1
|
Xingya Z, Xiaoping F, Jie Z, Jun Y, Hongchen Z, Wenqin B, Hui S. BsuMI regulates DNA transformation in Bacillus subtilis besides the defense system and the constructed strain with BsuMI-absence is applicable as a universal transformation platform for wild-type Bacillus. Microb Cell Fact 2024; 23:225. [PMID: 39123211 PMCID: PMC11311917 DOI: 10.1186/s12934-024-02493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND To effectively introduce plasmids into Bacillus species and conduct genetic manipulations in Bacillus chassis strains, it is essential to optimize transformation methods. These methods aim to extend the period of competence and enhance the permeability of the cell membrane to facilitate the entry of exogenous DNA. Although various strategies have been explored, few studies have delved into identifying metabolites and pathways associated with enhanced competence. Additionally, derivative Bacillus strains with non-functional restriction-modification systems have demonstrated superior efficiency in transforming exogenous DNA, lacking more explorations in the regulation conducted by the restriction-modification system to transformation process. RESULTS Transcriptomic comparisons were performed to discover the competence forming mechanism and the regulation pathway conducted by the BsuMI methylation modification group in Bacillus. subtilis 168 under the Spizizen transformation condition, which were speculated to be the preferential selection of carbon sources by the cells and the preference for specific metabolic pathway when utilizing the carbon source. The cells were found to utilize the glycolysis pathway to exploit environmental glucose while reducing the demand for other phosphorylated precursors in this pathway. The weakening of these ATP-substrate competitive metabolic pathways allowed more ATP substrates to be distributed into the auto-phosphorylation of the signal transduction factor ComP during competence formation, thereby increasing the expression level of the key regulatory protein ComK. The expression of ComK upregulated the expression of the negative regulator SacX of starch and sucrose in host cells, reinforcing the preference for glucose as the primary carbon source. The methylation modification group of the primary protein BsuMI in the restriction-modification system was associated with the functional modification of key enzymes in the oxidative phosphorylation pathway. The absence of the BsuMI methylation modification group resulted in a decrease in the expression of subunits of cytochrome oxidase, leading to a weakening of the oxidative phosphorylation pathway, which promoted the glycolytic rate of cells and subsequently improved the distribution of ATP molecules into competence formation. A genetic transformation platform for wild-type Bacillus strains was successfully established based on the constructed strain B. subtilis 168-R-M- without its native restriction-modification system. With this platform, high plasmids transformation efficiencies were achieved with a remarkable 63-fold improvement compared to the control group and an increased universality in Bacillus species was also obtained. CONCLUSIONS The enhanced competence formation mechanism and the regulation pathway conducted by the functional protein BsuMI of the restriction-modification system were concluded, providing a reference for further investigation. An effective transformation platform was established to overcome the obstacles in DNA transformations in wild-type Bacillus strains.
Collapse
Affiliation(s)
- Zhao Xingya
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Fu Xiaoping
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zhen Jie
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Yang Jun
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zheng Hongchen
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Bai Wenqin
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Song Hui
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin, 300308, China
| |
Collapse
|
2
|
Saini RV, Vaid P, Saini NK, Siwal SS, Gupta VK, Thakur VK, Saini AK. Recent Advancements in the Technologies Detecting Food Spoiling Agents. J Funct Biomater 2021; 12:67. [PMID: 34940546 PMCID: PMC8709279 DOI: 10.3390/jfb12040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
To match the current life-style, there is a huge demand and market for the processed food whose manufacturing requires multiple steps. The mounting demand increases the pressure on the producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard consumers' health. In the multistep process of food processing, there are several chances that the food-spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity to comprehend, implement, and monitor the levels of contaminants by utilizing various available methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the advancements in these methods for the detection of food-borne contaminants and pathogens.
