1
|
O'Connell LM, Coffey A, O'Mahony JM. Alternatives to antibiotics in veterinary medicine: considerations for the management of Johne's disease. Anim Health Res Rev 2023; 24:12-27. [PMID: 37475561 DOI: 10.1017/s146625232300004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.
Collapse
Affiliation(s)
- Laura M O'Connell
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Jim M O'Mahony
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| |
Collapse
|
2
|
Crystal structure and functional analysis of mycobacterial erythromycin resistance methyltransferase Erm38 reveals its RNA binding site. J Biol Chem 2022; 298:101571. [PMID: 35007529 PMCID: PMC8844858 DOI: 10.1016/j.jbc.2022.101571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Erythromycin resistance methyltransferases (Erms) confer resistance to macrolide, lincosamide, and streptogramin antibiotics in Gram-positive bacteria and mycobacteria. Although structural information for ErmAM, ErmC, and ErmE exists from Gram-positive bacteria, little is known about the Erms in mycobacteria, as there are limited biochemical data and no structures available. Here, we present crystal structures of Erm38 from Mycobacterium smegmatis in apoprotein and cofactor-bound forms. Based on structural analysis and mutagenesis, we identified several catalytically critical, positively charged residues at a putative RNA-binding site. We found that mutation of any of these sites is sufficient to abolish methylation activity, whereas the corresponding RNA-binding affinity of Erm38 remains unchanged. The methylation reaction thus appears to require a precise ensemble of amino acids to accurately position the RNA substrate, such that the target nucleotide can be methylated. In addition, we computationally constructed a model of Erm38 in complex with a 32-mer RNA substrate. This model shows the RNA substrate stably bound to Erm38 by a patch of positively charged residues. Furthermore, a π-π stacking interaction between a key aromatic residue of Erm38 and a target adenine of the RNA substrate forms a critical interaction needed for methylation. Taken together, these data provide valuable insights into Erm–RNA interactions, which will aid subsequent structure-based drug design efforts.
Collapse
|
3
|
Potential Target Site for Inhibitors in MLS B Antibiotic Resistance. Antibiotics (Basel) 2021; 10:antibiotics10030264. [PMID: 33807634 PMCID: PMC7998614 DOI: 10.3390/antibiotics10030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Macrolide-lincosamide-streptogramin B antibiotic resistance occurs through the action of erythromycin ribosome methylation (Erm) family proteins, causing problems due to their prevalence and high minimal inhibitory concentration, and feasibilities have been sought to develop inhibitors. Erms exhibit high conservation next to the N-terminal end region (NTER) as in ErmS, 64SQNF67. Side chains of homologous S, Q and F in ErmC' are surface-exposed, located closely together and exhibit intrinsic flexibility; these residues form a motif X. In S64 mutations, S64G, S64A and S64C exhibited 71%, 21% and 20% activity compared to the wild-type, respectively, conferring cell resistance. However, mutants harboring larger side chains did not confer resistance and retain the methylation activity in vitro. All mutants of Q65, Q65N, Q65E, Q65R, and Q65H lost their methyl group transferring activity in vivo and in vitro. At position F67, a size reduction of side-chain (F67A) or a positive charge (F67H) greatly reduced the activity to about 4% whereas F67L with a small size reduction caused a moderate loss, more than half of the activity. The increased size by F67Y and F67W reduced the activity by about 75%. In addition to stabilization of the cofactor, these amino acids could interact with substrate RNA near the methylatable adenine presumably to be catalytically well oriented with the SAM (S-adenosyl-L-methionine). These amino acids together with the NTER beside them could serve as unique potential inhibitor development sites. This region constitutes a divergent element due to the NTER which has variable length and distinct amino acids context in each Erm. The NTER or part of it plays critical roles in selective recognition of substrate RNA by Erms and this presumed target site might assume distinct local structure by induced conformational change with binding to substrate RNA and SAM, and contribute to the specific recognition of substrate RNA.
