonist monovalent ligands. These data strongly suggest that MCC22 acts by bridging the protomers of a MOR-CCR5 heteromer having a TM5,6 interface. Molecular simulation studies are consistent with such bridging. This study supports the MOR-CCR5 heteromer as a novel target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Eyup Akgün
- Department of Medicinal Chemistry, and ‡Center for Drug Design, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Muhammad I Javed
- Department of Medicinal Chemistry, and ‡Center for Drug Design, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Mary M Lunzer
- Department of Medicinal Chemistry, and ‡Center for Drug Design, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Michael D Powers
- Department of Medicinal Chemistry, and ‡Center for Drug Design, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yuk Y Sham
- Department of Medicinal Chemistry, and ‡Center for Drug Design, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Yoshikazu Watanabe
- Department of Medicinal Chemistry, and ‡Center for Drug Design, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Philip S Portoghese
- Department of Medicinal Chemistry, and ‡Center for Drug Design, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Salmas RE, Yurtsever M, Durdagi S. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations. Sci Rep 2015; 5:13180. [PMID: 26299310 PMCID: PMC4547396 DOI: 10.1038/srep13180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022] Open
Abstract
Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.
Collapse
Affiliation(s)
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
8
|
Lau G, Labrecque J, Metz M, Vaz R, Fricker SP. Specificity for a CCR5 Inhibitor Is Conferred by a Single Amino Acid Residue: ROLE OF ILE198. J Biol Chem 2015; 290:11041-51. [PMID: 25767113 DOI: 10.1074/jbc.m115.640169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptors CCR5 and CCR2b share 89% amino acid homology. CCR5 is a co-receptor for HIV and CCR5 antagonists have been investigated as inhibitors of HIV infection. We describe the use of two CCR5 antagonists, Schering-C (SCH-C), which is specific for CCR5, and TAK-779, a dual inhibitor of CCR5 and CCR2b, to probe the CCR5 inhibitor binding site using CCR5/CCR2b chimeric receptors. Compound inhibition in the different chimeras was assessed by inhibition of chemokine-induced calcium flux. SCH-C inhibited RANTES (regulated on activation, normal T cell expressed and secreted) (CCL5)-mediated calcium flux on CCR5 with an IC50 of 22.8 nM but was inactive against monocyte chemoattractant protein-1 (CCL2)-mediated calcium flux on CCR2b. However, SCH-C inhibited CCL2-induced calcium flux against a CCR5/CCR2b chimera consisting of transmembrane domains IV-VI of CCR5 with an IC50 of 55 nM. A sequence comparison of CCR5 and CCR2b identified a divergent amino acid sequence located at the junction of transmembrane domain V and second extracellular loop. Transfer of the CCR5 sequence KNFQTLKIV into CCR2b conferred SCH-C inhibition (IC50 of 122 nM) into the predominantly CCR2b chimera. Furthermore, a single substitution, R206I, conferred partial but significant inhibition (IC50 of 1023 nM) by SCH-C. These results show that a limited amino acid sequence is responsible for SCH-C specificity to CCR5, and we propose a model showing the interaction with CCR5 Ile(198).
Collapse
Affiliation(s)
- Gloria Lau
- From Anormed Inc., Langley, British Columbia V2Y 1N5, Canada
| | - Jean Labrecque
- From Anormed Inc., Langley, British Columbia V2Y 1N5, Canada
| | - Markus Metz
- Lead Generation to Candidate Realization, Sanofi, Waltham, Massachusetts 02451, and
| | - Roy Vaz
- Lead Generation to Candidate Realization, Sanofi, Waltham, Massachusetts 02451, and
| | - Simon P Fricker
- Sanofi-Genzyme Research and Development Center, Framingham, Massachusetts 01701
| |
Collapse
|
9
|
Gadhe CG, Kim MH. Insights into the binding modes of CC chemokine receptor 4 (CCR4) inhibitors: a combined approach involving homology modelling, docking, and molecular dynamics simulation studies. MOLECULAR BIOSYSTEMS 2014; 11:618-34. [PMID: 25474265 DOI: 10.1039/c4mb00568f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CC chemokine receptor 4 (CCR4), a G protein-coupled receptor (GPCR), plays a vital role in the progression of asthma, T-cell lymphoma, inflammation, and Alzheimer's disease. To date, the structure of CCR4 has not been determined. Therefore, the nature of the interactions between inhibitors and CCR4 is not well known. In this study, we used CCR5 as a template to model the structure of CCR4. Docking studies were performed for four naphthalene-sulphonamide derivatives and crucial ligand-protein interactions were analysed. Molecular dynamics (MD) simulations of these complexes (100 ns each) were carried out to gain insights into the interactions between ligands and CCR4. MD simulations revealed that the residues identified by the docking were displaced and new residues were inserted near the ligands. Results of a principal component analysis (PCA) suggested that CCR4 unfolds at the extracellular site surrounding the ligands. Our simulations identified crucial residues involved in CCR4 antagonism, which were supported by previous mutational studies. Additionally, we identified Ser3.29, Leu3.33, Ser5.39, Phe6.47, Ile7.35, Thr7.38, Thr7.40, and Ala7.42 as residues that play crucial roles in CCR4 antagonism. Mutational studies will help elucidate the significance of these residues in CCR4 antagonism. An understanding of ligand-CCR4 interactions might aid in the design of novel CCR4 inhibitors.
Collapse
Affiliation(s)
- Changdev G Gadhe
- Department of Pharmacy, College of Pharmacy, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea.
| | | |
Collapse
|
10
|
Targeting CCR5 for anti-HIV research. Eur J Clin Microbiol Infect Dis 2014; 33:1881-7. [PMID: 25027072 DOI: 10.1007/s10096-014-2173-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Highly active antiretroviral therapy (HAART) is the only approach for human immunodeficiency virus (HIV) infection treatment at present. Although HAART is effective in controlling the progression of infection, it is impossible to eradicate the virus from patients. The patients have to live with the virus. Alternative ways for the cure of HIV infection have been investigated. As the major co-receptor for HIV-1 infection, C-C motif chemokine receptor 5 (CCR5) is naturally an ideal target for anti-HIV research. The first CCR5 antagonist, maraviroc, has been approved for the treatment of HIV infection. Several other CCR5 antagonists are in clinical trials. CCR5 delta32 is a natural genotype, conferring resistance to CCR5 using HIV-1 strains. Gene therapy research targeting this mutant has been conducted for HIV infection treatment. A Berlin patient has been cured of HIV infection by the transplantation of stem cells from a CCR5 delta32 genotype donor. The infusion of an engineered zinc finger nuclease (ZFN)-modified autologous cluster of differentiation 4 (CD4) T cells has been proved to be a promising direction recently. In this study, the anti-HIV research targeting CCR5 is summarized, including CCR5 antagonist development, stem cell transplantation, and gene therapy.
