1
|
Cecala JM, Vannette RL. Nontarget impacts of neonicotinoids on nectar-inhabiting microbes. Environ Microbiol 2024; 26:e16603. [PMID: 38494634 DOI: 10.1111/1462-2920.16603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Plant-systemic neonicotinoid (NN) insecticides can exert non-target impacts on organisms like beneficial insects and soil microbes. NNs can affect plant microbiomes, but we know little about their effects on microbial communities that mediate plant-insect interactions, including nectar-inhabiting microbes (NIMs). Here we employed two approaches to assess the impacts of NN exposure on several NIM taxa. First, we assayed the in vitro effects of six NN compounds on NIM growth using plate assays. Second, we inoculated a standardised NIM community into the nectar of NN-treated canola (Brassica napus) and assessed microbial survival and growth after 24 h. With few exceptions, in vitro NN exposure tended to decrease bacterial growth metrics. However, the magnitude of the decrease and the NN concentrations at which effects were observed varied substantially across bacteria. Yeasts showed no consistent in vitro response to NNs. In nectar, we saw no effects of NN treatment on NIM community metrics. Rather, NIM abundance and diversity responded to inherent plant qualities like nectar volume. In conclusion, we found no evidence that NIMs respond to field-relevant NN levels in nectar within 24 h, but our study suggests that context, specifically assay methods, time and plant traits, is important in assaying the effects of NNs on microbial communities.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology & Nematology, University of California, Davis, California, USA
| | - Rachel L Vannette
- Department of Entomology & Nematology, University of California, Davis, California, USA
| |
Collapse
|
2
|
Rering CC, Rudolph AB, Li QB, Read QD, Muñoz PR, Ternest JJ, Hunter CT. A quantitative survey of the blueberry (Vaccinium spp.) culturable nectar microbiome: variation between cultivars, locations, and farm management approaches. FEMS Microbiol Ecol 2024; 100:fiae020. [PMID: 38366934 PMCID: PMC10903978 DOI: 10.1093/femsec/fiae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Microbes in floral nectar can impact both their host plants and floral visitors, yet little is known about the nectar microbiome of most pollinator-dependent crops. In this study, we examined the abundance and composition of the fungi and bacteria inhabiting Vaccinium spp. nectar, as well as nectar volume and sugar concentrations. We compared wild V. myrsinites with two field-grown V. corymbosum cultivars collected from two organic and two conventional farms. Differences in nectar traits and microbiomes were identified between V. corymbosum cultivars but not Vaccinium species. The microbiome of cultivated plants also varied greatly between farms, whereas management regime had only subtle effects, with higher fungal populations detected under organic management. Nectars were hexose-dominant, and high cell densities were correlated with reduced nectar sugar concentrations. Bacteria were more common than fungi in blueberry nectar, although both were frequently detected and co-occurred more often than would be predicted by chance. "Cosmopolitan" blueberry nectar microbes that were isolated in all plants, including Rosenbergiella sp. and Symmetrospora symmetrica, were identified. This study provides the first systematic report of the blueberry nectar microbiome, which may have important implications for pollinator and crop health.
Collapse
Affiliation(s)
- Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Dr, Gainesville, FL 32608, United States
| | - Arthur B Rudolph
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Dr, Gainesville, FL 32608, United States
| | - Qin-Bao Li
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Dr, Gainesville, FL 32608, United States
| | - Quentin D Read
- Agricultural Research Service, Southeast Area, United States Department of Agriculture, 840 Oval Drive, Raleigh, NC 27606, United States
| | - Patricio R Muñoz
- Horticultural Sciences Department, University of Florida, 2550 Hull Rd, Gainesville, FL 32611, United States
| | - John J Ternest
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr, Gainesville, FL 32611, United States
| | - Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Dr, Gainesville, FL 32608, United States
| |
Collapse
|
3
|
Álvarez-Pérez S, Lievens B, de Vega C. Floral nectar and honeydew microbial diversity and their role in biocontrol of insect pests and pollination. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101138. [PMID: 37931689 DOI: 10.1016/j.cois.2023.101138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Sugar-rich plant-related secretions, such as floral nectar and honeydew, that are commonly used as nutrient sources by insects and other animals, are also the ecological niche for diverse microbial communities. Recent research has highlighted the great potential of nectar and honeydew microbiomes in biological pest control and improved pollination, but the exploitation of these microbiomes requires a deep understanding of their community dynamics and plant-microbe-insect interactions. Additionally, the successful application of microbes in crop fields is conditioned by diverse ecological, legal, and ethical challenges that should be taken into account. In this article, we provide an overview of the nectar and honeydew microbiomes and discuss their potential applications in sustainable agricultural practices.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, B-3001 Heverlee, Belgium
| | - Clara de Vega
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Rering CC, Lanier AM, Peres NA. Blueberry floral probiotics: nectar microbes inhibit the growth of Colletotrichum pathogens. J Appl Microbiol 2023; 134:lxad300. [PMID: 38061796 DOI: 10.1093/jambio/lxad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
AIMS To identify whether microorganisms isolated from blueberry flowers can inhibit the growth of Colletotrichum, an opportunistic plant pathogen that infects flowers and threatens yields, and to assess the impacts of floral microbes and Colletotrichum pathogens on artificial nectar sugars and honey bee consumption. METHODS AND RESULTS The growth inhibition of Colletotrichum (Colletotrichum acutatum, Colletotrichum fioriniae, and Colletotrichum gloeosporioides) was screened using both artificial nectar co-culture and dual culture plate assays. All candidate nectar microbes were screened for antagonism against a single C. acutatum isolate. Then, the top four candidate nectar microbes showing the strongest inhibition of C. acutatum (Neokomagataea thailandica, Neokomagataea tanensis, Metschnikowia rancensis, and Symmetrospora symmetrica) were evaluated for antagonism against three additional C. acutatum isolates, and single isolates of both C. fioriniae and C. gloeosporioides. In artificial nectar assays, single and three-species cultures inhibited the growth of two of four C. acutatum isolates by ca. 60%, but growth of other Colletotrichum species was not affected. In dual culture plate assays, inhibition was observed for all Colletotrichum species for at least three of four selected microbial antagonists (13%‒53%). Neither honey bee consumption of nectar nor nectar sugar concentrations were affected by any microbe or pathogen tested. CONCLUSIONS Selected floral microbes inhibited growth of all Colletotrichum species in vitro, although the degree of inhibition was specific to the assay and pathogen examined. In all microbial treatments, nectar sugars were preserved, and honey bee preference was not affected.
