1
|
Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and droplets. J R Soc Interface 2024; 21:18. [PMID: 38920060 DOI: 10.1098/rsif.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.
Collapse
Affiliation(s)
- Alexandra K Longest
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University , Durham, NC, USA
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University , Atlanta, GA, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| |
Collapse
|
2
|
Groth R, Niazi S, Oswin HP, Haddrell AE, Spann K, Morawska L, Ristovski Z. Toward Standardized Aerovirology: A Critical Review of Existing Results and Methodologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3595-3608. [PMID: 38355395 DOI: 10.1021/acs.est.3c07275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Understanding the airborne survival of viruses is important for public health and epidemiological modeling and potentially to develop mitigation strategies to minimize the transmission of airborne pathogens. Laboratory experiments typically involve investigating the effects of environmental parameters on the viability or infectivity of a target airborne virus. However, conflicting results among studies are common. Herein, the results of 34 aerovirology studies were compared to identify links between environmental and compositional effects on the viability of airborne viruses. While the specific experimental apparatus was not a factor in variability between reported results, it was determined that the experimental procedure was a major factor that contributed to discrepancies in results. The most significant contributor to variability between studies was poorly defined initial viable virus concentration in the aerosol phase, causing many studies to not measure the rapid inactivation, which occurs quickly after particle generation, leading to conflicting results. Consistently, studies that measured their reference airborne viability minutes after aerosolization reported higher viability at subsequent times, which indicates that there is an initial loss of viability which is not captured in these studies. The composition of the particles which carry the viruses was also found to be important in the viability of airborne viruses; however, the mechanisms for this effect are unknown. Temperature was found to be important for aerosol-phase viability, but there is a lack of experiments that directly compare the effects of temperature in the aerosol phase and the bulk phase. There is a need for repeated measurements between different research groups under identical conditions both to assess the degree of variability between studies and also to attempt to better understand already published data. Lack of experimental standardization has hindered the ability to quantify the differences between studies, for which we provide recommendations for future studies. These recommendations are as follows: measuring the reference airborne viability using the "direct method"; use equipment which maximizes time resolution; quantify all losses appropriately; perform, at least, a 5- and 10-min sample, if possible; report clearly the composition of the virus suspension; measure the composition of the gas throughout the experiment. Implementing these recommendations will address the most significant oversights in the existing literature and produce data which can more easily be quantitatively compared.
Collapse
Affiliation(s)
- Robert Groth
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Sadegh Niazi
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Henry P Oswin
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Allen E Haddrell
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kirsten Spann
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Lidia Morawska
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Zoran Ristovski
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
3
|
Sun X, Belser JA, Pulit-Penaloza JA, Brock N, Kieran TJ, Zeng H, Pappas C, Tumpey TM, Maines TR. A naturally occurring HA-stabilizing amino acid (HA1-Y17) in an A(H9N2) low-pathogenic influenza virus contributes to airborne transmission. mBio 2024; 15:e0295723. [PMID: 38112470 PMCID: PMC10790695 DOI: 10.1128/mbio.02957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.
Collapse
Affiliation(s)
- Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica A. Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joanna A. Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicole Brock
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Troy J. Kieran
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claudia Pappas
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Terrence M. Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taronna R. Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Tosheva II, Saygan KS, Mijnhardt SM, Russell CJ, Fraaij PLA, Herfst S. Hemagglutinin stability as a key determinant of influenza A virus transmission via air. Curr Opin Virol 2023; 61:101335. [PMID: 37307646 DOI: 10.1016/j.coviro.2023.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/14/2023]
Abstract
To cause pandemics, zoonotic respiratory viruses need to adapt to replication in and spread between humans, either via (indirect or direct) contact or through the air via droplets and aerosols. To render influenza A viruses transmissible via air, three phenotypic viral properties must change, of which receptor-binding specificity and polymerase activity have been well studied. However, the third adaptive property, hemagglutinin (HA) acid stability, is less understood. Recent studies show that there may be a correlation between HA acid stability and virus survival in the air, suggesting that a premature conformational change of HA, triggered by low pH in the airways or droplets, may render viruses noninfectious before they can reach a new host. We here summarize available data from (animal) studies on the impact of HA acid stability on airborne transmission and hypothesize that the transmissibility of other respiratory viruses may also be impacted by an acidic environment in the airways.
