1
|
Rizzetto G, Gambini D, Maurizi A, Molinelli E, De Simoni E, Pallotta F, Brescini L, Cirioni O, Offidani A, Simonetti O, Giacometti A. The sources of antimicrobial peptides against Gram-positives and Gramnegatives: our research experience. LE INFEZIONI IN MEDICINA 2023; 31:306-322. [PMID: 37701381 PMCID: PMC10495054 DOI: 10.53854/liim-3103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 09/14/2023]
Abstract
Antibiotic resistance of Gram-positive and Gramnegative bacteria is becoming increasingly prevalent. For this reason, the search for new molecules that can overcome current resistance and also recover antibiotics that are no longer effective is becoming increasingly urgent. Our research group at the 'Polytechnic University of Marche' managed to study the effectiveness of certain antimicrobial peptides (AMPs). We decided to review our experience with AMPs by classifying them according to their origin and evaluating their effect on Gram-negative and Gram-positive bacteria. AMPs can derive from mammals, amphibians, microorganisms, and insects. In conclusion, our research experience shows that the richest source of AMPs are amphibians. However, the studies done are mainly in vitro or in animal models, requiring further human studies to assess the efficacy and safety of these molecules. AMPs may be a new therapeutic option for infections sustained by multi-resistant micro-organisms and for overcoming the mechanisms of resistance to antibiotics currently used. In particular, combining AMPs with antibiotics, including those with limited antimicrobial activity due to antimicrobial resistance, has often shown a synergistic effect, increasing or restoring their efficacy. The possibility of using manageable and relatively safe antibiotics again is crucial, considering the widespread increase in bacterial resistance in hospitals and the community. Despite a plethora of research on AMPs and their application as potential treatment on infectious diseases, this area needs further exploration. There is evidence that the characteristics of AMPs can seriously improve through structural chemical modifications and different delivery systems to become alternatives drugs to conventional antibiotics. The aim is to provide an overview of the possible sources from which AMPs are extracted, evaluating their action exclusively on Gram-positive and negative bacteria. This is to determine, based on our experience, which might be the most promising sources of AMPs for future research as well.
Collapse
Affiliation(s)
- Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Daisy Gambini
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Maurizi
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Pallotta
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brescini
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
2
|
Our Experience over 20 Years: Antimicrobial Peptides against Gram Positives, Gram Negatives, and Fungi. Pharmaceutics 2022; 15:pharmaceutics15010040. [PMID: 36678669 PMCID: PMC9862542 DOI: 10.3390/pharmaceutics15010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is rapidly increasing, and new anti-infective therapies are urgently needed. In this regard, antimicrobial peptides (AMPs) may represent potential candidates for the treatment of infections caused by multiresistant microorganisms. In this narrative review, we reported the experience of our research group over 20 years. We described the AMPs we evaluated against Gram-positive, Gram-negative, and fungi. In conclusion, our experience shows that AMPs can be a key option for treating multiresistant infections and overcoming resistance mechanisms. The combination of AMPs allows antibiotics and antifungals that are no longer effective to exploit the synergistic effect by restoring their efficacy. A current limitation includes poor data on human patients, the cost of some AMPs, and their safety, which is why studies on humans are needed as soon as possible.