Collapse
|
11
|
Entry Inhibitors of Human Immunodeficiency Virus. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Tschammer N, Kokornaczyk AK, Strunz AK, Wünsch B. Selective and Dual Targeting of CCR2 and CCR5 Receptors: A Current Overview. CHEMOKINES 2014; 14. [PMCID: PMC7123309 DOI: 10.1007/7355_2014_40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chemokine receptor 2 (CCR2) and chemokine receptor 5 (CCR5) are important mediators of leukocyte trafficking in inflammatory processes. The emerging evidence for a role of CCR2 and CCR5 receptors in human inflammatory diseases led to a growing interest in CCR2- and CCR5-selective antagonists. In this review, we focus on the recent development of selective CCR2/CCR5 receptor ligands and dual antagonists. Several compounds targeting CCR2, e.g., INCB8761 and MK0812, were developed as promising candidates for clinical trials, but failed to show clinical efficacy as presumed from preclinical models. The role of CCR5 receptors as the second co-receptor for the HIV-host cell fusion led to the development of various CCR5-selective ligands. Maraviroc is the first CCR5-targeting drug for the treatment of HIV-1 infections on the market. The role of CCR5 receptors in the progression of inflammatory processes fueled the use of CCR5 antagonists for the treatment of rheumatoid arthritis. Unfortunately, the use of maraviroc for the treatment of rheumatoid arthritis failed due to its inefficacy. Some of the ligands, e.g., TAK-779 and TAK-652, were also found to be dual antagonists of CCR2 and CCR5 receptors. The fact that CCR2 and CCR5 receptor antagonists contribute to the treatment of inflammatory diseases renders the development of dual antagonists as promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Nuska Tschammer
- Dept. of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany
| | | | | | | |
Collapse
|
13
|
Nakano Y, Monde K, Terasawa H, Yuan Y, Yusa K, Harada S, Maeda Y. Preferential recognition of monomeric CCR5 expressed in cultured cells by the HIV-1 envelope glycoprotein gp120 for the entry of R5 HIV-1. Virology 2014; 452-453:117-24. [DOI: 10.1016/j.virol.2013.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022]
|
14
|
Hu S, Gu Q, Wang Z, Weng Z, Cai Y, Dong X, Hu Y, Liu T, Xie X. Design, synthesis, and biological evaluation of novel piperidine-4-carboxamide derivatives as potent CCR5 inhibitors. Eur J Med Chem 2013; 71:259-66. [PMID: 24316669 DOI: 10.1016/j.ejmech.2013.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 10/28/2013] [Accepted: 11/09/2013] [Indexed: 10/26/2022]
Abstract
Based on a putative 'Y shape' pharmacophore model of CCR5 inhibitors, a series of novel piperidine-4-carboxamide derivatives were designed and synthesized using a group-reverse strategy. Among synthesized target compounds, 16g (IC₅₀ = 25.73 nM) and 16i (IC₅₀ = 25.53 nM) showed equivalent inhibitory activity against CCR5 to that of the positive control maraviroc (IC₅₀ = 25.43 nM) in calcium mobilization assay. Selected compounds were further tested for their antiviral activity in HIV-1 single cycle assay. Two compounds, 16g and 16i, displayed antiviral activity with IC₅₀ values of 73.01 nM and 94.10 nM, respectively. Additionally, the pharmacokinetic properties and inhibitory potency against hERG of 16g were evaluated, providing a foundation for ongoing optimization.
Collapse
Affiliation(s)
- Suwen Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Quan Gu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhilong Wang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiyong Weng
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunrui Cai
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaowu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
15
|
Gadhe CG, Kothandan G, Cho SJ. Computational modeling of human coreceptor CCR5 antagonist as a HIV-1 entry inhibitor: using an integrated homology modeling, docking, and membrane molecular dynamics simulation analysis approach. J Biomol Struct Dyn 2013; 31:1251-76. [DOI: 10.1080/07391102.2012.732342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Skerlj R, Bridger G, Zhou Y, Bourque E, McEachern E, Metz M, Harwig C, Li TS, Yang W, Bogucki D, Zhu Y, Langille J, Veale D, Ba T, Bey M, Baird I, Kaller A, Krumpak M, Leitch D, Satori M, Vocadlo K, Guay D, Nan S, Yee H, Crawford J, Chen G, Wilson T, Carpenter B, Gauthier D, Macfarland R, Mosi R, Bodart V, Wong R, Fricker S, Schols D. Design of substituted imidazolidinylpiperidinylbenzoic acids as chemokine receptor 5 antagonists: potent inhibitors of R5 HIV-1 replication. J Med Chem 2013; 56:8049-65. [PMID: 24090135 DOI: 10.1021/jm401101p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The redesign of the previously reported thiophene-3-yl-methyl urea series, as a result of potential cardiotoxicity, was successfully accomplished, resulting in the identification of a novel potent series of CCR5 antagonists containing the imidazolidinylpiperidinyl scaffold. The main redesign criteria were to reduce the number of rotatable bonds and to maintain an acceptable lipophilicity to mitigate hERG inhibition. The structure-activity relationship (SAR) that was developed was used to identify compounds with the best pharmacological profile to inhibit HIV-1. As a result, five advanced compounds, 6d, 6e, 6i, 6h, and 6k, were further evaluated for receptor selectivity, antiviral activity against CCR5 using (R5) HIV-1 clinical isolates, and in vitro and in vivo safety. On the basis of these results, 6d and 6h were selected for further development.
Collapse
Affiliation(s)
- Renato Skerlj
- LGCR Unit, Sanofi , 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abuelsaad ASA, Al-Ghamdi AS, Al-Ghamdi AN, Alakkas EA, Alsulaimani AA, Al-Harthi AA, Abdel-Moneim AS. Detection of new mutant sites of HIV-1 coreceptor CCR5 among Saudi populations. J Interferon Cytokine Res 2013; 33:783-9. [PMID: 23742258 DOI: 10.1089/jir.2013.0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genetic association of CCR5 with human immunodeficiency virus-1 (HIV-1) pathogenesis is well known. The HIV-1 entry into target cells is initiated by the binding of the viral envelope glycoproteins (gp120-gp41) with the cell surface receptor (CD4) and the coreceptor (CCR5), followed by fusion of the viral and cell membranes. Genetic variants of the gene-encoding HIV-1 coreceptor are implicated in the susceptibility to HIV-1 infection. The prevalence of these mutations may vary according to population ethnicity. In the current study, characterization and frequency distribution of the HIV-related gene variants in 135 samples of the Saudi populations were conducted. Polymerase chain reaction (PCR) of 276 bp amplicons was used to rapidly detect Δ32 deletion in the initial sample of DNA. The direct sequence of 2 overlapping PCR amplicons flanking 1,059 bp was used to detect single-nucleotide polymorphisms. A single hetrozygous Δ32 deletion allele and 6 single-nucleotide polymorphisms were detected. Only one of the identified haplotypes, Taif-1, which was found in the majority of the tested sample, is identical to CCR5 wild-type alleles. Furthermore, the results of this study raised a concern about the prospective role of the mutations detected among Saudi nationals in the HIV pathogenesis and the clinical use of CCR5 antagonists, which are currently being developed as therapeutics for HIV-1 and inflammatory diseases.