Collapse
Affiliation(s)
- Ilona I Tosheva
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kain S Saygan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Suzanne Ma Mijnhardt
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pieter LA Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Inherent heterogeneity of influenza A virus stability following aerosolization. Appl Environ Microbiol 2022; 88:e0227121. [PMID: 34985975 DOI: 10.1128/aem.02271-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient human-to-human transmission represents a necessary adaptation for a zoonotic influenza A virus (IAV) to cause a pandemic. As such, many emerging IAVs are characterized for transmissibility phenotypes in mammalian models, with an emphasis on elucidating viral determinants of transmission and the role host immune responses contribute to mammalian adaptation. Investigations of virus infectivity and stability in aerosols concurrent with transmission assessments have increased in recent years, enhancing our understanding of this dynamic process. Here, we employ a diverse panel of 17 human and zoonotic IAVs, inclusive of seasonally circulating H1N1 and H3N2 viruses, and avian and swine viruses associated with human infection, to evaluate differences in spray factor (a value that assesses efficiency of the aerosolization process), stability, and infectivity following aerosolization. While most seasonal influenza viruses did not exhibit substantial variability within these parameters, there was more heterogeneity among zoonotic influenza viruses, which possess a diverse range of transmission phenotypes. Aging of aerosols at different relative humidities identified strain-specific levels of stability with different profiles identified between zoonotic H3, H5, and H7 subtype viruses associated with human infection. As studies continue to elucidate the complex components governing virus transmissibility, notably aerosol matrices and environmental parameters, considering the relative role of subtype- and strain-specific factors to modulate these parameters will improve our understanding of the pandemic potential of zoonotic influenza A viruses. Importance Transmission of respiratory pathogens through the air can facilitate the rapid and expansive spread of infection and disease through a susceptible population. While seasonal influenza viruses are quite capable of airborne spread, there is a lack of knowledge regarding how well influenza viruses remain viable after aerosolization, and if influenza viruses capable of jumping species barriers to cause human infection differ in this property from seasonal strains. We evaluated a diverse panel of influenza viruses associated with human infection (originating from human, avian, and swine reservoirs) for their ability to remain viable after aerosolization in the laboratory under a range of conditions. We found greater diversity among avian and swine-origin viruses compared with seasonal influenza viruses; strain-specific stability was also noted. Although influenza virus stability in aerosols is an underreported property, if molecular markers associated with enhanced stability are identified, we will be able to quickly recognize emerging strains of influenza that present the greatest pandemic threat.
Collapse
|
6
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
7
|
Asadi S, Gaaloul ben Hnia N, Barre RS, Wexler AS, Ristenpart WD, Bouvier NM. Influenza A virus is transmissible via aerosolized fomites. Nat Commun 2020; 11:4062. [PMID: 32811826 PMCID: PMC7435178 DOI: 10.1038/s41467-020-17888-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
Influenza viruses are presumed, but not conclusively known, to spread among humans by several possible routes. We provide evidence of a mode of transmission seldom considered for influenza: airborne virus transport on microscopic particles called "aerosolized fomites." In the guinea pig model of influenza virus transmission, we show that the airborne particulates produced by infected animals are mainly non-respiratory in origin. Surprisingly, we find that an uninfected, virus-immune guinea pig whose body is contaminated with influenza virus can transmit the virus through the air to a susceptible partner in a separate cage. We further demonstrate that aerosolized fomites can be generated from inanimate objects, such as by manually rubbing a paper tissue contaminated with influenza virus. Our data suggest that aerosolized fomites may contribute to influenza virus transmission in animal models of human influenza, if not among humans themselves, with important but understudied implications for public health.
Collapse
Affiliation(s)
- Sima Asadi
- grid.27860.3b0000 0004 1936 9684Department of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616 USA
| | - Nassima Gaaloul ben Hnia
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Ramya S. Barre
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA ,grid.16750.350000 0001 2097 5006Present Address: Department of Ecology and Evolutionary Biology, 304 Guyot Hall, Princeton University, Princeton, NJ 08544 USA
| | - Anthony S. Wexler
- grid.27860.3b0000 0004 1936 9684Department of Mechanical and Aerospace Engineering, University of California Davis, One Shields Ave., Davis, CA 95616 USA ,grid.27860.3b0000 0004 1936 9684Air Quality Research Center, University of California Davis, One Shields Ave., Davis, CA 95616 USA ,grid.27860.3b0000 0004 1936 9684Department of Civil and Environmental Engineering, University of California Davis, One Shields Ave., Davis, CA 95616 USA ,grid.27860.3b0000 0004 1936 9684Department of Land, Air and Water Resources, University of California Davis, One Shields Ave., Davis, CA 95616 USA
| | - William D. Ristenpart
- grid.27860.3b0000 0004 1936 9684Department of Chemical Engineering, University of California Davis, One Shields Ave., Davis, CA 95616 USA
| | - Nicole M. Bouvier
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
8
|
