1
|
Zhang N, Zeng Y, Ye J, Lin C, Gong X, Long H, Chen H, Xie Z. RpoN mediates biofilm formation by directly controlling vps gene cluster and c-di-GMP synthetic metabolism in V. alginolyticus. Biofilm 2025; 9:100242. [PMID: 39802281 PMCID: PMC11722192 DOI: 10.1016/j.bioflm.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Vibrio alginolyticus is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that ΔrpoN formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which rpoN regulates biofilm formation has remained unclear. Based on the critical role of Vibrio exopolysaccharide (VPS) in biofilm formation, several genes related to the production and regulation of VPS were characterized in V. alginolyticus. Our findings from mutant strains indicated that VPS has complete control over the formation of rugose colony morphology and PB, while it only partially contributes to SB formation. Among the four transcriptional regulators of the vps gene cluster, vpsR and VA3545 act as promoters, whereas VA3546 and VA2703 function as repressors. Through transcriptome analysis and c-di-GMP concentration determination, VA0356 and VA3580 which encoded diguanylate cyclase were found to mediate the ΔrpoN biofilm formation. As a central regulator, rpoN governed biofilm formation through two regulatory pathways. Firstly, it directly bound to the upstream region of VA4206 to regulate the expression of the vps gene cluster (VA4206-VA4196). Secondly, it directly and indirectly modulated c-di-GMP synthesis gene VA3580 and VA0356, respectively, thereby affecting c-di-GMP concentration and subsequently influencing the expression of vps transcription activators vpsR and VA3545. Under conditions promoting SB formation, ΔrpoN was unable to thrive below the liquid level due to significantly reduced activities of three catalytic enzymes (ACK, ADH, and ALDH) involved in pyruvate metabolism, but tended to reproduce in air-liquid interface, a high oxygen niche compared to the liquid phase. In conclusion, both exopolysaccharide synthesis and oxygen-related metabolism contributed to ΔrpoN biofilm formation. The role of RpoN-mediated hypoxic metabolism and biofilm formation were crucial for comprehending the colonization and pathogenicity of V. alginolyticus in hosts, providing a novel target for treating V. alginolyticus in aquatic environments and hosts.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yanhua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
| | - Jiachengzi Ye
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| | - Chuancao Lin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xiaoxiao Gong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
| | - Haimin Chen
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China
- School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, Hainan Province, China
| |
Collapse
|
2
|
Cherrak Y, Younes AA, Perez-Molphe-Montoya E, Maurer L, Yilmaz K, Enz U, Zeder C, Kiefer P, Christen P, Gül E, Vorholt JA, von Mering C, Hardt WD. Neutrophil recruitment during intestinal inflammation primes Salmonella elimination by commensal E. coli in a context-dependent manner. Cell Host Microbe 2025:S1931-3128(25)00052-6. [PMID: 40023150 DOI: 10.1016/j.chom.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Foodborne bacterial diarrhea involves complex pathogen-microbiota-host interactions. Pathogen-displacing probiotics are increasingly popular, but heterogeneous patient outcomes highlighted the need to understand individualized host-probiotic activity. Using the mouse gut commensal Escherichia coli 8178 and the human probiotic E. coli Nissle 1917, we found that the degree of protection against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm) varies across mice with distinct gut microbiotas. Pathogen clearance is linked to enteropathy severity and subsequent recruitment of intraluminal neutrophils, which differs in a microbiota-dependent manner. By combining mouse knockout and antibody-mediated depletion models with bacterial genetics, we show that neutrophils and host-derived reactive oxygen species directly influence E. coli-mediated S. Tm displacement by potentiating siderophore-bound toxin killing. Our work demonstrates how host immune factors shape pathogen-displacing probiotic efficiency while also revealing an unconventional antagonistic interaction where a gut commensal and the host synergize to displace an enteric pathogen.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eugenio Perez-Molphe-Montoya
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Koray Yilmaz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Science and Technology, 8092 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
3
|