Collapse
|
18
|
Identifying chemicals with potential therapy of HIV based on protein-protein and protein-chemical interaction network. PLoS One 2013; 8:e65207. [PMID: 23762317 PMCID: PMC3675210 DOI: 10.1371/journal.pone.0065207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/23/2013] [Indexed: 12/27/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is a severe infectious disease that causes a large number of deaths every year. Traditional anti-AIDS drugs directly targeting the HIV-1 encoded enzymes including reverse transcriptase (RT), protease (PR) and integrase (IN) usually suffer from drug resistance after a period of treatment and serious side effects. In recent years, the emergence of numerous useful information of protein-protein interactions (PPI) in the HIV life cycle and related inhibitors makes PPI a new way for antiviral drug intervention. In this study, we identified 26 core human proteins involved in PPI between HIV-1 and host, that have great potential for HIV therapy. In addition, 280 chemicals that interact with three HIV drugs targeting human proteins can also interact with these 26 core proteins. All these indicate that our method as presented in this paper is quite promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for identifying novel anti-HIV drugs.
Collapse
|
19
|
Rummel PC, Arfelt KN, Baumann L, Jenkins TJ, Thiele S, Lüttichau HR, Johnsen A, Pease J, Ghosh S, Kolbeck R, Rosenkilde MM. Molecular requirements for inhibition of the chemokine receptor CCR8--probe-dependent allosteric interactions. Br J Pharmacol 2013; 167:1206-17. [PMID: 22708643 DOI: 10.1111/j.1476-5381.2012.02076.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Here we present a novel series of CCR8 antagonists based on a naphthalene-sulfonamide structure. This structure differs from the predominant pharmacophore for most small-molecule CC-chemokine receptor antagonists, which in fact activate CCR8, suggesting that CCR8 inhibition requires alternative structural probes. EXPERIMENTAL APPROACH The compounds were tested as inverse agonists and as antagonists against CCL1-induced activity in Gα(i) signalling and chemotaxis. Furthermore, they were assessed by heterologous competition binding against two radiolabelled receptor ligands: the endogenous agonist CCL1 and the virus-encoded antagonist MC148. KEY RESULTS All compounds were highly potent inverse agonists with EC(50) values from 1.7 to 23 nM. Their potencies as antagonists were more widely spread (EC(50) values from 5.9 to 1572 nM). Some compounds were balanced antagonists/inverse agonists whereas others were predominantly inverse agonists with >100-fold lower potency as antagonists. A correspondingly broad range of affinities, which followed the antagonist potencies, was disclosed by competition with [(125)I]-CCL1 (K(i) 3.4-842 nM), whereas the affinities measured against [(125)I]-MC148 were less widely spread (K(i) 0.37-27 nM), and matched the inverse agonist potencies. CONCLUSION AND IMPLICATIONS Despite highly potent and direct effects as inverse agonists, competition-binding experiments against radiolabelled agonist and tests for antagonism revealed a probe-dependent allosteric effect of these compounds. Thus, minor chemical changes affected the ability to modify chemokine binding and action, and divided the compounds into two groups: predominantly inverse agonists and balanced antagonists/inverse agonists. These studies have important implications for the design of new inverse agonists with or without antagonist properties.
Collapse
Affiliation(s)
- P C Rummel
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gadhe CG, Kothandan G, Cho SJ. Binding site exploration of CCR5 using in silico methodologies: a 3D-QSAR approach. Arch Pharm Res 2013; 36:6-31. [DOI: 10.1007/s12272-013-0001-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Liu T, Weng Z, Dong X, Chen L, Ma L, Cen S, Zhou N, Hu Y. Design, synthesis and biological evaluation of novel piperazine derivatives as CCR5 antagonists. PLoS One 2013; 8:e53636. [PMID: 23308267 PMCID: PMC3538727 DOI: 10.1371/journal.pone.0053636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
By using a fragment-assembly strategy and bioisosteric-replacement principle, a series of novel piperazine derivatives were designed, synthesized, and evaluated for their cellular target-effector fusion activities and in vitro antiviral activities against HIV-1. Preliminary structure-activity relationships (SARs) of target compounds were concluded in this study, and five compounds were found to exhibited medium to potent CCR5 fusion activities with IC(50) values in low micromolar level. Among evaluated compounds, 23 h was found to be a CCR5 antagonist with an IC(50) value of 6.29 µM and an anti-HIV-1 inhibitor with an IC(50) value of 0.44 µM.
Collapse
Affiliation(s)
- Tao Liu
- Zhejiang University-École Normale Supérieure Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (TL); (NZ); (YH)
| | - Zhiyong Weng
- Zhejiang University-École Normale Supérieure Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowu Dong
- Zhejiang University-École Normale Supérieure Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linjie Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ling Ma
- Insititute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Beijing, China
| | - Shan Cen
- Insititute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Beijing, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (TL); (NZ); (YH)
| | - Yongzhou Hu
- Zhejiang University-École Normale Supérieure Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (TL); (NZ); (YH)
| |
Collapse
|
22
|
Dong MX, Lu L, Li H, Wang X, Lu H, Jiang S, Dai QY. Design, synthesis, and biological activity of novel 1,4-disubstituted piperidine/piperazine derivatives as CCR5 antagonist-based HIV-1 entry inhibitors. Bioorg Med Chem Lett 2012; 22:3284-6. [DOI: 10.1016/j.bmcl.2012.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|
23
|
Kothandan G, Gadhe CG, Cho SJ. Structural insights from binding poses of CCR2 and CCR5 with clinically important antagonists: a combined in silico study. PLoS One 2012; 7:e32864. [PMID: 22479344 PMCID: PMC3314010 DOI: 10.1371/journal.pone.0032864] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å), we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2) and Glu283 (CCR5) are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design.