Collapse
|
3
|
Rodrigues de Almeida N, Catazaro J, Krishnaiah M, Singh Chhonker Y, Murry DJ, Powers R, Conda-Sheridan M. Understanding interactions of Citropin 1.1 analogues with model membranes and their influence on biological activity. Peptides 2019; 119:170119. [PMID: 31336137 PMCID: PMC7161086 DOI: 10.1016/j.peptides.2019.170119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 01/03/2023]
Abstract
The rapid emergence of resistant bacterial strains has made the search for new antibacterial agents an endeavor of paramount importance. Cationic antimicrobial peptides (AMPs) have the ability to kill resistant pathogens while diminishing the development of resistance. Citropin 1.1 (Cit 1.1) is an AMP effective against a broad range of pathogens. 20 analogues of Cit 1.1 were prepared to understand how sequence variations lead to changes in structure and biological activity. Various analogues exhibited an increased antimicrobial activity relative to Cit 1.1. The two most promising, AMP-016 (W3F) and AMP-017 (W3F, D4R, K7R) presented a 2- to 8-fold increase in activity against MRSA (both = 4 μg/mL). AMP-017 was active against E. coli (4 μg/mL), K. pneumoniae (8 μg/mL), and A. baumannii (2 μg/mL). NMR studies indicated that Cit 1.1 and its analogues form a head-to-tail helical dimer in a membrane environment, which differs from a prior study by Sikorska et al. Active peptides displayed a greater tendency to form α-helices and to dimerize when in contact with a negatively-charged membrane. Antimicrobial activity was observed to correlate to the overall stability of the α-helix and to a positively charged N-terminus. Biologically active AMPs were shown by SEM and flow cytometry to disrupt membranes in both Gram-positive and Gram-negative bacteria through a proposed carpet mechanism. Notably, active peptides exhibited typical serum stabilities and a good selectivity for bacterial cells over mammalian cells, which supports the potential use of Cit 1.1 analogues as a novel broad-spectrum antibiotic for drug-resistant bacterial infections.
Collapse
Affiliation(s)
| | - Jonathan Catazaro
- Department of Chemistry, University of Nebraska - Lincoln, NE, 68588-0304, USA
| | - Maddeboina Krishnaiah
- Department of Pediatrics Computational Chemistry, University of Nebraska Medical Center - Omaha, NE, 68198-2168, USA
| | - Yashpal Singh Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center - Omaha, NE, 68198-6145, USA
| | - Daryl J Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center - Omaha, NE, 68198-6145, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska - Lincoln, NE, 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, 68588-0304, USA.
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center - Omaha, NE, 68198-6125, USA.
| |
Collapse
|
4
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
5
|
Piotrowska U, Oledzka E, Kamysz W, Białek S, Sobczak M. The Effect of Polymer Microstructure on Encapsulation Efficiency and Release Kinetics of Citropin 1.1 from the Poly(ε-caprolactone) Microparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E482. [PMID: 29966346 PMCID: PMC6071209 DOI: 10.3390/nano8070482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023]
Abstract
Cationic antimicrobial peptides represent a promising therapeutic option against multidrug-resistant bacteria for the treatment of local infections. However, due to their low stability and potential toxicity, there are limited possibilities for their application in clinical practice. In this study, different poly(ε-caprolactone) (PCL) microparticles (MPs) loaded with citropin 1.1 (CIT) were investigated in order to demonstrate the effect of the polymer microstructure on the encapsulation efficiency (EE) and kinetics of the peptide release from the newly developed devices. The characteristics of the new systems in terms of surface morphology, particle size, EE and zeta potential analysis, as well as the haemolytic activities of the peptide were investigated. The in vitro release kinetics of CIT from the MPs was also investigated. CIT loading was favoured by a high content of negative charged linear polymer chains in the PCL structure. The presence of non-charged, amorphous macrocycle domains results in faster degradation of the PCL matrix. Depending on the crystallinity of the PCL, the peptide release exhibited a near-zero-order or near-first-order profile with no “burst release”. The results indicated that CIT-loaded PCL MPs could potentially be a promising drug delivery system (DDS) for the treatment of local infections.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
- Department of Organic Chemistry and Biochemistry, Faculty of Materials Science and Design, Kazimierz Pulaski University of Technology and Humanities in Radom, 27 Chrobrego St., 26-600 Radom, Poland.