Collapse
Affiliation(s)
- Reena V. Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Prachi Vaid
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| | - Neeraj K. Saini
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Adesh K. Saini
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| |
Collapse
|
3
|
Du Y, Ma J, Yin Z, Liu K, Yao G, Xu W, Fan L, Du B, Ding Y, Wang C. Comparative genomic analysis of Bacillus paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B. licheniformis. BMC Genomics 2019; 20:283. [PMID: 30975079 PMCID: PMC6458615 DOI: 10.1186/s12864-019-5646-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 02/03/2023] Open
Abstract
Background Members of the genus Bacillus are important plant growth-promoting rhizobacteria that serve as biocontrol agents. Bacillus paralicheniformis MDJK30 is a PGPR isolated from the peony rhizosphere and can suppress plant-pathogenic bacteria and fungi. To further uncover the genetic mechanism of the plant growth-promoting traits of MDJK30 and its closely related strains, we used comparative genomics to provide insights into the genetic diversity and evolutionary relationship between B. paralicheniformis and B. licheniformis. Results A comparative genomics analysis based on B. paralicheniformis MDJK30 and 55 other previously reported Bacillus strains was performed. The evolutionary position of MDJK30 and the evolutionary relationship between B. paralicheniformis and B. licheniformis were evaluated by studying the phylogeny of the core genomes, a population structure analysis and ANI results. Comparative genomic analysis revealed various features of B. paralicheniformis that contribute to its commensal lifestyle in the rhizosphere, including an opening pan genome, a diversity of transport and the metabolism of the carbohydrates and amino acids. There are notable differences in the numbers and locations of the insertion sequences, prophages, genomic islands and secondary metabolic synthase operons between B. paralicheniformis and B. licheniformis. In particular, we found most gene clusters of Fengycin, Bacitracin and Lantipeptide were only present in B. paralicheniformis and were obtained by horizontal gene transfer (HGT), and these clusters may be used as genetic markers for distinguishing B. paralicheniformis and B. licheniformis. Conclusions This study reveals that MDJK30 and the other strains of lineage paralicheniformis present plant growth-promoting traits at the genetic level and can be developed and commercially formulated in agriculture as PGPR. Core genome phylogenies and population structure analysis has proven to be a powerful tool for differentiating B. paralicheniformis and B. licheniformis. Comparative genomic analyses illustrate the genetic differences between the paralicheniformis-licheniformis group with respect to rhizosphere adaptation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5646-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuhui Du
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People's Republic of China
| | - Jinjin Ma
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People's Republic of China
| | - Kai Liu
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Gan Yao
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Wenfeng Xu
- State Key Laboratory of Nutrition Resources Integrated Utilization, Linshu, People's Republic of China
| | - Lingchao Fan
- State Key Laboratory of Nutrition Resources Integrated Utilization, Linshu, People's Republic of China
| | - Binghai Du
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Yanqin Ding
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China.
| | - Chengqiang Wang
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China.
| |
Collapse
|
4
|
Annapurna K, Govindasamy V, Sharma M, Ghosh A, Chikara SK. Whole genome shotgun sequence of Bacillus paralicheniformis strain KMS 80, a rhizobacterial endophyte isolated from rice ( Oryza sativa L.). 3 Biotech 2018; 8:223. [PMID: 29692960 DOI: 10.1007/s13205-018-1242-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022] Open
Abstract
Bacillus paralicheniformis strain KMS 80 (MTCC No. 12704) is an isolate from the root tissues of rice (Oryza sativa L.) that displays biological nitrogen fixation and plant growth promoting abilities. Here, we report the complete genome sequence of this strain, which contains 4,566,040 bp, 4424 protein-coding genes, 8692 promoter sequences, 67 tRNAs, 20 rRNA genes with six copies of 5S rRNAs along with a single copy of 16S-23S rRNA and genome average GC-content of 45.50%. Twenty one genes involved in nitrogen metabolism pathway and two main transcriptional factor genes, glnR and tnrA responsible for regulation of nitrogen fixation in Bacillus sp. were predicted from the whole genome of strain KMS 80. Analysis of the ~ 4.57 Mb genome sequence will give support to understand the genetic determinants of host range, endophytic colonization behaviour as well as to enhance endophytic nitrogen fixation and other plant beneficial role of B. paralicheniformis in rice.