Collapse
Affiliation(s)
- Gugan Kothandan
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju, Korea
| | - Changdev G. Gadhe
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju, Korea
| | - Seung Joo Cho
- Department of Bio-New Drug Development, College of Medicine, Chosun University, Gwangju, Korea
- Department of Cellular Molecular Medicine, Research Center for Resistant Cells, College of Medicine, Chosun University, Gwangju, Korea
- * E-mail:
| |
Collapse
|
24
|
Metz M, Bourque E, Labrecque J, Danthi SJ, Langille J, Harwig C, Yang W, Darkes MC, Lau G, Santucci Z, Bridger GJ, Schols D, Fricker SP, Skerlj RT. Prospective CCR5 small molecule antagonist compound design using a combined mutagenesis/modeling approach. J Am Chem Soc 2011; 133:16477-85. [PMID: 21942640 DOI: 10.1021/ja2043722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The viral resistance of marketed antiviral drugs including the emergence of new viral resistance of the only marketed CCR5 entry inhibitor, maraviroc, makes it necessary to develop new CCR5 allosteric inhibitors. A mutagenesis/modeling approach was used (a) to remove the potential hERG liability in an otherwise very promising series of compounds and (b) to design a new class of compounds with an unique mutant fingerprint profile depending on residues in the N-terminus and the extracellular loop 2. On the basis of residues, which were identified by mutagenesis as key interaction sites, binding modes of compounds were derived and utilized for compound design in a prospective manner. The compounds were then synthesized, and in vitro evaluation not only showed that they had good antiviral potency but also fulfilled the requirement of low hERG inhibition, a criterion necessary because a potential approved drug would be administered chronically. This work utilized an interdisciplinary approach including medicinal chemistry, molecular biology, and computational chemistry merging the structural requirements for potency with the requirements of an acceptable in vitro profile for allosteric CCR5 inhibitors. The obtained mutant fingerprint profiles of CCR5 inhibitors were used to translate the CCR5 allosteric binding site into a general pharmacophore, which can be used for discovering new inhibitors.
Collapse
Affiliation(s)
- Markus Metz
- Department of Medicinal Chemistry, Genzyme Corporation, 153 Second Avenue, Waltham, Massachusetts 02451, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Labrecque J, Metz M, Lau G, Darkes MC, Wong RSY, Bogucki D, Carpenter B, Chen G, Li T, Nan S, Schols D, Bridger GJ, Fricker SP, Skerlj RT. HIV-1 entry inhibition by small-molecule CCR5 antagonists: a combined molecular modeling and mutant study using a high-throughput assay. Virology 2011; 413:231-43. [PMID: 21388649 DOI: 10.1016/j.virol.2011.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/13/2011] [Accepted: 02/18/2011] [Indexed: 02/01/2023]
Abstract
Based on the attrition rate of CCR5 small molecule antagonists in the clinic the discovery and development of next generation antagonists with an improved pharmacology and safety profile is necessary. Herein, we describe a combined molecular modeling, CCR5-mediated cell fusion, and receptor site-directed mutagenesis approach to study the molecular interactions of six structurally diverse compounds (aplaviroc, maraviroc, vicriviroc, TAK-779, SCH-C and a benzyloxycarbonyl-aminopiperidin-1-yl-butane derivative) with CCR5, a coreceptor for CCR5-tropic HIV-1 strains. This is the first study using an antifusogenic assay, a model of the interaction of the gp120 envelope protein with CCR5. This assay avoids the use of radioactivity and HIV infection assays, and can be used in a high throughput mode. The assay was validated by comparison with other established CCR5 assays. Given the hydrophobic nature of the binding pocket several binding models are suggested which could prove useful in the rational drug design of new lead compounds.
Collapse
Affiliation(s)
- Jean Labrecque
- Department of Biology, AnorMED Inc. now Genzyme Corporation, 500 Kendall Street, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Weng Z, Gao Y, Zhang J, Dong X, Liu T. Synthesis and biological evaluation of novel n-[3-(4-phenylpip-erazin-1-yl)-propyl]-carboxamide derivatives. JOURNAL OF CHEMICAL RESEARCH 2011. [DOI: 10.3184/174751911x12964930076725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of novel N-[3-(4-phenylpiperazin-1-yl)-propyl]-carboxamide derivatives were synthesised and studied for the potential treatment of HIV. These compounds were obtained through the efficient synthetic route that involved microwave assisted synthesis. These new compounds have been characterised by IR, 1H NMR, MS and elemental analysis. The cell–cell fusion inhibitory activities of the compounds have also been evaluated.
Collapse
Affiliation(s)
- Zhiyong Weng
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yanping Gao
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiankang Zhang
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaowu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
27
|
Westby M, van der Ryst E. CCR5 antagonists: host-targeted antiviral agents for the treatment of HIV infection, 4 years on. Antivir Chem Chemother 2010; 20:179-92. [PMID: 20413825 DOI: 10.3851/imp1507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chemokine coreceptor 5 (CCR5) antagonists are antiretroviral agents with an extracellular, host-targeted mechanism of action against HIV. Maraviroc, the first-in-class CCR5 antagonist, received regulatory approval in 2007, becoming the first oral antiretroviral from a new class in more than 10 years. Other compounds in this class are in various stages of clinical development. In 2005, we reviewed the limited clinical data then available on CCR5 antagonists. In this follow-up review, we revisit the field and assess the clinical and virological data that have emerged in the 4 years since, with particular reference to maraviroc for which the most comprehensive data currently exist.
Collapse
Affiliation(s)
- Mike Westby
- Pfizer Global Research and Development, Sandwich, Kent, UK.
| | | |
Collapse
|
28
|
Efficient synthesis and identification of novel propane-1,3-diamino bridged CCR5 antagonists with variation on the basic center carrier. Eur J Med Chem 2010; 45:2827-40. [PMID: 20347189 DOI: 10.1016/j.ejmech.2010.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/25/2010] [Accepted: 03/02/2010] [Indexed: 11/21/2022]
Abstract
By employing pharmacophore-based design and the privileged fragments reassembly, a series of piperidine-/tropane-/piperazine-bridged CCR5 antagonists were designed and synthesized via an efficient convergent synthesis strategy, with focus on the optimal choice of the basic center carrier structure. Significantly, the 4-amino-4-methylpiperidine bridged 1-acyl-1,3-propanediamine compounds were identified as a new class of nanomolar CCR5 antagonists, providing an efficient approach and novel scaffolds for further development of potent CCR5 inhibitors.