Collapse
Affiliation(s)
- Caitlin C Rering
- Chemistry Research Unit, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, United States
| | - Alexia M Lanier
- Chemistry Research Unit, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, United States
| | - Natalia A Peres
- Department of Horticulture, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, United States
| |
Collapse
|
5
|
Gao Q, Zhang Y, Gao C, Li H, Cheng Y, Qian X, Zhang L, Liu J, Ogunyemi SO, Guan J. The Microbial Diversity in Relation to Postharvest Quality and Decay: Organic vs. Conventional Pear Fruit. Foods 2023; 12:1980. [PMID: 37238797 PMCID: PMC10217483 DOI: 10.3390/foods12101980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Organic food produced in environmentally friendly farming systems has become increasingly popular. (2) Methods: We used a DNA metabarcoding approach to investigate the differences in the microbial community between organic and conventional 'Huangguan' pear fruit; and (3) Results: Compared to a conventional orchard, the fruit firmness in the organic orchard had significantly lowered after 30 days of shelf-life storage at 25 °C, and the soluble solids content (SSC), titratable acid (TA), and decay index were higher. There were differences in the microbial diversity between organic and conventional orchards pears. After 30 days of storage, Fusarium and Starmerella became the main epiphytic fungi in organic fruits, while Meyerozyma was dominant in conventional fruits. Gluconobacter, Acetobacter, and Komagataeibacter were dominant epiphytic bacteria on pears from both organic and conventional orchards after a 30-day storage period. Bacteroides, Muribaculaceae, and Nesterenkonia were the main endophytic bacteria throughout storage. There was a negative correlation between fruit firmness and decay index. Moreover, the abundance of Acetobacter and Starmerella were positively correlated with fruit firmness, while Muribaculaceae was negatively correlated, implying that these three microorganisms may be associated with the postharvest decay of organic fruit; (4) Conclusions: The difference in postharvest quality and decay in organic and conventional fruits could potentially be attributed to the variation in the microbial community during storage.
Collapse
Affiliation(s)
- Qi Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Huimin Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Xun Qian
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Lishu Zhang
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Jinyu Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310013, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
6
|
Burgess EC, Schaeffer RN. The Floral Microbiome and Its Management in Agroecosystems: A Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9819-9825. [PMID: 35917340 DOI: 10.1021/acs.jafc.2c02037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disease management is critical to ensuring healthy crop yields and is often targeted at flowers because of their susceptibility to pathogens and direct link to reproduction. Many disease management strategies are unsustainable however because of the potential for pathogens to evolve resistance, or nontarget effects on beneficial insects. Manipulating the floral microbiome holds some promise as a sustainable alternative to chemical means of disease control. In this perspective, we discuss the current state of research concerning floral microbiome assembly and management in agroecosystems as well as future directions aimed at improving the sustainability of disease control and insect-mediated ecosystem services.
Collapse
Affiliation(s)
- Emily C Burgess
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| | - Robert N Schaeffer
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
7
|
Jones R, Fountain MT, Andreani NA, Günther CS, Goddard MR. The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Sci Rep 2022; 12:10382. [PMID: 35725889 PMCID: PMC9209449 DOI: 10.1038/s41598-022-14275-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal metabolic volatiles attract Drosophila suzukii which oviposits in ripening fruits, but there are few data describing the fungal microbiomes of commercial fruits susceptible to this insect pest. We tested the hypothesis that fruit type and ripening stage have a significant effect on fruit surface fungal communities using DNA metabarcoding approaches and found strong support for differences in all three fungal community biodiversity metrics analysed (numbers, types, and abundances of taxa). There was an average fivefold greater difference in fungal communities between sites with different fruit types (strawberry, cherry, raspberry, and blueberry) than across fruit developmental stages, demonstrating site and/or fruit type is the greater factor defining fungal community assemblage. The addition of a fungal internal standard (Plectosphaerella cucumerina) showed cherry had relatively static fungal populations across ripening. Raspberry had a greater prevalence of Saccharomycetales yeasts attractive to D. suzukii, including Hanseniaspora uvarum, which aligns with reports that raspberry is among the fruits with greatest susceptibility and attraction to D. suzukii. Greater knowledge of how yeast communities change during fruit maturation and between species or sites may be valuable for developing methods to manipulate fruit microbiomes for use in integrated pest management strategies to control D. suzukii.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ, UK.
| | | | - Nadia A Andreani
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Catrin S Günther
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The New Zealand Institute of Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, Hamilton, 3214, New Zealand
| | - Matthew R Goddard
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|