Collapse
|
4
|
Gu CH, Zhao C, Hofstaedter C, Tebas P, Glaser L, Baldassano R, Bittinger K, Mattei LM, Bushman FD. Investigating hospital Mycobacterium chelonae infection using whole genome sequencing and hybrid assembly. PLoS One 2020; 15:e0236533. [PMID: 33166284 PMCID: PMC7652343 DOI: 10.1371/journal.pone.0236533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium chelonae is a rapidly growing nontuberculous mycobacterium that is a common cause of nosocomial infections. Here we describe investigation of a possible nosocomial transmission of M. chelonae at the Hospital of the University of Pennsylvania (HUP). M. chelonae strains with similar high-level antibiotic resistance patterns were isolated from two patients who developed post-operative infections at HUP in 2017, suggesting a possible point source infection. The isolates, along with other clinical isolates from other patients, were sequenced using the Illumina and Oxford Nanopore technologies. The resulting short and long reads were hybrid assembled into draft genomes. The genomes were compared by quantifying single nucleotide variants in the core genome and assessed using a control dataset to quantify error rates in comparisons of identical genomes. We show that all M. chelonae isolates tested were highly dissimilar, as indicated by high pairwise SNV values, consistent with environmental acquisition and not a nosocomial point source. Our control dataset determined a threshold for evaluating identity between strains while controlling for sequencing error. Finally, antibiotic resistance genes were predicted for our isolates, and several single nucleotide variants were identified that have the potential to modulated drug resistance.
Collapse
Affiliation(s)
- Christopher H. Gu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Casey Hofstaedter
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Laurel Glaser
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lisa M. Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Marimani M, AlOmar SY, Aldahmash B, Ahmad A, Stacey S, Duse A. Distinct epigenetic regulation in patients with multidrug-resistant TB-HIV co-infection and uninfected individuals. Mutat Res 2020; 821:111724. [PMID: 33070028 DOI: 10.1016/j.mrfmmm.2020.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is an airborne pathogenic microorganism that causes tuberculosis (TB). This pathogen invades lung tissues causing pulmonary infections and disseminates into other host organs. The Bacillus Calmette-Guérin (BCG) vaccine is employed to provide immune protection against TB; however, its efficacy is dependent on the age, immune status and geographic location of vaccinated individuals. Advanced diagnostic approaches such as GeneXpert MTB/RIF® and line probe assays (LPAs) have allowed rapid detection of drug-resistant, multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains. However, in sub-Saharan Africa, public and private health institutions are further burdened by the high prevalence of Human Immunodeficiency Virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS) and TB co-infections across different age groups. Epigenetic mechanisms have been widely exploited by Mtb and HIV to bypass the host's innate and adaptive immune responses, leading to microbial proliferation and disease manifestation. In the current study, we investigated the impact of epigenetic mechanisms in regulating target gene expression in healthy and patients co-infected with MDR TB-HIV.