Collapse
|
29
|
Clinical resistance to vicriviroc through adaptive V3 loop mutations in HIV-1 subtype D gp120 that alter interactions with the N-terminus and ECL2 of CCR5. Virology 2010; 400:145-55. [PMID: 20172579 DOI: 10.1016/j.virol.2010.01.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/23/2010] [Accepted: 01/29/2010] [Indexed: 11/23/2022]
Abstract
The HIV-1 CCR5 co-receptor is a member of the chemokine receptor family of G-protein coupled receptors; for which a number of small molecule antagonists, such as vicriviroc (VCV), have been developed to inhibit HIV-1 R5-tropic replication. In this study, we analyzed an HIV-1 subtype D envelope gene from a clinical trial subject who developed complete resistance to VCV. The HIV-1 resistant envelope has six predominant amino acid changes in the V3 loop, together with one change in the C4 domain of gp120, which are fully responsible for the resistance phenotype. V3 loop mutations Q315E and R321G are essential for resistance to VCV, whereas E328K and G429R in C4 contribute significantly to the infectivity of the resistant variant. Collectively, these amino acid changes influenced the interaction of gp120 with both the N-terminus and ECL2 region of CCR5.
Collapse
|
30
|
A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer. J Virol 2010; 84:3147-61. [PMID: 20089638 DOI: 10.1128/jvi.02587-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with the primary receptor, CD4, results in the exposure of the gp120 third variable (V3) loop, which contributes to binding the CCR5 or CXCR4 chemokine receptors. We show here that insertions in the V3 stem or polar substitutions in a conserved hydrophobic patch near the V3 tip result in decreased gp120-gp41 association (in the unliganded state) and decreased chemokine receptor binding (in the CD4-bound state). Subunit association and syncytium-forming ability of the envelope glycoproteins from primary HIV-1 isolates were disrupted more by V3 changes than those of laboratory-adapted HIV-1 envelope glycoproteins. Changes in the gp120 beta2, beta19, beta20, and beta21 strands, which evidence suggests are proximal to the V3 loop in unliganded gp120, also resulted in decreased gp120-gp41 association. Thus, a gp120 element composed of the V3 loop and adjacent beta strands contributes to quaternary interactions that stabilize the unliganded trimer. CD4 binding dismantles this element, altering the gp120-gp41 relationship and rendering the hydrophobic patch in the V3 tip available for chemokine receptor binding.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The interaction of the beta-chemokine receptor CCR5 with the HIV-1 envelope glycoprotein gp120 is critical for viral entry. Therefore, CCR5 seems to be a promising target for inhibition of HIV-1 replication. A number of attempts have been made to identify small-molecule CCR5 antagonists as novel antiretroviral agents. This review focuses on recent advances of CCR5 antagonists in antiviral activity, safety, and pharmacokinetics in vitro and in vivo. RECENT FINDINGS Following the discovery of the first small-molecule CCR5 antagonist, TAK-779, a variety of molecules have been identified as novel CCR5 antagonists, such as SCH-C, vicriviroc, maraviroc, aplaviroc, TAK-220, and TAK-652. All compounds are orally bioavailable and have proved to be highly potent and selective inhibitors of CCR5 using (R5) HIV-1 replication in cell cultures. Their biochemical and pharmacokinetic profiles, however, differ. Clinical studies of three compounds (vicriviroc, maraviroc, and aplaviroc) have been performed, and considerable reduction of plasma viral load in R5 HIV-1-infected patients has been achieved. SUMMARY CCR5 antagonists are a novel class of antiretroviral agents and they are active against a wide range of R5 HIV-1. Most of the CCR5 antagonists subjected to clinical trials are well tolerated and have shown efficacy in HIV-1-infected patients.
Collapse
|
32
|
Carrieri A, Pérez-Nueno VI, Fano A, Pistone C, Ritchie DW, Teixidó J. Biological profiling of anti-HIV agents and insight into CCR5 antagonist binding using in silico techniques. ChemMedChem 2009; 4:1153-63. [PMID: 19544518 DOI: 10.1002/cmdc.200900101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular requirements and determinants for efficient binding to CCR5 were interpreted by computational techniques based on comparative receptor structure modeling, advanced 3D-QSAR, docking, and shape-based virtual screening of commercially available entry blockers. Results of this study may be valuable for predicting new HIV entry-blocking leads.Acquired immune deficiency syndrome (AIDS) is responsible for more than 31 million deaths, and many more people are affected by this disease worldwide. Novel ligands that are capable of blocking virus-cell fusion are emerging as promising candidate molecules against HIV-1 infection because they have the promise to overcome the major drawbacks of classical highly active antiretroviral (HAART) drugs. However, structure-based design continues to be hampered owing to the paucity of experimentally determined 3D information about HIV-1 cell-surface co-receptors. Using computational techniques based on comparative receptor structure modeling, advanced 3D-QSAR, and protein-ligand docking, we present recent results that define updated molecular requirements and determinants for efficient binding of small-molecule ligands to CCR5, a principal biological target for HIV entry blockers. These results are compared with shape- and property-based virtual screening results for commercially available entry blockers, and will be valuable for predicting new HIV entry-blocking leads.
Collapse
Affiliation(s)
- Antonio Carrieri
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Structure-function analysis of human immunodeficiency virus type 1 gp120 amino acid mutations associated with resistance to the CCR5 coreceptor antagonist vicriviroc. J Virol 2009; 83:12151-63. [PMID: 19776131 DOI: 10.1128/jvi.01351-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vicriviroc (VCV) is a small-molecule CCR5 coreceptor antagonist currently in clinical trials for treatment of R5-tropic human immunodeficiency virus type 1 (HIV-1) infection. With this drug in development, identification of resistance mechanisms to VCV is needed to allow optimal outcomes in clinical practice. In this study we further characterized VCV resistance in a lab-adapted, VCV-resistant RU570 virus (RU570-VCV(res)). We show that K305R, R315Q, and K319T amino acid changes in the V3 loop, along with P437S in C4, completely reproduced the resistance phenotype in a chimeric ADA envelope containing the C2-V5 region from RU570 passage control gp120. The K305R amino acid change primarily impacted the degree of resistance, whereas K319T contributed to both resistance and virus infectivity. The P437S mutation in C4 had more influence on the relative degree of virus infectivity, while the R315Q mutation contributed to the virus concentration-dependent phenotypic resistance pattern observed for RU570-VCV(res). RU570-VCV(res) pseudovirus entry with VCV-bound CCR5 was dramatically reduced by Y10A, D11A, Y14A, and Y15A mutations in the N terminus of CCR5, whereas these mutations had less impact on entry in the absence of VCV. Notably, an additional Q315E/I317F substitution in the crown region of the V3 loop enhanced resistance to VCV, resulting in a stronger dependence on the N terminus for viral entry. By fitting the envelope mutations to a molecular model of a recently described docked N-terminal CCR5 peptide consisting of residues 2 to 15 in complex with HIV-1 gp120 CD4, potential new interactions in gp120 with the N terminus of CCR5 were uncovered. The cumulative results of this study suggest that as the RU570 VCV-resistant virus adapted to use the drug-bound receptor, it also developed an increased reliance on the N terminus of CCR5.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Small molecule inhibitors targeting the CCR5 coreceptor represent a new class of drugs for treating HIV-1 infection. Maraviroc has received regulatory approvals, and vicriviroc is in phase 3 trials. Understanding how resistance to these drugs develops and is diagnosed is essential to guide clinical practice. We review what has been learned from in-vitro resistance studies, and how this relates to what is being seen, or can be anticipated, in clinical studies. RECENT FINDINGS The principal resistance pathway in vitro involves continued use of CCR5 in an inhibitor-insensitive manner; the resistant viruses recognize the inhibitor-CCR5 complex, as well as free CCR5. Switching to use the CXCR4 coreceptor is rare. The principal genetic pathway involves accumulating 2-4 sequence changes in the gp120 V3 region, but a non-V3 pathway is also known. The limited information available from clinical studies suggests that a similar escape process is followed in vivo. However, the most common change associated with virologic failure involves expansion of pre-existing, CXCR4-using viruses that are insensitive to CCR5 inhibitors. SUMMARY HIV-1 escapes small molecule CCR5 inhibitors by continuing to use CCR5 in an inhibitor-insensitive manner, or evades them by expanding naturally insensitive, CXCR4-using variants.