Collapse
Affiliation(s)
- Kannepalli Annapurna
- 1Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Venkadasamy Govindasamy
- 1Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Meenakshi Sharma
- 1Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Arpita Ghosh
- Eurofins Genomics India Private Limited, Bangalore, 560048 Karnataka India
| | - Surendra K Chikara
- Eurofins Genomics India Private Limited, Bangalore, 560048 Karnataka India
| |
Collapse
|
5
|
Rapid screening of starter cultures for maari based on antifungal properties. Microbiol Res 2018; 207:66-74. [DOI: 10.1016/j.micres.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/17/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022]
|
6
|
Sun Y, De Vos P, Heylen K. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis. BMC Genomics 2016; 17:68. [PMID: 26786044 PMCID: PMC4719734 DOI: 10.1186/s12864-016-2382-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023] Open
Abstract
Background Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. Results B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Conclusions Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O production in DNRA bacteria and its relevance in situ. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2382-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihua Sun
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, (LM-UGent), University of Ghent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
| | - Paul De Vos
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, (LM-UGent), University of Ghent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium. .,BCCM/LMG Bacteria Collection, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
| | - Kim Heylen
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, (LM-UGent), University of Ghent, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
| |
Collapse
|
7
|
Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD. The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Front Microbiol 2015; 6:1418. [PMID: 26733963 PMCID: PMC4685140 DOI: 10.3389/fmicb.2015.01418] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/30/2015] [Indexed: 01/14/2023] Open
Abstract
Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry.
Collapse
Affiliation(s)
- Nidhi Gopal
- Teagasc Food Research CentreCork, Ireland
- School of Microbiology, University College CorkCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland
- APC Microbiome InstituteCork, Ireland
| | - Paul R. Ross
- College of Science, Engineering and Food Science, University College CorkCork, Ireland
| | | | | | - Paul D. Cotter
- Teagasc Food Research CentreCork, Ireland
- APC Microbiome InstituteCork, Ireland
| |
Collapse
|
8
|
Sadiq FA, Li Y, Liu T, Flint S, Zhang G, He G. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China. Int J Food Microbiol 2015; 217:200-8. [PMID: 26555161 DOI: 10.1016/j.ijfoodmicro.2015.10.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/03/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022]
Abstract
Aerobic spore forming bacteria are potential milk powder contaminants and are viewed as indicators of poor quality. A total of 738 bacteria, including both mesophilic and thermophilic, isolated from twenty-five powdered milk samples representative of three types of milk powders in China were analyzed based on the random amplified polymorphic DNA (RAPD) protocol to provide insight into species diversity. Bacillus licheniformis was found to be the most prevalent bacterium with greatest diversity (~43% of the total isolates) followed by Geobacillus stearothermophilus (~21% of the total isolates). Anoxybacillus flavithermus represented only 8.5% of the total profiles. Interestingly, actinomycetes represented a major group of the isolates with the predominance of Laceyella sacchari followed by Thermoactinomyces vulgaris, altogether comprising of 7.3% of the total isolates. Out of the nineteen separate bacterial species (except five unidentified groups) recovered and identified from milk powders, twelve proved to belong to novel or previously unreported species in milk powders. Assessment and characterization of the harmful effects caused by this particular micro-flora on the quality and safety of milk powders will be worth doing in the future.