Collapse
Affiliation(s)
- Musa Marimani
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Infectious Diseases, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Sarah Stacey
- Division of Pulmonology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Adriano Duse
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Infectious Diseases, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
6
|
Marimani M, Ahmad A, Stacey S, Duse A. Examining the levels of acetylation, DNA methylation and phosphorylation in HIV-1 positive and multidrug-resistant TB-HIV patients. J Glob Antimicrob Resist 2020; 23:232-242. [PMID: 33045438 DOI: 10.1016/j.jgar.2020.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/30/2020] [Accepted: 09/27/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES In this study, we examined the impact of epigenetic modifications on host gene functioning by assessing the expression of seven candidate genes in three separate groups including healthy, multidrug-resistant (MDR) TB-HIV co-infected and HIV-1 positive individuals. METHODS Ten patients with MDR TB and HIV-1 co-infection on TB and HIV therapy and a cohort comprised of 10 newly diagnosed individuals with HIV-1 infection were recruited from the TB and HIV clinics at the Charlotte Maxeke Johannesburg Academic Hospital. Notably, the HIV-1 positive individuals were not placed on antiretroviral therapy (ART) at the time of recruitment and blood collection. A third group consisting of 10 healthy participants without MDR TB or HIV infection was recruited from the University of the Witwatersrand. Blood samples collected from all three cohorts were employed for extraction of plasma, total RNA and genomic DNA. RESULTS Our data indicated that the expression of DNA methyltransferase 1 (DNMT1) and Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) genes was significantly increased in HIV-1 positive patients and was lowest in MDR TB-HIV co-infected patients. By contrast, histone acetyltransferase (HAT), histone deacetylase (HDAC), protein tyrosine kinase (PtkA) and protein tyrosine phosphatase (PtpA) mRNA expression levels were substantially enhanced in HIV-1 infected and were lowest in healthy individuals. Conversely, Dicer expression levels were comparable among all three study groups. CONCLUSION Promising preliminary data emanating from this investigation may potentially be used for generation of novel vaccines and therapeutic compounds capable of neutralising MDR TB-HIV and HIV-1 infection.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa.
| | - Sarah Stacey
- Division of Pulmonology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
7
|
Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms 2020; 8:microorganisms8091380. [PMID: 32916931 PMCID: PMC7563442 DOI: 10.3390/microorganisms8091380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored. This work hinges current understandings of NTM, approaching their biology and heterogeneity from several angles and reinforcing the complexity of these microorganisms often associated with a multiplicity of diseases, including pulmonary, soft-tissue, or milliary. In addition to emphasizing the cornerstones of knowledge involving these bacteria, we identify research gaps that need to be addressed, stressing out the need for decision-makers to recognize NTM infection as a public health issue that has to be tackled, especially when considering an increasingly susceptible elderly and immunocompromised population in developed countries, as well as in low- or middle-income countries, where NTM infections are still highly misdiagnosed and neglected.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-500-000 (ext. 22461)
| |
Collapse
|
8
|
Potential Genes Related to Levofloxacin Resistance in Mycobacterium tuberculosis Based on Transcriptome and Methylome Overlap Analysis. J Mol Evol 2020; 88:202-209. [PMID: 31919584 PMCID: PMC6989609 DOI: 10.1007/s00239-019-09926-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023]
Abstract
Drug-resistant Mycobacterium tuberculosis (M. tuberculosis) has become an increasingly serious public health problem and has complicated tuberculosis (TB) treatment. Levofloxacin (LOF) is an ideal anti-tuberculosis drug in clinical applications. However, the detailed molecular mechanisms of LOF-resistant M. tuberculosis in TB treatment have not been revealed. Our study performed transcriptome and methylome sequencing to investigate the potential biological characteristics of LOF resistance in M. tuberculosis H37Rv. In the transcriptome analysis, 953 differentially expressed genes (DEGs) were identified; 514 and 439 DEGs were significantly downregulated and upregulated in the LOF-resistant group and control group, respectively. The KEGG pathway analysis revealed that 97 pathways were enriched in this study. In the methylome analysis, 239 differentially methylated genes (DMGs) were identified; 150 and 89 DMGs were hypomethylated and hypermethylated in the LOF-resistant group and control group, respectively. The KEGG pathway analysis revealed that 74 pathways were enriched in this study. The overlap study suggested that 25 genes were obtained. It was notable that nine genes expressed downregulated mRNA and upregulated methylated levels, including pgi, fadE4, php, cyp132, pckA, rpmB1, pfkB, acg, and ctpF, especially cyp132, pckA, and pfkB, which were vital in LOF-resistant M. tuberculosis H37Rv. The overlapping genes between transcriptome and methylome could be essential for studying the molecular mechanisms of LOF-resistant M. tuberculosis H37Rv. These results may provide informative evidence for TB treatment with LOF.