Liu C, Shao J, Ma X, Tang Y, Li J, Li H, Chi X, Liu Z. A novel two-component system contributing the catabolism of c-di-GMP influences virulence in Aeromonas veronii. Front Microbiol 2025; 16:1527317. [PMID: 39980697 PMCID: PMC11841396 DOI: 10.3389/fmicb.2025.1527317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Response regulators from diverse two-component systems often function as diguanylate cyclases or phosphodiesterases, thereby enabling precise regulation of intracellular c-di-GMP levels to control bacterial virulence and motility. However, the regulatory mechanisms of c-di-GMP require further elucidation. Methods This study confirmed that ArrS and ArrR form a two-component system via structural analysis, two-hybrid, and phosphodiesterase activity detection. To evaluate the impact of ArrS/ArrR on intracellular c-di-GMP levels, biofilm detection, motility detection, fluorescence reporter plasmids, and LC-MS/MS analysis were employed. One-hybrid, EMSA, and RT-qPCR were used to demonstrate the function of ArgR on arrSR promoter. The roles of ArrS/ArrR in Aeromonas veronii were investigated using RT-qPCR, murine model, and proteomics. Results ArrS and ArrR constituted a two-component system in Aeromonas veronii and were transcriptionally repressed by ArgR. ArrR exhibited phosphodiesterase activity, which is inhibited through phosphorylation mediated by ArrS. In Aeromonas veronii, ArrS/ArrR significantly altered the intracellular c-di-GMP levels. In a murine model, ΔarrS exhibited increased pathogenicity, leading to elevated TNF-α and IFN-γ levels in serum, and severer toxicity to spleen and kidney. These effects might be elucidated by the upregulated inflammation-associated proteins in ΔarrS. Moreover, the exonuclease RecB was also up-regulated in ΔarrS. Discussion We elucidated the regulatory mechanism of ArrS/ArrR on intracellular c-di-GMP levels and its impact on the virulence in Aeromonas veronii, and discussed the intricate relationship between c-di-GMP metabolism and arginine metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou, China
| |
Collapse
|
4
|
Wang Z, Tang Y, Li H, Li J, Chi X, Ma X, Liu Z. ArgR regulates motility and virulence through positive control of flagellar genes and inhibition of diguanylate cyclase expression in Aeromonas veronii. Commun Biol 2024; 7:1720. [PMID: 39741221 DOI: 10.1038/s42003-024-07392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes. Specifically, ArgR bound to the ARG box in the flrBC promoter, positively regulating flrBC expression, which in turn promoted flagellar synthesis and enhanced motility. Additionally, in the absence of arginine, ArgR inhibited the expression of diguanylate cyclase, leading to reduced c-di-GMP levels, thereby alleviating its inhibitory effect on motility. Thus, ArgR coordinated two distinct pathways to regulate flagellar assembly and motility, ultimately affecting adhesion, virulence, and biofilm formation. In summary, this study elucidates the molecular mechanism by which ArgR regulates motility, highlighting its crucial role in bacterial virulence and offering new insights for the prevention and control of pathogenic bacteria.
Collapse
Affiliation(s)
- Zucheng Wang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Hong Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xue Chi
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan University, Haikou, China.
| | - Zhu Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
5
|
Ring BE, Shepard GE, Khadka S, Holmes CL, Bachman MA, Mike LA. Arginine Regulates the Mucoid Phenotype of Hypervirulent Klebsiella pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624485. [PMID: 39605402 PMCID: PMC11601523 DOI: 10.1101/2024.11.20.624485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hypervirulent Klebsiella pneumoniae is associated with severe community-acquired infections. Hypervirulent K. pneumoniae colonies typically exhibit a mucoid phenotype. K. pneumoniae mucoidy is influenced by a complex combination of environmental factors and genetic mechanisms. Mucoidy results from altered capsular polysaccharide chain length, yet the specific environmental cues regulating this phenotype and their impact on pathogenesis remain unclear. This study demonstrates that casamino acids enhance the mucoidy phenotype but do not affect total capsular polysaccharide levels. Through targeted screening of each amino acid present in casamino acids, we identified that arginine is necessary and sufficient to stimulate the mucoid phenotype without altering capsule abundance. Furthermore, arginine activates the rmpADC promoter, increasing rmpD transcript levels, which in turn modulates capsular polysaccharide chain length and diversity. The arginine regulator, ArgR, plays a pivotal role in this regulatory cascade since deleting argR decreases mucoidy and increases capsular polysaccharide chain length diversity. Additionally, the ∆argR mutant displays increased macrophage association and has a substantial competitive defect in the lungs of mice, suggesting a link between arginine-dependent gene regulation, immune evasion and in vivo fitness. We discovered that arginine-dependent regulation of mucoidy is conserved in four additional hypervirulent K. pneumoniae isolates likely via a conserved ARG binding box present in rmp promoters. Our findings support a model in which arginine activates ArgR and increases mucoidy in hypervirulent K. pneumoniae. As a result, it is possible that arginine-dependent regulation of mucoidy allows hypervirulent K. pneumoniae to adapt the cell surface across different niches. This study underscores the significance of arginine as a regulatory signal in bacterial virulence.