Collapse
Affiliation(s)
- Faizan A Sadiq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yun Li
- Department of Biology, Hanshan Normal University, Chaozhou 521041, China
| | - TongJie Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Steve Flint
- School of Food and Nutrition, Massey University, Private Bag 11 222, Palmerston-North, New Zealand
| | - Guohua Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - GuoQing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Dunlap CA, Kwon SW, Rooney AP, Kim SJ. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol 2015; 65:3487-3492. [PMID: 26296568 DOI: 10.1099/ijsem.0.000441] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
An isolate of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacterium was recovered from soybean-based fermented paste. Phylogenetic analysis of the 16S rRNA gene indicated that the strain was most closely related to Bacillus sonorensis KCTC-13918T (99.5 % similarity) and Bacillus licheniformis DSM 13T (99.4 %). In phenotypic characterization, the novel strain was found to grow at 15–60 °C and to tolerate up to 10 % (w/v) NaCl. Furthermore, the strain grew in media with pH 6–11 (optimal growth at pH 7.0–8.0). The predominant cellular fatty acids were anteiso-C15 : 0 (37.7 %) and iso-C15 : 0 (31.5 %). The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. A draft genome sequence of the strain was completed and used for phylogenetic analysis. Phylogenomic analysis of all published genomes of species in the B. licheniformis group revealed that strains belonging to B. licheniformis clustered into two distinct groups, with group 1 consisting of B. licheniformis DSM 13T and 11 other strains and group 2 consisting of KJ-16T and four other strains. The DNA G+C content of strain KJ-16T was 45.9 % (determined from the genome sequence). Strain KJ-16T and another strain from group 2 were subsequently characterized using a polyphasic taxonomic approach and compared with strains from group 1 and another closely related species of the genus Bacillus. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Bacillus, for which the name Bacillus paralicheniformis sp. nov. is proposed, with type strain KJ-16T ( = KACC 18426T = NRRL B-65293T).
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Soon-Wo Kwon
- Korean Agriculture Culture Collection (KACC), Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Soo-Jin Kim
- Korean Agriculture Culture Collection (KACC), Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
10
|
The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development. Appl Microbiol Biotechnol 2014; 99:2255-66. [PMID: 25520171 DOI: 10.1007/s00253-014-6291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating-among others-DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis, ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis. Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis. Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis.
Collapse
|
11
|
Screening and characterization of RAPD markers in viscerotropic Leishmania parasites. PLoS One 2014; 9:e109773. [PMID: 25313833 PMCID: PMC4196940 DOI: 10.1371/journal.pone.0109773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis (VL) is mainly due to the Leishmania donovani complex. VL is endemic in many countries worldwide including East Africa and the Mediterranean region where the epidemiology is complex. Taxonomy of these pathogens is under controversy but there is a correlation between their genetic diversity and geographical origin. With steady increase in genome knowledge, RAPD is still a useful approach to identify and characterize novel DNA markers. Our aim was to identify and characterize polymorphic DNA markers in VL Leishmania parasites in diverse geographic regions using RAPD in order to constitute a pool of PCR targets having the potential to differentiate among the VL parasites. 100 different oligonucleotide decamers having arbitrary DNA sequences were screened for reproducible amplification and a selection of 28 was used to amplify DNA from 12 L. donovani, L. archibaldi and L. infantum strains having diverse origins. A total of 155 bands were amplified of which 60.65% appeared polymorphic. 7 out of 28 primers provided monomorphic patterns. Phenetic analysis allowed clustering the parasites according to their geographical origin. Differentially amplified bands were selected, among them 22 RAPD products were successfully cloned and sequenced. Bioinformatic analysis allowed mapping of the markers and sequences and priming sites analysis. This study was complemented with Southern-blot to confirm assignment of markers to the kDNA. The bioinformatic analysis identified 16 nuclear and 3 minicircle markers. Analysis of these markers highlighted polymorphisms at RAPD priming sites with mainly 5′ end transversions, and presence of inter– and intra– taxonomic complex sequence and microsatellites variations; a bias in transitions over transversions and indels between the different sequences compared is observed, which is however less marked between L. infantum and L. donovani. The study delivers a pool of well-documented polymorphic DNA markers, to develop molecular diagnostics assays to characterize and differentiate VL causing agents.
Collapse
|