Collapse
|
9
|
Chen L, Li H, Chen T, Yu L, Guo H, Chen Y, Chen M, Li Z, Wu Z, Wang X, Zhao J, Yan H, Wang X, Zhou L, Zhou J. Genome-wide DNA methylation and transcriptome changes in Mycobacterium tuberculosis with rifampicin and isoniazid resistance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3036-3045. [PMID: 31938429 PMCID: PMC6958063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 06/10/2023]
Abstract
We investigated the genome-wide DNA methylation and transcriptome changes in M. tuberculosis with rifampicin or isoniazid resistance. Single-molecule real-time (SMRT) sequencing and microarray technology were performed to expound DNA methylation profiles and differentially expressed genes in rifampicin or isoniazid resistant M. tuberculosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis and methylated regulatory network analysis were conducted by online forecasting databases. Integrated analysis of DNA methylation and transcriptome revealed that 335 differentially methylated genes (175 hypermethylated and 160 hypomethylated) and 132 significant differentially expressed genes (68 up-regulated and 63 down-regulated) were found to be regulated by both rifampicin and isoniazid in M. tuberculosis H37Rv. Correlation analysis showed that differential methylated genes were negatively correlated with their transcriptional levels in rifampicin or isoniazid resistant strains. KEGG pathway analysis indicated that nitrogen metabolism pathway is closely related to differentially methylated genes induced by rifampicin and isoniazid. KEGG also suggested that differentially expressed genes in rifampicin or isoniazid-resistant strains may play different roles in regulating signal transduction events. Furthermore, five differentially methylated candidate genes (Rv0840c, Rv2243, Rv0644c, Rv2386c and Rv1130) in rifampicin resistant strains and three genes (Rv0405, Rv0252 and Rv0908) in isoniazid-resistant strains were verified the existence of protein-protein interaction in STRING database. Integrated DNA methylation and transcriptome analyses provide an epigenetic overview of rifampicin and isoniazid-induced antibiotic resistance in M. tuberculosis H37Rv. Several interesting genes and regulatory pathways may provide valuable resources for epigenetic studies in M. tuberculosis antibiotic resistance.
Collapse
Affiliation(s)
- Liang Chen
- Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Haicheng Li
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Tao Chen
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Li Yu
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Huixin Guo
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Yuhui Chen
- Outpatient Office, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Mu Chen
- Department of Respiration, The Sixth Affiliated Hospital of SUN YAT-SEN UniversityGuangzhou 510655, China
| | - Zhenyan Li
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Zhuhua Wu
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Xuezhi Wang
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Jiao Zhao
- Medical College of Jinan UniversityGuangzhou, China
| | - Huimin Yan
- Guangdong Medical UniversityDongguan, China
| | - Xinchun Wang
- Reference Laboratory, Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Lin Zhou
- Centre for Tuberculosis Control of Guangdong ProvinceGuangzhou, China
| | - Jie Zhou
- The Forth People’s Hospital of FoshanFoshan, China
| |
Collapse
|
10
|
|
11
|
Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides. Proc Natl Acad Sci U S A 2015; 112:12956-61. [PMID: 26438831 DOI: 10.1073/pnas.1512090112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S rRNA nucleotide A2058. PikR1 monomethylase is constitutively expressed; it confers low resistance at low fitness cost and is required for ketolide-induced activation of pikR2 to attain high-level resistance. The regulatory mechanism controlling pikR2 expression has been evolutionary optimized for preferential activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism.
