1
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Murovec B, Deutsch L, Stres B. General Unified Microbiome Profiling Pipeline (GUMPP) for Large Scale, Streamlined and Reproducible Analysis of Bacterial 16S rRNA Data to Predicted Microbial Metagenomes, Enzymatic Reactions and Metabolic Pathways. Metabolites 2021; 11:336. [PMID: 34074026 PMCID: PMC8225202 DOI: 10.3390/metabo11060336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022] Open
Abstract
General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale, streamlined and reproducible analysis of bacterial 16S rRNA data and prediction of microbial metagenomes, enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow introduces reproducible data analyses at each of the three levels of resolution (genus; operational taxonomic units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible analyses enables production of datasets that ultimately identify the biochemical pathways characteristic of disease pathology. These datasets coupled to biostatistics and mathematical approaches of machine learning can play a significant role in extraction of truly significant and meaningful information from a wide set of 16S rRNA datasets. The adoption of GUMPP in the gut-microbiota related research enables focusing on the generation of novel biomarkers that can lead to the development of mechanistic hypotheses applicable to the development of novel therapies in personalized medicine.
Collapse
Affiliation(s)
- Boštjan Murovec
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia;
| | - Leon Deutsch
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Blaž Stres
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia
- Department of Automation, Jožef Stefan Institute, Biocybernetics and Robotics, Jamova 39, SI-1000 Ljubljana, Slovenia
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Enterococcus faecalis Maltodextrin Gene Regulation by Combined Action of Maltose Gene Regulator MalR and Pleiotropic Regulator CcpA. Appl Environ Microbiol 2020; 86:AEM.01147-20. [PMID: 32680872 DOI: 10.1128/aem.01147-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Enterococci are Gram-positive bacteria present in the healthy human microbiota, but they are also a leading cause of nosocomial infections. Maltodextrin utilization by Enterococcus faecalis has been identified as an important factor for colonization of mammalians hosts. Here, we show that the LacI/GalR transcriptional regulator MalR, the maltose gene regulator, is also the main regulator of the operons encoding an ABC transporter (mdxEFG) and three metabolic enzymes (mmdH-gmdH-mmgT) required for the uptake and catabolism of maltotetraose and longer maltodextrins. The utilization of maltose and maltodextrins is consequently coordinated and induced by the disaccharide maltose, which binds to MalR. Carbon catabolite repression of the mdxEFG and mmdH-gmdH-mmgT operons is mediated by both P-Ser-HPr/MalR and P-Ser-HPr/CcpA. The latter complex exerts only moderate catabolite repression, which became visible when comparing maltodextrin operon expression levels of a malR - mutant (with a mutant allele for the malR gene) and a malR - ΔccpA double mutant grown in the presence of maltose, which is transported via a phosphotransferase system and, thus, favors the formation of P-Ser-HPr. Moreover, maltodextrin transport via MdxEFG slows rapidly when glucose is added, suggesting an additional regulation via inducer exclusion. This complex regulation of metabolic operons likely allows E. faecalis to fine-tune gene expression in response to changing environmental conditions.IMPORTANCE Enterococcus faecalis represents a leading cause of hospital-acquired infections worldwide. Several studies highlighted the importance of carbohydrate metabolism in the infection process of this bacterium. The genes required for maltodextrin metabolism are particularly induced during mouse infection and, therefore, should play an important role for pathogenesis. Since no data were hitherto available concerning the regulation of expression of the maltodextrin operons, we have conducted experiments to study the underlying mechanisms.
Collapse
|
4
|
An 1,4-α-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. Appl Environ Microbiol 2020; 86:AEM.00661-20. [PMID: 32444471 DOI: 10.1128/aem.00661-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
The maltooligosaccharide (MOS) utilization locus in Lactobacillus acidophilus NCFM, a model for human small-intestine lactobacilli, encodes three glycoside hydrolases (GHs): a putative maltogenic α-amylase of family 13, subfamily 20 (LaGH13_20), a maltose phosphorylase of GH65 (LaGH65), and a family 13, subfamily 31, member (LaGH13_31B), annotated as a 1,6-α-glucosidase. Here, we reveal that LaGH13_31B is a 1,4-α-glucosyltransferase that disproportionates MOS with a degree of polymerization of ≥2, with a preference for maltotriose. Kinetic analyses of the three GHs encoded by the MOS locus revealed that the substrate preference of LaGH13_31B toward maltotriose complements the ~40-fold lower k cat of LaGH13_20 toward this substrate, thereby enhancing the conversion of odd-numbered MOS to maltose. The concerted action of LaGH13_20 and LaGH13_31B confers the efficient conversion of MOS to maltose that is phosphorolyzed by LaGH65. Structural analyses revealed the presence of a flexible elongated loop that is unique for a previously unexplored clade of GH13_31, represented by LaGH13_31B. The identified loop insertion harbors a conserved aromatic residue that modulates the activity and substrate affinity of the enzyme, thereby offering a functional signature of this clade, which segregates from 1,6-α-glucosidases and sucrose isomerases previously described within GH13_31. Genomic analyses revealed that the LaGH13_31B gene is conserved in the MOS utilization loci of lactobacilli, including acidophilus cluster members that dominate the human small intestine.IMPORTANCE The degradation of starch in the small intestine generates short linear and branched α-glucans. The latter are poorly digestible by humans, rendering them available to the gut microbiota, e.g., lactobacilli adapted to the small intestine and considered beneficial to health. This study unveils a previously unknown scheme of maltooligosaccharide (MOS) catabolism via the concerted activity of an 1,4-α-glucosyltransferase together with a classical hydrolase and a phosphorylase. The intriguing involvement of a glucosyltransferase likely allows the fine-tuning of the regulation of MOS catabolism for optimal harnessing of this key metabolic resource in the human small intestine. The study extends the suite of specificities that have been identified in GH13_31 and highlights amino acid signatures underpinning the evolution of 1,4-α-glucosyl transferases that have been recruited in the MOS catabolism pathway in lactobacilli.