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Gdansk, Al. Gen. J. Hallera 107 St., 80-416 Gdansk, Poland.
| | - Sławomir Białek
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
- Department of Organic Chemistry and Biochemistry, Faculty of Materials Science and Design, Kazimierz Pulaski University of Technology and Humanities in Radom, 27 Chrobrego St., 26-600 Radom, Poland.
| |
Collapse
|
6
|
Piotrowska U, Oledzka E, Zgadzaj A, Bauer M, Sobczak M. A Novel Delivery System for the Controlled Release~of Antimicrobial Peptides: Citropin 1.1 and Temporin A. Polymers (Basel) 2018; 10:polym10050489. [PMID: 30966523 PMCID: PMC6415511 DOI: 10.3390/polym10050489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are prospective therapeutic options for treating multiple-strain infections. However, clinical and commercial development of AMPs has some limitations due to their limited stability, low bioavailability, and potential hemotoxicity. The purpose of this study was to develop new polymeric carriers as highly controlled release devices for amphibian peptides citropin 1.1 (CIT) and temporin A (TEMP). The release rate of the active pharmaceutical ingredients (APIs) was strongly dependent on the API characteristics and the matrix microstructure. In the current work, we investigated the effect of the polymer microstructure on in vitro release kinetics of AMPs. Non-contact laser profilometry, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) were used to determine the structural changes during matrix degradation. Moreover, geno- and cytotoxicity of the synthesized new carriers were evaluated. The in vitro release study of AMPs from the obtained non-toxic matrices shows that peptides were released with near-zero-order kinetics. The peptide “burst release” effect was not observed. New devices have reached the therapeutic concentration of AMPs within 24 h and maintained it for 28 days. Hence, our results suggest that these polymeric devices could be potentially used as therapeutic options for the treatment of local infections.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Biomaterials Chemistry, Chair of Inorganic and Analytical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
- Department of Organic Chemistry and Biochemistry, Faculty of Materials Science and Design, Kazimierz Pulaski University of Technology and Humanities in Radom, 27 Chrobrego St., 26-600 Radom, Poland.
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Inorganic and Analytical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
| | - Anna Zgadzaj
- Department of Environmental Health Science, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland.
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Gdansk, Al. Gen. J. Hallera 107 St., 80-416 Gdansk, Poland.
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Inorganic and Analytical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland.
- Department of Organic Chemistry and Biochemistry, Faculty of Materials Science and Design, Kazimierz Pulaski University of Technology and Humanities in Radom, 27 Chrobrego St., 26-600 Radom, Poland.
| |
Collapse
|
7
|
Greber KE. Synthesis and Surface Activity of Cationic Amino Acid-Based Surfactants in Aqueous Solution. J SURFACTANTS DETERG 2017; 20:1189-1196. [PMID: 28845101 PMCID: PMC5548851 DOI: 10.1007/s11743-017-2002-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 07/14/2017] [Indexed: 12/02/2022]
Abstract
I studied the possibility of using amino acid-based surfactants as emulsifiers at the same time as preservatives. Fourteen lipopeptides were synthesized employing a solid phase peptide synthesis procedure. All compounds were designed to be positively charged from +1 to +4 and acylated with fatty acid chain—palmitic and miristic. The surface activity of the obtained lipopeptides was tested using a semi-automatic tensiometer to calculate parameters describing the behavior of lipopeptides in the air/water interface. Such parameters as CMC, surface tension at the CMC point (σCMC), effectiveness (πCMC), and efficiency (pC20) were measured. Emulsifying properties of all lipopeptides were also examined. The studies reveal that the surface active properties of synthesized compounds strongly depend on the length of alkyl chains as well as on the composition of amino acid polar heads. The critical micelle concentration decreases with increasing alkyl chain length of lipopeptides with the same polar head. The effectiveness and efficiency decrease when the number of amino acids in the polar head increases. All lipopeptides established a very weak emulsification power and created unstable water/Miglyol 812 and water/paraffin oil emulsions. Results suggest that lipopeptides cannot be used as emulsifiers; nonetheless, it is possible to use them as auxiliary surfactants with disinfectant properties in combination with more potent emulsifiers.