Collapse
|
12
|
Anastasi E, Giguère S, Berghaus LJ, Hondalus MK, Willingham-Lane JM, MacArthur I, Cohen ND, Roberts MC, Vazquez-Boland JA. Novel transferable erm(46) determinant responsible for emerging macrolide resistance in Rhodococcus equi. J Antimicrob Chemother 2015; 70:3184-90. [PMID: 26377866 DOI: 10.1093/jac/dkv279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The objective of this study was to identify the molecular mechanism of macrolide resistance in the actinomycete Rhodococcus equi, a major equine pathogen and zoonotic agent causing opportunistic infections in people. METHODS Macrolide-resistant (n = 62) and macrolide-susceptible (n = 62) clinical isolates of R. equi from foals in the USA were studied. WGS of 18 macrolide-resistant and 6 macrolide-susceptible R. equi was performed. Representative sequences of all known macrolide resistance genes identified to date were used to search the genome assemblies for putative homologues. PCR was used to screen for the presence of the identified resistance determinant in the rest of the isolates. Mating experiments were performed to verify mobility of the gene. RESULTS A novel erm gene, erm(46), was identified in all sequenced resistant isolates, but not in susceptible isolates. There was complete association between macrolide resistance and the presence of erm(46) as detected by PCR screening of all 124 clinical isolates of R. equi. Expression of erm(46) in a macrolide-susceptible strain of R. equi induced high-level resistance to macrolides, lincosamides and streptogramins B, but not to other classes of antimicrobial agents. Transfer of erm(46) to macrolide-susceptible R. equi was confirmed. The transfer frequency ranged from 3 × 10(-3) to 1 × 10(-2). CONCLUSIONS This is the first molecular characterization of resistance to macrolides, lincosamides and streptogramins B in R. equi. Resistance was due to the presence of a novel erm(46) gene mobilizable likely by conjugation, which has spread among equine isolates of R. equi in the USA.
Collapse
Affiliation(s)
- Elisa Anastasi
- Microbial Pathogenesis Unit, School of Biomedical Sciences and The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Steeve Giguère
- Department of Large Animal Medicine, University of Georgia, Athens, GA, USA
| | - Londa J Berghaus
- Department of Large Animal Medicine, University of Georgia, Athens, GA, USA
| | - Mary K Hondalus
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Iain MacArthur
- Microbial Pathogenesis Unit, School of Biomedical Sciences and The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jose A Vazquez-Boland
- Microbial Pathogenesis Unit, School of Biomedical Sciences and The Roslin Institute, University of Edinburgh, Edinburgh, UK Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de Léon, Léon, Spain
| |
Collapse
|
13
|
Maurer FP, Rüegger V, Ritter C, Bloemberg GV, Böttger EC. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). J Antimicrob Chemother 2012; 67:2606-11. [PMID: 22833642 DOI: 10.1093/jac/dks279] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Antibiotic therapy of pulmonary Mycobacterium abscessus infection is based on a combination treatment including clarithromycin. Recent data demonstrated that M. abscessus may carry a chromosomal, inducible erm gene coding for the ribosomal methylase Erm(41). The purpose of this study was to investigate whether in patients with chronic M. abscessus infection undergoing clarithromycin therapy, M. abscessus acquires clarithromycin resistance mutations in the rrl gene in addition to the presence of an inducible Erm(41) methylase. METHODS We determined clarithromycin MICs, erm(41) and rrl sequences for 29 clinical M. abscessus subsp. abscessus isolates of five different patients. The isolates were obtained between 2007 and 2011 covering a longitudinal observation period of 2-4 years for the individual patients. RESULTS In three out of five patients with an initial rrl wild-type isolate, follow-up isolates demonstrated acquisition of resistance mutations in the rrl gene in addition to the presence of an inducible Erm methylase. CONCLUSIONS Our results show that in M. abscessus, clarithromycin resistance mutations in the 23S rRNA peptidyltransferase region provide an additional selective advantage independent of a functional erm(41) gene.