Collapse
Affiliation(s)
- John P Moore
- Weill Medical College of Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
35
|
Abstract
The entry of viruses into target cells involves a complex series of sequential steps, with opportunities for inhibition at every stage. Entry inhibitors exert their biological properties by inhibiting protein-protein interactions either within the viral envelope (Env) glycoproteins or between viral Env and host-cell receptors. The nature of resistance to entry inhibitors also differs from compounds inhibiting enzymatic targets due to their different modes of action and the relative variability in Env sequences both temporally and between patients. Two drugs that target HIV-1 entry, enfuvirtide and maraviroc, are now licensed for treatment of HIV-1 infection. The efficacy of these drugs validates entry as a point of intervention in viral life cycles and, in the context of HIV treatment, contributes to the growing armamentarium of antivirals which, in multidrug combinations, can effectively inhibit viral replication and prevent disease progression.
Collapse
Affiliation(s)
- Tom Melby
- Clinical Virology Associates, 101 E. Ellerbee St. Durham, NC 27704, USA.
| | | |
Collapse
|
36
|
Jacobson JM, Saag MS, Thompson MA, Fischl MA, Liporace R, Reichman RC, Redfield RR, Fichtenbaum CJ, Zingman BS, Patel MC, Murga JD, Pemrick SM, D'Ambrosio P, Michael M, Kroger H, Ly H, Rotshteyn Y, Buice R, Morris SA, Stavola JJ, Maddon PJ, Kremer AB, Olson WC. Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected adults. J Infect Dis 2008; 198:1345-52. [PMID: 18771406 DOI: 10.1086/592169] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The current goal of human immunodeficiency virus type 1 (HIV-1) therapy is to maximally suppress viral replication. Securing this goal requires new drugs and treatment classes. The chemokine receptor CCR5 provides an entry portal for HIV-1, and PRO 140 is a humanized monoclonal antibody that binds to CCR5 and potently inhibits CCR5-tropic (R5) HIV-1 in vitro. METHODS A randomized, double-blind, placebo-controlled, dose-escalating study was conducted in 39 individuals with HIV-1 RNA levels or =5000 copies/mL, CD4(+) cell counts > or =250 cells/microL, no antiretroviral therapy for 3 months, and only R5 HIV-1 detectable. Cohorts were randomized 3:10 to receive placebo or doses of PRO 140 of 0.5, 2, or 5 mg/kg. Subjects were monitored for 58 days for safety, antiviral effects, and serum concentrations of PRO 140. RESULTS PRO 140 was generally well tolerated and demonstrated potent, rapid, prolonged, and dose-dependent antiviral activity. Mean reductions in HIV-1 RNA level of 0.58 log(10), 1.20 log(10) (P= .0002) and 1.83 log(10) (P= .0001) were observed for the 0.5-, 2-, and 5-mg/kg dose groups, respectively. Reductions in mean viral load of > or =10-fold were observed within 4 days and persisted for 2-3 weeks after treatment. CONCLUSIONS This trial established clear proof of concept for PRO 140 as a potent antiretroviral agent with extended activity after a single dose. TRIAL REGISTRATION ISRCTN Register: ISRCTN45537485 .
Collapse
|
37
|
Muniz-Medina VM, Jones S, Maglich JM, Galardi C, Hollingsworth RE, Kazmierski WM, Ferris RG, Edelstein MP, Chiswell KE, Kenakin TP. The relative activity of "function sparing" HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property? Mol Pharmacol 2008; 75:490-501. [PMID: 19064629 DOI: 10.1124/mol.108.052555] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Six allosteric HIV-1 entry inhibitor modulators of the chemokine (C-C motif) receptor 5 (CCR5) receptor are compared for their potency as inhibitors of HIV-1 entry [infection of human osteosarcoma (HOS) cells and peripheral blood mononuclear cells (PBMC)] and antagonists of chemokine (C-C motif) ligand 3-like 1 [CCL3L1]-mediated internalization of CCR5. This latter activity has been identified as a beneficial action of CCL3L1 in prolonging survival after HIV-1 infection ( Science 307: 1434-1440, 2005 ). The allosteric nature of these modulators was further confirmed with the finding of a 58-fold (HOS cells) and 282-fold (PBMC) difference in relative potency for blockade of CCL3L1-mediated internalization versus HIV-1 entry. For the CCR5 modulators, statistically significant differences in this ratio were found for maraviroc, vicriviroc, aplaviroc, Sch-C, TAK652, and TAK779. For instance, although TAK652 is 13-fold more potent as an HIV-1 inhibitor (over blockade of CCL3L1-mediated CCR5 internalization), this ratio of potency is reversed for Sch-C (22-fold more potent for CCR5-mediated internalization over HIV-1 entry). Quantitative analyses of the insurmountable antagonism of CCR5 internalization by these ligands suggest that all of them reduce the efficacy of CCL3L1 for CCR5 internalization. The relatively small magnitude of dextral displacement accompanying the depression of maximal responses for aplaviroc, maraviroc and vicriviroc suggests that these modulators have minimal effects on CCL3L1 affinity, although possible receptor reserve effects obscure complete interpretation of this effect. These data are discussed in terms of the possible benefits of sparing natural CCR5 chemokine function in HIV-1 entry inhibition treatment for AIDS involving allosteric inhibitors.