Collapse
Affiliation(s)
- Katarzyna E. Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
8
|
Retro analog concept: comparative study on physico-chemical and biological properties of selected antimicrobial peptides. Amino Acids 2017; 49:1755-1771. [PMID: 28756544 PMCID: PMC5602100 DOI: 10.1007/s00726-017-2473-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023]
Abstract
Increasing drug resistance of common pathogens urgently needs discovery of new effective molecules. Antimicrobial peptides are believed to be one of the possible solutions of this problem. One of the approaches for improvement of biological properties is reversion of the sequence (retro analog concept). This research is based on investigation of antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi, hemolysis of erythrocytes, interpretation of the circular dichroism spectra, measurement of counter-ion content, and assessment of the peptide hydrophobicity and self-assembly using reversed-phase chromatography. The experiments were conducted using the following peptides: aurein 1.2, CAMEL, citropin 1.1, omiganan, pexiganan, temporin A, and their retro analogs. Among the compounds studied, only retro omiganan showed an enhanced antimicrobial and a slightly increased hemolytic activity as compared to parent molecule. Moreover, retro pexiganan exhibited high activity towards Klebsiella pneumoniae, whereas pexiganan was in general more or equally active against the rest of tested microorganisms. Furthermore, the determined activity was closely related to the peptide hydrophobicity. In general, the reduced hemolytic activity correlates with lower antimicrobial activity. The tendency to self-association and helicity fraction in SDS seems to be correlated. The normalized RP-HPLC—temperature profiles of citropin 1.1 and aurein 1.2, revealed an enhanced tendency to self-association than that of their retro analogs.
Collapse
|
9
|
Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des 2017; 90:1079-1093. [DOI: 10.1111/cbdd.13031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Urszula Piotrowska
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Marcin Sobczak
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Ewa Oledzka
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
10
|
Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nat Commun 2015; 6:7719. [PMID: 26194781 PMCID: PMC4530474 DOI: 10.1038/ncomms8719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/05/2015] [Indexed: 02/08/2023] Open
Abstract
The rapid rise of multi-drug-resistant bacteria is a global healthcare crisis, and new antibiotics are urgently required, especially those with modes of action that have low-resistance potential. One promising lead is the liposaccharide antibiotic moenomycin that inhibits bacterial glycosyltransferases, which are essential for peptidoglycan polymerization, while displaying a low rate of resistance. Unfortunately, the lipophilicity of moenomycin leads to unfavourable pharmacokinetic properties that render it unsuitable for systemic administration. In this study, we show that using moenomycin and other glycosyltransferase inhibitors as templates, we were able to synthesize compound libraries based on novel pyranose scaffold chemistry, with moenomycin-like activity, but with improved drug-like properties. The novel compounds exhibit in vitro inhibition comparable to moenomycin, with low toxicity and good efficacy in several in vivo models of infection. This approach based on non-planar carbohydrate scaffolds provides a new opportunity to develop new antibiotics with low propensity for resistance induction.
Collapse
|
11
|
Bowie JH, Separovic F, Tyler MJ. Host-defense peptides of Australian anurans. Part 2. Structure, activity, mechanism of action, and evolutionary significance. Peptides 2012; 37:174-88. [PMID: 22771617 DOI: 10.1016/j.peptides.2012.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 01/01/2023]
Abstract
A previous review summarized research prior to 2004 carried out on the bioactive host-defense peptides contained in the skin secretions of Australian anurans (frogs and toads). This review covers the extension of that research from 2004 to 2012, and includes membrane-active peptides (including antibacterial, anticancer, antifungal and antiviral peptides) together with the mechanisms by which these peptides interact with model membranes, peptides that may be classified as "neuropeptides" (including smooth muscle active peptides, opioids and immunomodulators) and peptides which inhibit the formation of nitric oxide from neuronal nitric oxide synthase. The review discusses the outcome of cDNA sequencing of signal-spacer-active peptides from an evolutionary viewpoint, and also lists those peptides for which activities have not been found to this time.