Collapse
Affiliation(s)
- Florian P Maurer
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, 8006 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
14
|
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25:545-82. [PMID: 22763637 PMCID: PMC3416486 DOI: 10.1128/cmr.05030-11] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Collapse
|
15
|
O'Farrell HC, Musayev FN, Scarsdale JN, Rife JP. Control of substrate specificity by a single active site residue of the KsgA methyltransferase. Biochemistry 2011; 51:466-74. [PMID: 22142337 DOI: 10.1021/bi201539j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The KsgA methyltransferase is universally conserved and plays a key role in regulating ribosome biogenesis. KsgA has a complex reaction mechanism, transferring a total of four methyl groups onto two separate adenosine residues, A1518 and A1519, in the small subunit rRNA. This means that the active site pocket must accept both adenosine and N(6)-methyladenosine as substrates to catalyze formation of the final product N(6),N(6)-dimethyladenosine. KsgA is related to DNA adenosine methyltransferases, which transfer only a single methyl group to their target adenosine residue. We demonstrate that part of the discrimination between mono- and dimethyltransferase activity lies in a single residue in the active site, L114; this residue is part of a conserved motif, known as motif IV, which is common to a large group of S-adenosyl-L-methionine-dependent methyltransferases. Mutation of the leucine to a proline mimics the sequence found in DNA methyltransferases. The L114P mutant of KsgA shows diminished overall activity, and its ability to methylate the N(6)-methyladenosine intermediate to produce N(6),N(6)-dimethyladenosine is impaired; this is in contrast to a second active site mutation, N113A, which diminishes activity to a level comparable to L114P without affecting the methylation of N(6)-methyladenosine. We discuss the implications of this work for understanding the mechanism of KsgA's multiple catalytic steps.
Collapse
Affiliation(s)
- Heather C O'Farrell
- Department of Physiology and Molecular Biophysics, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | | | | | | |
Collapse
|
16
|
Desmolaize B, Rose S, Warrass R, Douthwaite S. A novel Erm monomethyltransferase in antibiotic-resistant isolates of Mannheimia haemolytica and Pasteurella multocida. Mol Microbiol 2011; 80:184-94. [PMID: 21371136 DOI: 10.1111/j.1365-2958.2011.07567.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mannheimia haemolytica and Pasteurella multocida are aetiological agents commonly associated with respiratory tract infections in cattle. Recent isolates of these pathogens have been shown to be resistant to macrolides and other ribosome-targeting antibiotics. Direct analysis of the 23S rRNAs by mass spectrometry revealed that nucleotide A2058 is monomethylated, consistent with a Type I erm phenotype conferring macrolide-lincosamide resistance. The erm resistance determinant was identified by full genome sequencing of isolates. The sequence of this resistance determinant, now termed erm(42), has diverged greatly from all previously characterized erm genes, explaining why it has remained undetected in PCR screening surveys. The sequence of erm(42) is, however, completely conserved in six independent M. haemolytica and P. multocida isolates, suggesting relatively recent gene transfer between these species. Furthermore, the composition of neighbouring chromosomal sequences indicates that erm(42) was acquired from other members of the Pasteurellaceae. Expression of recombinant erm(42) in Escherichia coli demonstrated that the enzyme retains its properties as a monomethyltransferase without any dimethyltransferase activity. Erm(42) is a novel addition to the Erm family: it is phylogenetically distant from the other Erm family members and it is unique in being a bona fide monomethyltransferase that is disseminated between bacterial pathogens.
Collapse
Affiliation(s)
- Benoit Desmolaize
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
17
|
Hansen LH, Lobedanz S, Douthwaite S, Arar K, Wengel J, Kirpekar F, Vester B. Minimal substrate features for Erm methyltransferases defined by using a combinatorial oligonucleotide library. Chembiochem 2011; 12:610-4. [PMID: 21264994 DOI: 10.1002/cbic.201000606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 11/08/2022]
Abstract
Erm methyltransferases are prevalent in pathogenic bacteria and confer resistance to macrolide, lincosamide, and streptogramin B antibiotics by specifically methylating the 23S ribosomal RNA at nucleotide A2058. We have identified motifs within the rRNA substrate that are required for methylation by Erm. Substrate molecules were constructed in a combinatorial manner from two separate sets (top and bottom strands) of short RNA sequences. Modifications, including LNA monomers with locked sugar residues, were incorporated into the substrates to stabilize their structures. In functional substrates, the A2058 methylation target (on the 13- to 19-nucleotide top strand) was displayed in an unpaired sequence immediately following a conserved irregular helix, and these are the specific structural features recognized by Erm. Erm methylation was enhanced by stabilizing the top-strand conformation with an LNA residue at G2056. The bottom strand (nine to 19 nucleotides in length) was required for methylation and was still functional after extensive modification, including substitution with a DNA sequence. Although it remains possible that Erm makes some unspecific contact with the bottom strand, the main role played by the bottom strand appears to be in maintaining the conformation of the top strand. The addition of multiple LNA residues to the top strand impeded methylation; this indicates that the RNA substrate requires a certain amount of flexibility for accommodation into the active site of Erm. The combinatorial approach for identifying small but functional RNA substrates is a step towards making RNA-Erm complexes suitable for cocrystal determination, and for designing molecules that might block the substrate-recognition site of the enzyme.