Collapse
Affiliation(s)
- Vanessa M Muniz-Medina
- Infectious Diseases Discovery Performance Unit, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pérez-Nueno VI, Ritchie DW, Borrell JI, Teixidó J. Clustering and Classifying Diverse HIV Entry Inhibitors Using a Novel Consensus Shape-Based Virtual Screening Approach: Further Evidence for Multiple Binding Sites within the CCR5 Extracellular Pocket. J Chem Inf Model 2008; 48:2146-65. [DOI: 10.1021/ci800257x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Violeta I. Pérez-Nueno
- Grup d’Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain, Department of Computing Science, King’s College, University of Aberdeen, Aberdeen, U.K
| | - David W. Ritchie
- Grup d’Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain, Department of Computing Science, King’s College, University of Aberdeen, Aberdeen, U.K
| | - Jose I. Borrell
- Grup d’Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain, Department of Computing Science, King’s College, University of Aberdeen, Aberdeen, U.K
| | - Jordi Teixidó
- Grup d’Enginyeria Molecular, Institut Químic de Sarriá (IQS), Universitat Ramon Llull, Barcelona, Spain, Department of Computing Science, King’s College, University of Aberdeen, Aberdeen, U.K
| |
Collapse
|
39
|
Wong RSY, Bodart V, Metz M, Labrecque J, Bridger G, Fricker SP. Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol Pharmacol 2008; 74:1485-95. [PMID: 18768385 DOI: 10.1124/mol.108.049775] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CXC chemokine receptor (CXCR)4 is an HIV coreceptor and a chemokine receptor that plays an important role in several physiological and pathological processes, including hematopoiesis, leukocyte homing and trafficking, metastasis, and angiogenesis. This receptor belongs to the class A family of G protein-coupled receptors and is a validated target for the development of a new class of antiretroviral therapeutics. This study compares the interactions of three structurally diverse small-molecule CXCR4 inhibitors with the receptor and is the first report of the molecular interactions of the nonmacrocyclic CXCR4 inhibitor (S)-N'-(1H-benzimidazol-2-ylmethyl)-N'-(5,6,7,8-tetrahydroquinolin-8-yl)butene-1,4-diamine (AMD11070). Fourteen CXCR4 single-site mutants representing amino acid residues that span the entire putative ligand binding pocket were used in this study. These mutants were used in binding studies to examine how each single-site mutation affected the ability of the inhibitors to compete with (125)I-stromal-derived factor-1alpha binding. Our data suggest that these CXCR4 inhibitors bind to overlapping but not identical amino acid residues in the transmembrane regions of the receptor. In addition, our results identified amino acid residues that are involved in unique interactions with two of the CXCR4 inhibitors studied. These data suggest an extended binding pocket in the transmembrane regions close to the second extracellular loop of the receptor. Based on site-directed mutagenesis and molecular modeling, several potential binding modes were proposed for each inhibitor. These mechanistic studies might prove to be useful for the development of future generations of CXCR4 inhibitors with improved clinical pharmacology and safety profiles.
Collapse
|
40
|
Synthesis and biological evaluation of 1,3,3,4-tetrasubstituted pyrrolidine CCR5 receptor antagonists. Discovery of a potent and orally bioavailable anti-HIV agent. ChemMedChem 2008; 2:187-93. [PMID: 17163560 DOI: 10.1002/cmdc.200600182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A series of 1,3,3,4-tetrasubstituted pyrrolidine containing CCR5 receptor antagonists were designed, which were elaborated either by condensation of a lithium salt of 3-(N,N-dibenzyl)aminopropionic acid methyl ester with ethyl benzoformate or by Baylis-Hillman reaction of ethyl acrylate with ethyl benzoformate and subsequent 1,4-addition of benzylamine, in the key steps. These compounds bearing 4-(N,N-disubstituted)amino piperidine units showed low nanomolar potency against the CCR5 receptor, whereas molecules with a 4-phenylpiperidine moiety displayed poor activity. Asymmetric synthesis of the most potent compound 23 a gave rise to the (3R,4S)-enantiomer 30 and the (3S,4R)-enantiomer 31, which showed IC(50) values of 2.9 and 385.9 nM, respectively. These results indicated that (3R,4S)-configuration in the series of compounds is favored for their interaction with the CCR5 receptor. The possible binding mode of these antagonists with the CCR5 receptor was discussed using a computer-modeling method. Compound 30 displayed excellent replication inhibition of seven genetically diverse R5 HIV-1 strains in the PBMC model, in a concentration-dependent manner with EC(50) values ranging from 0.3 nM to 30 nM. This molecule showed oral bioavailabilities of 41.2 % and 21.6 % in rats and dogs, respectively. Thus, compound 30 is a promising candidate for the treatment of HIV-1 infection.
Collapse
|
41
|
Maeda K, Das D, Yin PD, Tsuchiya K, Ogata-Aoki H, Nakata H, Norman RB, Hackney LA, Takaoka Y, Mitsuya H. Involvement of the second extracellular loop and transmembrane residues of CCR5 in inhibitor binding and HIV-1 fusion: insights into the mechanism of allosteric inhibition. J Mol Biol 2008; 381:956-74. [PMID: 18590744 DOI: 10.1016/j.jmb.2008.06.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/25/2022]
Abstract
C-C chemokine receptor 5 (CCR5), a member of G-protein-coupled receptors, serves as a coreceptor for human immunodeficiency virus type 1 (HIV-1). In the present study, we examined the interactions between CCR5 and novel CCR5 inhibitors containing the spirodiketopiperazine scaffolds AK530 and AK317, both of which were lodged in the hydrophobic cavity located between the upper transmembrane domain and the second extracellular loop (ECL2) of CCR5. Although substantial differences existed between the two inhibitors--AK530 had 10-fold-greater CCR5-binding affinity (K(d)=1.4 nM) than AK317 (16.7 nM)-their antiviral potencies were virtually identical (IC(50)=2.1 nM and 1.5 nM, respectively). Molecular dynamics simulations for unbound CCR5 showed hydrogen bond interactions among transmembrane residues Y108, E283, and Y251, which were crucial for HIV-1-gp120/sCD4 complex binding and HIV-1 fusion. Indeed, AK530 and AK317, when bound to CCR5, disrupted these interhelix hydrogen bond interactions, a salient molecular mechanism enabling allosteric inhibition. Mutagenesis and structural analysis showed that ECL2 consists of a part of the hydrophobic cavity for both inhibitors, although AK317 is more tightly engaged with ECL2 than AK530, explaining their similar anti-HIV-1 potencies despite the difference in K(d) values. We also found that amino acid residues in the beta-hairpin structural motif of ECL2 are critical for HIV-1-elicited fusion and binding of the spirodiketopiperazine-based inhibitors to CCR5. The direct ECL2-engaging property of the inhibitors likely produces an ECL2 conformation, which HIV-1 gp120 cannot bind to, but also prohibits HIV-1 from utilizing the "inhibitor-bound" CCR5 for cellular entry--a mechanism of HIV-1's resistance to CCR5 inhibitors. The data should not only help delineate the dynamics of CCR5 following inhibitor binding but also aid in designing CCR5 inhibitors that are more potent against HIV-1 and prevent or delay the emergence of resistant HIV-1 variants.