Collapse
Affiliation(s)
- John H Bowie
- Department of Chemistry, School of Chemistry and Physics, The University of Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
12
|
Cirioni O, Mocchegiani F, Ghiselli R, Silvestri C, Gabrielli E, Marchionni E, Orlando F, Nicolini D, Risaliti A, Giacometti A. Daptomycin and rifampin alone and in combination prevent vascular graft biofilm formation and emergence of antibiotic resistance in a subcutaneous rat pouch model of staphylococcal infection. Eur J Vasc Endovasc Surg 2011; 40:817-22. [PMID: 20869272 DOI: 10.1016/j.ejvs.2010.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the efficacy of daptomycin and rifampin either alone or in combination in preventing prosthesis biofilm in a rat model of staphylococcal vascular graft infection. DESIGN Prospective, randomised, controlled animal study. MATERIALS Graft infections were established in the back subcutaneous tissue of adult male Wistar rats by implantation of Dacron prostheses followed by topical inoculation with 2×10(7) colony forming units of Staphylococcus aureus, strain Smith diffuse. METHODS The study included a control group, a contaminated group that did not receive any antibiotic prophylaxis and three contaminated groups that received intra-peritoneal daptomycin, rifampin-soaked graft and daptomycin plus rifampin-soaked graft, respectively. Each group included 15 animals. The infection burden was evaluated by using sonication and quantitative agar culture. Moreover, an in vitro antibiotic susceptibility assay for S. aureus biofilms was performed to elucidate the same activity. RESULTS When tested alone, daptomycin and rifampin showed good efficacies. Their combination showed efficacies significantly higher than that of each single compound. The in vitro studies showed that minimum inhibitory concentration and minimum bactericidal concentration values for daptomycin were lower in presence of rifampin. Daptomycin prevented the emergence of rifampin resistance. CONCLUSION Daptomycin is an important candidate for prevention of staphylococcal biofilm-related infection and rifampin could serve as an interesting anti-staphylococcal antibiotic enhancer.
Collapse
Affiliation(s)
- O Cirioni
- Clinic of Infectious Diseases, Università Politecnica delle Marche-Ospedali Riuniti, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giacometti A, Cirioni O, Ghiselli R, Orlando F, Silvestri C, Renzone G, Testa I, Mocchegiani F, Della Vittoria A, Saba V, Scaloni A, Scalise G. Distinctin improves the efficacies of glycopeptides and betalactams against staphylococcal biofilm in an experimental model of central venous catheter infection. J Biomed Mater Res A 2007; 81:233-9. [PMID: 17120214 DOI: 10.1002/jbm.a.30982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of microorganisms to adhere to medical implants is a problem of high visibility and has been focused in numerous investigations. To assess the efficacy of distinctin and conventional antibiotics in the treatment of central venous catheter in vitro and in vivo studies were performed. The in vitro susceptibility assay was performed against S. aureus biofilms developed on 96-well polystyrene tissue culture plates. Efficacy studies were performed in a rat model of CVC infection. Twenty-four hours after implantation, the catheters were filled with distinctin. Thirty minutes later, rats were challenged via the CVC with S. aureus. Administration of antibiotics into the CVC at a concentration equal to the MBC for adherent cells, or at 1024 microg/mL began 24 h later. The killing activities of all antibiotics against adherent bacteria were at least four- to eightfold lower than against freely growing cells. When antibiotics were used in distinctin pretreated wells, they showed a significant increase of activity. The in vivo studies showed that when CVCs were pretreated with distinctin biofilm bacterial load was further decreased to 10(1) CFU/mL and bacteremia was not detected. Distinctin displays potential as an adjunctive agent to antibiotics in the treatment of CVC-related infections.
Collapse
Affiliation(s)
- Andrea Giacometti
- Institute of Infectious Diseases and Public Health, Università Politecnica delle Marche, c/o Ospedale Regionale, Via Conca 71, 60200 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|