Collapse
|
5
|
Grand M, Blancato VS, Espariz M, Deutscher J, Pikis A, Hartke A, Magni C, Sauvageot N. Enterococcus faecalisMalR acts as a repressor of the maltose operons and additionally mediates their catabolite repression via direct interaction with seryl‐phosphorylated‐HPr. Mol Microbiol 2019; 113:464-477. [DOI: 10.1111/mmi.14431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Victor Sebastián Blancato
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | - Martín Espariz
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris‐Saclay Jouy‐en‐Josas France
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico‐Chimique Paris France
| | - Andreas Pikis
- Center for Drug Evaluation and Research, Food and Drug Administration Silver Spring Maryland
- Microbial Biochemistry and Genetics Unit, Laboratory of Cell and Developmental Biology NIDCR, National Institutes of Health Bethesda Maryland
| | | | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | | |
Collapse
|
6
|
Grand M, Aubourg M, Pikis A, Thompson J, Deutscher J, Hartke A, Sauvageot N. Characterization of the gen locus involved in β-1,6-oligosaccharide utilization by Enterococcus faecalis. Mol Microbiol 2019; 112:1744-1756. [PMID: 31529727 DOI: 10.1111/mmi.14390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 11/30/2022]
Abstract
The bicistronic genBA operon (formerly named celBA) of the opportunistic pathogen Enterococcus faecalis, encodes a 6-phospho-β-glucosidase (GenA) and a phosphotransferase system permease EIIC (GenB). It resembles the cel operon of Streptococcus pyogenes, which is implicated in the metabolism of cellobiose. However, genBA mutants grew normally on cellobiose, but not (genA) or only slowly (genB) on gentiobiose and amygdalin. The two glucosides were also found to be the main inducers of the operon, confirming that the encoded proteins are involved in the utilization of β-1,6- rather than β-1,4-linked oligosaccharides. Expression of the genBA operon is regulated by the transcriptional activator GenR, which is encoded by the gene upstream from genB. Thermal shift analysis showed that it binds gentiobiose-6'-P with a Kd of 0.04 mM and with lower affinity also other phospho-sugars. The GenR/gentiobiose-6'-P complex binds to the promoter region upstream from genB. The genBA promoter region contains a cre box and gel-shift experiments demonstrated that the operon is under negative control of the global carbon catabolite regulator CcpA. We also show that the orphan EIIC (GenB) protein needs the EIIA component of the putative OG1RF_10750-OG1RF_10755 operon situated elsewhere on the chromosome to form a functional PTS transporter.
Collapse
Affiliation(s)
- Maxime Grand
- Normandie Univ, UNICAEN, U2RM Stress/Virulence, Caen, 14000, France
| | - Marion Aubourg
- Normandie Univ, UNICAEN, U2RM Antibio-résistance et Pathologies équines, Caen, 14000, France
| | - Andreas Pikis
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.,Microbial Biochemistry and Genetics Unit, Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Thompson
- Microbial Biochemistry and Genetics Unit, Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,UMR 8261, CNRS, Université Paris VII, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Axel Hartke
- Normandie Univ, UNICAEN, U2RM Stress/Virulence, Caen, 14000, France
| | | |
Collapse
|
7
|
Safety assessment and functional properties of four enterococci strains isolated from regional Argentinean cheese. Int J Food Microbiol 2018; 277:1-9. [PMID: 29669304 DOI: 10.1016/j.ijfoodmicro.2018.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/07/2018] [Accepted: 04/07/2018] [Indexed: 01/22/2023]
Abstract
The members of the Enterococcus genus are widely distributed in nature. Its strains have been extensively reported to be present in plant surfaces, soil, water and food. In an attempt to assess their potential application in food industry, four Enterococcus faecium group-strains recently isolated from Argentinean regional cheese products were evaluated using a combination of whole genome analyses and in vivo assays. In order to identify these microorganisms at species level, in silico analyses using their newly reported sequences were conducted. The average nucleotide identity (ANI), in silico DNA-DNA hybridization, and phylogenomic trees constructed using core genome data allowed IQ110, GM70 and GM75 strains to be classified as E. faecium while IQ23 strain was identified as E. durans. Besides their common origin, the strains showed differences in their genetic structure and mobile genetic element content. Furthermore, it was possible to determine the absence or presence of specific features related to growth in milk, cheese ripening, probiotic capability and gut adaptation including sugar, amino acid, and peptides utilization, flavor compound production, bile salt tolerance as well as biogenic amine production. Remarkably, all strains encoded for peptide permeases, maltose utilization, bile salt tolerance, diacetyl and tyramine production genes. On the other hand, some variability was observed regarding citrate and lactose utilization, esterase, and cell wall-associated proteinase. In addition, while strains were predicted to be non-human pathogens by the in silico inspection of pathogenicity and virulence factors, only the GM70 strain proved to be non-virulent in Galleria mellonella model. In conclusion, we propose that, in order to improve the rational selection of strains for industrial applications, a holistic approach involving a comparative genomic analysis of positive and negative features as well as in vivo evaluation of virulence behavior should be performed.
Collapse
|