Collapse
Affiliation(s)
- Kenji Maeda
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Shawn E. Kuhmann
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021
| | - Oliver Hartley
- Department of Structural Biology and Bioinformatics, Centre Médical Universitaire, 1211 Geneva 4, Switzerland;
| |
Collapse
|
43
|
Abstract
BACKGROUND HIV-1 coreceptor switch from CCR5 to CXCR4 is associated with disease progression and AIDS. Selection of resistant HIV-1 to CCR5 agents in cell culture has often occurred in the absence of coreceptor switch. With CCR5 antagonists currently in clinical trials, their impact on coreceptor use is still in doubt. METHODS Six R5 HIV-1 strains were passaged in lymphoid cells expressing high CXCR4 and low CCR5, in the absence or presence of CCR5 inhibitors (TAK-779, mAb 2D7 and CCL5). AMD3100, zidovudine and lamivudine were used as controls. Phenotype and genotype changes as well as virus coreceptor use were evaluated. RESULTS In the absence of drug pressure, three out of six strains expanded their coreceptor use to CXCR4 at different times, suggesting that not all virus strains had the capacity to do so. Lowering the replication rate with a suboptimal concentration of different anti-HIV agents (reverse transcriptase inhibitors or CCR5 agents) delayed coreceptor switch. However, virus breakthrough was observed earlier in the presence of CCR5-targeting agents than in presence of reverse transcriptase inhibitors and was associated with a change in sensitivity to TAK-779 or AMD3100, virus coreceptor expansion to CXCR4 and changes in the V3 loop region of gp120. CONCLUSION Our results suggest that HIV-1 may escape CCR5 drug pressure through coreceptor switch. Experimental conditions strongly determine the outcome of CCR5 drug pressure in cell culture. A cell culture model of the evolution of HIV-1 coreceptor use may be relevant to assess the propensity of clinical isolates to develop resistance through coreceptor change.
Collapse
|
44
|
Strizki J. Targeting HIV attachment and entry for therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:93-120. [PMID: 18086410 DOI: 10.1016/s1054-3589(07)56004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Julie Strizki
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| |
Collapse
|
45
|
Kondru R, Zhang J, Ji C, Mirzadegan T, Rotstein D, Sankuratri S, Dioszegi M. Molecular interactions of CCR5 with major classes of small-molecule anti-HIV CCR5 antagonists. Mol Pharmacol 2007; 73:789-800. [PMID: 18096812 DOI: 10.1124/mol.107.042101] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In addition to being an important receptor in leukocyte activation and mobilization, CCR5 is the essential coreceptor for human immunodeficiency virus (HIV). A large number of small-molecule CCR5 antagonists have been reported that show potent activities in blocking chemokine function and HIV entry. To facilitate the design and development of next generation CCR5 antagonists, docking models for major classes of CCR5 antagonists were created by using site-directed mutagenesis and CCR5 homology modeling. Five clinical candidates: maraviroc, vicriviroc, aplaviroc, TAK-779, and TAK-220 were used to establish the nature of the binding pocket in CCR5. Although the five antagonists are very different in structure, shape, and electrostatic potential, they were able to fit in the same binding pocket formed by the transmembrane (TM) domains of CCR5. It is noteworthy that each antagonist displayed a unique interaction profile with amino acids lining the pocket. Except for TAK-779, all antagonists showed strong interaction with Glu283 in TM 7 via their central basic nitrogen. The fully mapped binding pocket of CCR5 is being used for structure-based design and lead optimization of novel anti-HIV CCR5 inhibitors with improved potency and better resistance profile.
Collapse
Affiliation(s)
- Rama Kondru
- Department of Medicinal Chemistry, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Huber M, Olson WC, Trkola A. Antibodies for HIV treatment and prevention: window of opportunity? Curr Top Microbiol Immunol 2007; 317:39-66. [PMID: 17990789 DOI: 10.1007/978-3-540-72146-8_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Monoclonal antibodies are routinely used as therapeutics in a number of disease settings and have thus also been explored as potential treatment for human immunodeficiency virus (HIV)-1 infection. Antibodies targeting viral antigens, and those directed to the cellular receptors, have been considered for use in prevention and therapy. For virus-targeted antibodies, attention has focused primarily on their neutralizing activity, but such antibodies also have the potential to exert antiviral effects via effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), opsonization, or complement activation. Anti-cell antibodies act through occlusion or down-modulation of the viral receptors with notable impact in vivo, as recent trials have shown. This review summarizes the diverse specificities and modes of action of therapeutic antibodies against HIV-1 infection. Successes, challenges, and future opportunities of harnessing antibodies for therapy of HIV-1 infection are discussed.
Collapse
Affiliation(s)
- M Huber
- Division of Infectious Diseases, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | |
Collapse
|
47
|
Blakeney JS, Reid RC, Le GT, Fairlie DP. Nonpeptidic Ligands for Peptide-Activated G Protein-Coupled Receptors. Chem Rev 2007; 107:2960-3041. [PMID: 17622179 DOI: 10.1021/cr050984g] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jade S Blakeney
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
48
|
|
49
|
Chapter 19 Small Molecule CCR5 and CXCR4-Based Viral Entry Inhibitors for Anti-HIV Therapy Currently in Development. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2007. [DOI: 10.1016/s0065-7743(07)42019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
50
|
De Clercq E. Status Presens of Antiviral Drugs And Strategies: Part I: DNA Viruses and Retroviruses. ADVANCES IN ANTIVIRAL DRUG DESIGN 2007; 5:1-58. [PMID: 32288472 PMCID: PMC7146823 DOI: 10.1016/s1075-8593(06)05001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
More than 40 compounds have been formally licensed for clinical use as antiviral drugs, and half of these are used for the treatment of HIV infections. The others have been approved for the therapy of herpesvirus (HSV, VZV, CMV), hepadnavirus (HBV), hepacivirus (HCV) and myxovirus (influenza, RSV) infections. New compounds are in clinical development or under preclinical evaluation, and, again, half of these are targeting HIV infections. Yet, quite a number of important viral pathogens (i.e. HPV, HCV, hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
|