Collapse
Affiliation(s)
- Lykke H Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
Park AK, Kim H, Jin HJ. Phylogenetic analysis of rRNA methyltransferases, Erm and KsgA, as related to antibiotic resistance. FEMS Microbiol Lett 2010; 309:151-62. [PMID: 20618865 DOI: 10.1111/j.1574-6968.2010.02031.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It has long been speculated that erm and ksgA are related evolutionarily due to their sequence similarity and analogous catalytic reactions. We performed a comprehensive phylogenetic analysis with extensive Erm and KsgA/Dim1 sequences (Dim1 is the eukaryotic ortholog of KsgA). The tree provides insights into the evolutionary history of erm genes, showing early bifurcation of the Firmicutes and the Actinobacteria, and suggesting that the origin of the current erm genes in pathogenic bacteria cannot be explained by recent horizontal gene transfer from antibiotic producers. On the other hand, the phylogenetic analysis cannot support the commonly assumed phylogenetic relationships between erm and ksgA genes, the common ancestry of erm and ksgA or erm descended from preexisting ksgA, because the tree cannot be unequivocally rooted due to insufficient signal and long-branch attraction. The phylogenetic tree indicates that the erm gene underwent frequent horizontal gene transfer and duplication, resulting in phylogenetic anomalies and atypical phenotypes. Several electronically annotated Erm sequences were recognized as candidates for new classes of macrolide-lincosamide-streptogramin B-resistance determinants, sharing less than an 80% amino acid sequence identity with other Erm classes.
Collapse
Affiliation(s)
- Ae Kyung Park
- Department of Biomedical Sciences, Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
19
|
A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009; 53:1367-76. [PMID: 19171799 DOI: 10.1128/aac.01275-08] [Citation(s) in RCA: 459] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus infections tend to respond poorly to macrolide-based chemotherapy, even though the organisms appear to be susceptible to clarithromycin. Circumstantial evidence suggested that at least some M. abscessus isolates might be inducibly resistant to macrolides. Thus, the purpose of this study was to investigate the macrolide phenotype of M. abscessus clinical isolates. Inducible resistance to clarithromycin (MIC > 32 microg/ml) was found for 7 of 10 clinical isolates of M. abscessus previously considered susceptible; the remaining 3 isolates were deemed to be susceptible (MIC <or= 0.5 microg/ml). Inducible resistance was conferred by a novel erm gene, erm(41), which was present in all 10 isolates and in an isolate of Mycobacterium bolletii (M. abscessus type II). However, the erm(41) alleles were nonfunctional in the three susceptible M. abscessus isolates. No evidence of erm(41) was found in Mycobacterium chelonae, and an isolate of Mycobacterium massiliense appeared to be an erm(41) deletion mutant. Expression of erm(41) in M. abscessus conferred resistance to clarithromycin and erythromycin and the ketolide HMR3004. However, this species was found to be intrinsically resistant, independent of erm(41), to clindamycin, quinupristin (streptogramin B), and telithromycin. The ability to confer resistance to clindamycin and telithromycin, but not quinupristin, was demonstrated by expressing erm(41) in Maycobacterium smegmatis. Exposure of M. abscessus to the macrolide-lincosamide-streptogramin B-ketolide agents increased the levels of erm(41) mRNA 23- to 250-fold within 24 h. The inducible macrolide resistance phenotype of some M. abscessus isolates may explain the lack of efficacy of macrolide-based chemotherapy against this organism.