Collapse
Affiliation(s)
- Brooke E. Ring
- Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, USA
| | - Grace E. Shepard
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Saroj Khadka
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlyn L. Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Laura A. Mike
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
7
|
Huang W, Wang D, Zhang XX, Zhao M, Sun L, Zhou Y, Guan X, Xie Z. Regulatory roles of the second messenger c-di-GMP in beneficial plant-bacteria interactions. Microbiol Res 2024; 285:127748. [PMID: 38735241 DOI: 10.1016/j.micres.2024.127748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3'-5') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.
Collapse
Affiliation(s)
- Weiwei Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Mengguang Zhao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Li Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Yanan Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xin Guan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China.
| |
Collapse
|
8
|
Borchert AJ, Bleem AC, Lim HG, Rychel K, Dooley KD, Kellermyer ZA, Hodges TL, Palsson BO, Beckham GT. Machine learning analysis of RB-TnSeq fitness data predicts functional gene modules in Pseudomonas putida KT2440. mSystems 2024; 9:e0094223. [PMID: 38323821 PMCID: PMC10949508 DOI: 10.1128/msystems.00942-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024] Open
Abstract
There is growing interest in engineering Pseudomonas putida KT2440 as a microbial chassis for the conversion of renewable and waste-based feedstocks, and metabolic engineering of P. putida relies on the understanding of the functional relationships between genes. In this work, independent component analysis (ICA) was applied to a compendium of existing fitness data from randomly barcoded transposon insertion sequencing (RB-TnSeq) of P. putida KT2440 grown in 179 unique experimental conditions. ICA identified 84 independent groups of genes, which we call fModules ("functional modules"), where gene members displayed shared functional influence in a specific cellular process. This machine learning-based approach both successfully recapitulated previously characterized functional relationships and established hitherto unknown associations between genes. Selected gene members from fModules for hydroxycinnamate metabolism and stress resistance, acetyl coenzyme A assimilation, and nitrogen metabolism were validated with engineered mutants of P. putida. Additionally, functional gene clusters from ICA of RB-TnSeq data sets were compared with regulatory gene clusters from prior ICA of RNAseq data sets to draw connections between gene regulation and function. Because ICA profiles the functional role of several distinct gene networks simultaneously, it can reduce the time required to annotate gene function relative to manual curation of RB-TnSeq data sets. IMPORTANCE This study demonstrates a rapid, automated approach for elucidating functional modules within complex genetic networks. While Pseudomonas putida randomly barcoded transposon insertion sequencing data were used as a proof of concept, this approach is applicable to any organism with existing functional genomics data sets and may serve as a useful tool for many valuable applications, such as guiding metabolic engineering efforts in other microbes or understanding functional relationships between virulence-associated genes in pathogenic microbes. Furthermore, this work demonstrates that comparison of data obtained from independent component analysis of transcriptomics and gene fitness datasets can elucidate regulatory-functional relationships between genes, which may have utility in a variety of applications, such as metabolic modeling, strain engineering, or identification of antimicrobial drug targets.
Collapse
Affiliation(s)
- Andrew J. Borchert
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alissa C. Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Agile BioFoundry, Emeryville, California, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Joint BioEnergy Institute, Emeryville, California, USA
- Department of Biological Engineering, Inha University, Incheon, Korea
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Keven D. Dooley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
- Agile BioFoundry, Emeryville, California, USA
| | - Zoe A. Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Tracy L. Hodges
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
- Agile BioFoundry, Emeryville, California, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Joint BioEnergy Institute, Emeryville, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Agile BioFoundry, Emeryville, California, USA
| |
Collapse
|
9
|
Scribani-Rossi C, Molina-Henares MA, Espinosa-Urgel M, Rinaldo S. Exploring the Metabolic Response of Pseudomonas putida to L-arginine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38429473 DOI: 10.1007/5584_2024_797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Beyond their role as protein-building units, amino acids are modulators of multiple behaviours in different microorganisms. In the root-colonizing beneficial bacterium Pseudomonas putida (recently proposed to be reclassified as alloputida) KT2440, current evidence suggests that arginine functions both as a metabolic indicator and as an environmental signal molecule, modulating processes such as chemotactic responses, siderophore-mediated iron uptake or the levels of the intracellular second messenger cyclic diguanylate (c-di-GMP). Using microcalorimetry and extracellular flux analysis, in this work we have studied the metabolic adaptation of P. putida KT2440 to the presence of L-arginine in the growth medium, and the influence of mutations related to arginine metabolism. Arginine causes rapid changes in the respiratory activity of P. putida, particularly magnified in a mutant lacking the transcriptional regulator ArgR. The metabolic activity of mutants affected in arginine transport and metabolism is also altered during biofilm formation in the presence of the amino acid. The results obtained here further support the role of arginine as a metabolic signal in P. putida and the relevance of ArgR in the adaptation to the amino acid. They also serve as proof of concept on the use of calorimetric and extracellular flux techniques to analyse metabolic responses in bacteria and the impact of different mutant backgrounds on such responses.