Belser JA, Pulit-Penaloza JA, Maines TR. Ferreting Out Influenza Virus Pathogenicity and Transmissibility: Past and Future Risk Assessments in the Ferret Model. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038323. [PMID: 31871233 DOI: 10.1101/cshperspect.a038323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As influenza A viruses continue to jump species barriers, data generated in the ferret model to assess influenza virus pathogenicity, transmissibility, and tropism of these novel strains continues to inform an increasing scope of public health-based applications. This review presents the suitability of ferrets as a small mammalian model for influenza viruses and describes the breadth of pathogenicity and transmissibility profiles possible in this species following inoculation with a diverse range of viruses. Adaptation of aerobiology-based techniques and analyses have furthered our understanding of data obtained from this model and provide insight into the capacity of novel and emerging influenza viruses to cause human infection and disease.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| |
Collapse
|
9
|
Singanayagam A, Zhou J, Elderfield RA, Frise R, Ashcroft J, Galiano M, Miah S, Nicolaou L, Barclay WS. Characterising viable virus from air exhaled by H1N1 influenza-infected ferrets reveals the importance of haemagglutinin stability for airborne infectivity. PLoS Pathog 2020; 16:e1008362. [PMID: 32097448 PMCID: PMC7059951 DOI: 10.1371/journal.ppat.1008362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/06/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
The transmissibility and pandemic potential of influenza viruses depends on their ability to efficiently replicate and be released from an infected host, retain viability as they pass through the environment, and then initiate infection in the next host. There is a significant gap in knowledge about viral properties that enable survival of influenza viruses between hosts, due to a lack of experimental methods to reliably isolate viable virus from the air. Using a novel technique, we isolate and characterise infectious virus from droplets emitted by 2009 pandemic H1N1-infected ferrets. We demonstrate that infectious virus is predominantly released early after infection. A virus containing a mutation destabilising the haemagglutinin (HA) surface protein displayed reduced survival in air. Infectious virus recovered from droplets exhaled by ferrets inoculated with this virus contained mutations that conferred restabilisation of HA, indicating the importance of influenza HA stability for between-host survival. Using this unique approach can improve knowledge about the determinants and mechanisms of influenza transmissibility and ultimately could be applied to studies of airborne virus exhaled from infected people. Influenza viruses can transmit through the air between two hosts. For virus to successfully transmit through the air, it must be exhaled from an infected donor in sufficient quantities and retain infectiousness in the air. These aspects of transmission are poorly understood due to a paucity of methods for quantifying infectious virus from airborne particles. Using a novel technique of virus plaque isolation from depositing airborne droplets, we show that ferrets infected with an airborne transmissible influenza virus exhaled a peak of infectious virus early after infection. We demonstrate the importance of virion stability for the retention of infectivity as virus travels through the air. Our findings highlight the fate of infectious virus outside the respiratory tract as an important parameter for understanding influenza transmission.
Collapse
Affiliation(s)
- Anika Singanayagam
- Department of Medicine, St. Marys Campus, Imperial College, London, United Kingdom
| | - Jie Zhou
- Department of Medicine, St. Marys Campus, Imperial College, London, United Kingdom
| | - Ruth A. Elderfield
- Department of Medicine, St. Marys Campus, Imperial College, London, United Kingdom
| | - Rebecca Frise
- Department of Medicine, St. Marys Campus, Imperial College, London, United Kingdom
| | - Jonathan Ashcroft
- Department of Medicine, St. Marys Campus, Imperial College, London, United Kingdom
| | - Monica Galiano
- Virus Reference Department, Public Health England, Colindale, United Kingdom
| | - Shahjahan Miah
- Virus Reference Department, Public Health England, Colindale, United Kingdom
| | - Laura Nicolaou
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wendy S. Barclay
- Department of Medicine, St. Marys Campus, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Abstract
Highly transmissible influenza viruses (IV) must remain stable and infectious under a wide range of environmental conditions following release from the respiratory tract into the air. Understanding how expelled IV persist in the environment is critical to limiting the spread of these viruses. Little is known about how the stability of different IV in expelled aerosols is impacted by exposure to environmental stressors, such as relative humidity (RH). Given that not all IV are equally capable of efficient airborne transmission in people, we anticipated that not all IV would respond uniformly to ambient RH. Therefore, we have examined the stability of human-pathogenic seasonal and avian IV in suspended aerosols and stationary droplets under a range of RH conditions. H3N2 and influenza B virus (IBV) isolates are resistant to RH-dependent decay in aerosols in the presence of human airway surface liquid, but we observed strain-dependent variations in the longevities of H1N1, H3N2, and IBV in droplets. Surprisingly, low-pathogenicity avian influenza H6N1 and H9N2 viruses, which cause sporadic infections in humans but are unable to transmit person to person, demonstrated a trend toward increased sensitivity at midrange to high-range RH. Taken together, our observations suggest that the levels of vulnerability to decay at midrange RH differ with virus type and host origin.IMPORTANCE The rapid spread of influenza viruses (IV) from person to person during seasonal epidemics causes acute respiratory infections that can lead to hospitalizations and life-threatening illness. Atmospheric conditions such as relative humidity (RH) can impact the viability of IV released into the air. To understand how different IV are affected by their environment, we compared the levels of stability of human-pathogenic seasonal and avian IV under a range of RH conditions and found that highly transmissible seasonal IV were less sensitive to decay under midrange RH conditions in droplets. We observed that certain RH conditions can support the persistence of infectious viruses on surfaces and in the air for extended periods of time. Together, our findings will facilitate understanding of factors affecting the persistence and spread of IV in our environment.
Collapse
|