Collapse
|
20
|
Abstract
Resistance to antibiotics that target the bacterial ribosome is often conferred by methylation at specific nucleotides in the rRNA. The nucleotides that become methylated are invariably key sites of antibiotic interaction. The addition of methyl groups to each of these nucleotides is catalyzed by a specific methyltransferase enzyme. The Erm methyltransferases are a clinically prevalent group of enzymes that confer resistance to the therapeutically important macrolide, lincosamide, and streptogramin B (MLS B) antibiotics. The target for Erm methyltransferases is at nucleotide A2058 in 23S rRNA, and methylation occurs before the rRNA has been assembled into 50S ribosomal particles. Erm methyltransferases occur in a phylogenetically wide range of bacteria and differ in whether they add one or two methyl groups to the A2058 target. The dimethylated rRNA confers a more extensive MLS B resistance phenotype. We describe here a method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to determine the location and number of methyl groups added at any site in the rRNA. The method is particularly suited to studying in vitro methylation of RNA transcripts by resistance methyltransferases such as Erm.
Collapse
|
21
|
Abstract
The ribosome is one of the main antibiotic targets in the cell. Recent years brought important insights into the mode of interaction of antibiotics with the ribosome and mechanisms of antibiotic action. Ribosome crystallography provided a detailed view of the interactions between antibiotics and rRNA. Advances in biochemical techniques let us better understand how the binding of small organic molecules can interfere with functions of an enzyme four orders of magnitude larger than the inhibitor. These and other achievements paved the way for the development of new ribosome-targeting antibiotics, some of which have already entered medical practice. The recent progress, problems and new directions of research of ribosome-targeting antibiotics are discussed in this review.
Collapse
Affiliation(s)
- Tanel Tenson
- Institute of Technology, University of Tartu, Estonia.
| | | |
Collapse
|
22
|
Madsen CT, Jakobsen L, Buriánková K, Doucet-Populaire F, Pernodet JL, Douthwaite S. Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. J Biol Chem 2005; 280:38942-7. [PMID: 16174779 DOI: 10.1074/jbc.m505727200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Mycobacterium tuberculosis complex possess a resistance determinant, erm(37) (also termed ermMT), which is a truncated homologue of the erm genes found in a diverse range of drug-producing and pathogenic bacteria. All erm genes examined thus far encode N(6)-monomethyltransferases or N(6),N(6)-dimethyltransferases that show absolute specificity for nucleotide A2058 in 23 S rRNA. Monomethylation at A2058 confers resistance to a subset of the macrolide, lincosamide, and streptogramin B (MLS(B)) group of antibiotics and no resistance to the latest macrolide derivatives, the ketolides. Dimethylation at A2058 confers high resistance to all MLS(B) and ketolide drugs. The erm(37) phenotype fits into neither category. We show here by tandem mass spectrometry that Erm(37) initially adds a single methyl group to its primary target at A2058 but then proceeds to attach additional methyl groups to the neighboring nucleotides A2057 and A2059. Other methyltransferases, Erm(E) and Erm(O), maintain their specificity for A2058 on mycobacterial rRNA. Erm(E) and Erm(O) have a full-length C-terminal domain, which appears to be important for stabilizing the methyltransferases at their rRNA target, and this domain is truncated in Erm(37). The lax interaction of the M. tuberculosis Erm(37) with its rRNA produces a unique methylation pattern and confers resistance to the ketolide telithromycin.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Base Sequence
- Drug Resistance, Bacterial/genetics
- Gene Expression
- Genes, Bacterial
- Ketolides/pharmacology
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Molecular Sequence Data
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Christian Toft Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|