Collapse
Affiliation(s)
- Chiara Scribani-Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain.
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Molina-Henares MA, Ramos-González MI, Rinaldo S, Espinosa-Urgel M. Gene expression reprogramming of Pseudomonas alloputida in response to arginine through the transcriptional regulator ArgR. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001449. [PMID: 38511653 PMCID: PMC10963909 DOI: 10.1099/mic.0.001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Different bacteria change their life styles in response to specific amino acids. In Pseudomonas putida (now alloputida) KT2440, arginine acts both as an environmental and a metabolic indicator that modulates the turnover of the intracellular second messenger c-di-GMP, and expression of biofilm-related genes. The transcriptional regulator ArgR, belonging to the AraC/XylS family, is key for the physiological reprogramming in response to arginine, as it controls transport and metabolism of the amino acid. To further expand our knowledge on the roles of ArgR, a global transcriptomic analysis of KT2440 and a null argR mutant growing in the presence of arginine was carried out. Results indicate that this transcriptional regulator influences a variety of cellular functions beyond arginine metabolism and transport, thus widening its regulatory role. ArgR acts as positive or negative modulator of the expression of several metabolic routes and transport systems, respiratory chain and stress response elements, as well as biofilm-related functions. The partial overlap between the ArgR regulon and those corresponding to the global regulators RoxR and ANR is also discussed.
Collapse
Affiliation(s)
- María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1. Granada 18008, Spain
| | - María Isabel Ramos-González
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1. Granada 18008, Spain
| | - Serena Rinaldo
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti - Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1. Granada 18008, Spain
| |
Collapse
|
11
|
Pearson AN, Incha MR, Ho CN, Schmidt M, Roberts JB, Nava AA, Keasling JD. Characterization and Diversification of AraC/XylS Family Regulators Guided by Transposon Sequencing. ACS Synth Biol 2024; 13:206-219. [PMID: 38113125 DOI: 10.1021/acssynbio.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, we explored the development of engineered inducible systems. Publicly available data from previous transposon sequencing assays were used to identify regulators of metabolism in Pseudomonas putida KT2440. For AraC family regulators (AFRs) represented in these data, we posited AFR/promoter/inducer groupings. Twelve promoters were characterized for a response to their proposed inducers in P. putida, and the resultant data were used to create and test nine two-plasmid sensor systems in Escherichia coli. Several of these were further developed into a palette of single-plasmid inducible systems. From these experiments, we observed an unreported inducer response from a previously characterized AFR, demonstrated that the addition of a P. putida transporter improved the sensor dynamics of an AFR in E. coli, and identified an uncharacterized AFR with a novel potential inducer specificity. Finally, targeted mutations in an AFR, informed by structural predictions, enabled the further diversification of these inducible plasmids.
Collapse
Affiliation(s)
- Allison N Pearson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Matthew R Incha
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Cindy N Ho
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthias Schmidt
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen 52062, Germany
| | - Jacob B Roberts
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint Program in Bioengineering, University of California, Berkeley/San Francisco, California 94720, United States
| | - Alberto A Nava
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint Program in Bioengineering, University of California, Berkeley/San Francisco, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen 518055, China
| |
Collapse
|
12
|
Espinosa-Urgel M, Ramos-González MI. Becoming settlers: Elements and mechanisms for surface colonization by Pseudomonas putida. Environ Microbiol 2023; 25:1575-1593. [PMID: 37045787 DOI: 10.1111/1462-2920.16385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Pseudomonads are considered to be among the most widespread culturable bacteria in mesophilic environments. The evolutive success of Pseudomonas species can be attributed to their metabolic versatility, in combination with a set of additional functions that enhance their ability to colonize different niches. These include the production of secondary metabolites involved in iron acquisition or having a detrimental effect on potential competitors, different types of motility, and the capacity to establish and persist within biofilms. Although biofilm formation has been extensively studied using the opportunistic pathogen Pseudomonas aeruginosa as a model organism, a significant body of knowledge is also becoming available for non-pathogenic Pseudomonas. In this review, we focus on the mechanisms that allow Pseudomonas putida to colonize biotic and abiotic surfaces and adapt to sessile life, as a relevant persistence strategy in the environment. This species is of particular interest because it includes plant-beneficial strains, in which colonization of plant surfaces may be relevant, and strains used for environmental and biotechnological applications, where the design and functionality of biofilm-based bioreactors, for example, also have to take into account the efficiency of bacterial colonization of solid surfaces. This work reviews the current knowledge of mechanistic and regulatory aspects of biofilm formation by P. putida and pinpoints the prospects in this field.
Collapse
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Granada, Spain
| | | |
Collapse
|
13
|
Scribani-Rossi C, Molina-Henares MA, Angeli S, Cutruzzolà F, Paiardini A, Espinosa-Urgel M, Rinaldo S. The phosphodiesterase RmcA contributes to the adaptation of Pseudomonas putida to l-arginine. FEMS Microbiol Lett 2023; 370:fnad077. [PMID: 37550221 PMCID: PMC10423028 DOI: 10.1093/femsle/fnad077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Amino acids are crucial in nitrogen cycling and to shape the metabolism of microorganisms. Among them, arginine is a versatile molecule able to sustain nitrogen, carbon, and even ATP supply and to regulate multicellular behaviors such as biofilm formation. Arginine modulates the intracellular levels of 3'-5'cyclic diguanylic acid (c-di-GMP), a second messenger that controls biofilm formation, maintenance and dispersion. In Pseudomonas putida, KT2440, a versatile microorganism with wide biotechnological applications, modulation of c-di-GMP levels by arginine requires the transcriptional regulator ArgR, but the connections between arginine metabolism and c-di-GMP are not fully characterized. It has been recently demonstrated that arginine can be perceived by the opportunistic human pathogen Pseudomonas aeruginosa through the transducer RmcA protein (Redox regulator of c-di-GMP), which can directly decrease c-di-GMP levels and possibly affect biofilm architecture. A RmcA homolog is present in P. putida, but its function and involvement in arginine perceiving or biofilm life cycle had not been studied. Here, we present a preliminary characterization of the RmcA-dependent response to arginine in P. putida in modulating biofilm formation, c-di-GMP levels, and energy metabolism. This work contributes to further understanding the molecular mechanisms linking biofilm homeostasis and environmental adaptation.
Collapse
Affiliation(s)
- Chiara Scribani-Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin
, CSIC, Profesor Albareda, 1, Granada, 18008, Spain
| | - Simone Angeli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Paiardini
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin
, CSIC, Profesor Albareda, 1, Granada, 18008, Spain
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
14
|
Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. Int J Mol Sci 2022; 23:ijms23084386. [PMID: 35457206 PMCID: PMC9028604 DOI: 10.3390/ijms23084386] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The Pseudomonas genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions. Nutrient availability can be perceived by a Pseudomonas biofilm which, in turn, readapts its metabolism to finally tune its own formation and dispersion. A growing number of papers is now focusing on the mechanism of nutrient perception as a possible strategy to weaken the biofilm barrier by environmental cues. One of the most important nutrients is amino acid L-arginine, a crucial metabolite sustaining bacterial growth both as a carbon and a nitrogen source. Under low-oxygen conditions, L-arginine may also serve for ATP production, thus allowing bacteria to survive in anaerobic environments. L-arginine has been associated with biofilms, virulence, and antibiotic resistance. L-arginine is also a key precursor of regulatory molecules such as polyamines, whose involvement in biofilm homeostasis is reported. Given the biomedical and biotechnological relevance of biofilm control, the state of the art on the effects mediated by the L-arginine nutrient on biofilm modulation is presented, with a special focus on the Pseudomonas biofilm. Possible biotechnological and biomedical applications are also discussed.
Collapse
|
15
|
Zhang J, Hu L, Zhang H, He Z. Cyclic
di‐GMP
triggers the hypoxic adaptation of
Mycobacterium bovis
through a metabolic switching regulator
ArgR. Environ Microbiol 2022; 24:4382-4400. [DOI: 10.1111/1462-2920.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jiaxun Zhang
- College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and Technology Guangxi University Nanning 530004 China
| | - Hua Zhang
- College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Zheng‐Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and Technology Guangxi University Nanning 530004 China
| |
Collapse
|