1
|
Kireina D, Parreira VR, Goodridge L, Farber JM. Survival and Expression of rpoS and grxB of Cronobacter sakazakii in Powdered Infant Formula Under Simulated Gastric Conditions of Newborns. J Food Prot 2024; 87:100269. [PMID: 38519033 DOI: 10.1016/j.jfp.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Cronobacter sakazakii can cause severe illnesses in infants, predominantly in preterm newborns, with consumption of contaminated powdered infant formula (PIF) being the major vehicle of infection. Using a dynamic human gastrointestinal simulator called the SHIME, this study examined the effects of gastric acidity and gastric digestion time of newborns on the survival and expression of stress genes of C. sakazakii. Individual strains, inoculated at 7 log CFU/mL into reconstituted PIF, were exposed to gastric pH values of 4.00, 5.00 and 6.00 for 4 h with gradual acidification. The survival results showed that C. sakazakii grew in the stomach portion of the SHIME during a 4-h exposure to pH 4.00, 5.00 and 6.00 by 0.96-1.05, 1.02-1.28 and 1.11-1.73 log CFU/mL, respectively. The expression of two stress genes, rpoS and grxB, throughout gastric digestion was evaluated using reverse transcription qPCR. The upregulation of rpoS and grxB during the 4-h exposure to simulated gastric fluid at pH 4.00 showed that C. sakazakii strains may be experiencing the most stress in the pH 4.00 treatment. The gene expression results also suggest that C. sakazakii strains appeared to develop an acid adaptation response during the 4-h exposure that may facilitate their survival. Altogether, this study highlights that a combination of low gastric acidity, long digestion time in the presence of reconstituted PIF, created a favorable environment for the adaptation and survival of C. sakazakii in the simulation of a newborn's stomach. This study gives directions for future research to further advance our understanding of the behavior of C. sakazakii in the GI tract of newborns.
Collapse
Affiliation(s)
- Devita Kireina
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Effect of gastric pH and bile acids on the survival of Listeria monocytogenes and Salmonella Typhimurium during simulated gastrointestinal digestion. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Zhou C, Zou Y, Huang J, Zhao Z, Zhang Y, Wei Y, Ye K. TMT-Based Quantitative Proteomic Analysis of Intestinal Organoids Infected by Listeria monocytogenes Strains with Different Virulence. Int J Mol Sci 2022; 23:ijms23116231. [PMID: 35682909 PMCID: PMC9181811 DOI: 10.3390/ijms23116231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
L. monocytogenes, consisting of 13 serotypes, is an opportunistic food-borne pathogen that causes different host reactions depending on its serotypes. In this study, highly toxic L. monocytogenes 10403s resulted in more severe infections and lower survival rates. Additionally, to investigate the remodeling of the host proteome by strains exhibiting differential toxicity, the cellular protein responses of intestinal organoids were analyzed using tandem mass tag (TMT) labeling and high-performance liquid chromatography−mass spectrometry. The virulent strain 10403s caused 102 up-regulated and 52 down-regulated proteins, while the low virulent strain M7 caused 188 up-regulated and 25 down-regulated proteins. Based on the analysis of gene ontology (GO) and KEGG databases, the expressions of differential proteins in organoids infected by L. monocytogenes 10403s (virulent strain) or M7 (low virulent strain) were involved in regulating essential processes such as the biological metabolism, the energy metabolism, and immune system processes. The results showed that the immune system process, as the primary host defense response to L. monocytogenes, comprised five pathways, including ECM−receptor interaction, the complement and coagulation cascades, HIF-1, ferroptosis, and NOD-like receptor signaling pathways. As for the L. monocytogenes 10403s vs. M7 group, the expression of differential proteins was involved in two pathways: systemic lupus erythematosus and transcriptional mis-regulation in cancer. All in all, these results revealed that L. monocytogenes strains with different toxicity induced similar biological functions and immune responses while having different regulations on differential proteins in the pathway.
Collapse
|
4
|
Takeoka K, Abe H, Koyama K, Koseki S. Experimentally observed Campylobacter jejuni survival kinetics in chicken meat products during model gastric digestion tended to be lower than model predictions. Food Microbiol 2021; 102:103932. [PMID: 34809927 DOI: 10.1016/j.fm.2021.103932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Campylobacter jejuni-related foodborne diseases are mainly attributed to the consumption of undercooked chicken meat and cross-contaminated produce. This study aimed to develop a survival kinetics model, based on the Weibull model, for predicting foodborne C. jejuni survival during gastric digestion in a model stomach. We previously confirmed that C. jejuni can survive temperatures up to 62 °C; therefore, certain types of grilled chicken skewers (yakitori) were examined for C. jejuni survival during simulated gastric digestion. C. jejuni survival on a chicken thigh following grilling was examined to confirm the foods for digestion experiments. Further, C. jejuni survival during model digestion was investigated through simultaneous digestion of raw chicken and cross-contaminated iceberg lettuce. The model stomach pH increased from 1.5 to 6.0 immediately after yakitori ingestion and did not decrease below 4.0 within 3 h of digestion. Gastric digestion did not significantly contribute to C. jejuni inactivation (<1.5 log reduction after 3 h digestion). Our model could predict C. jejuni survival kinetics in simulated gastric fluid under varying pH during model digestion. This approach can be used to predict C. jejuni survival rates following digestion to improve food safety and reduce Campylobacter-related disease outbreaks.
Collapse
Affiliation(s)
- Kohei Takeoka
- Graduate school of Agricultural Science, Hokkaido University, Kita 9, Nishi 9, Sapporo 060-8589, Japan
| | - Hiroki Abe
- Graduate school of Agricultural Science, Hokkaido University, Kita 9, Nishi 9, Sapporo 060-8589, Japan
| | - Kento Koyama
- Graduate school of Agricultural Science, Hokkaido University, Kita 9, Nishi 9, Sapporo 060-8589, Japan
| | - Shigenobu Koseki
- Graduate school of Agricultural Science, Hokkaido University, Kita 9, Nishi 9, Sapporo 060-8589, Japan.
| |
Collapse
|
5
|
The Phylogeny and Biological Function of Gastric Juice-Microbiological Consequences of Removing Gastric Acid. Int J Mol Sci 2019; 20:ijms20236031. [PMID: 31795477 PMCID: PMC6928904 DOI: 10.3390/ijms20236031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
Gastric juice is a unique combination of hydrochloric acid (HCl), lipase, and pepsin. Acidic gastric juice is found in all vertebrates, and its main function is to inactivate microorganisms. The phylogenetic preservation of this energy-consuming and, at times, hazardous function (acid-related diseases) reflects its biological importance. Proton pump inhibitors (PPIs) are one of the most widely used drugs in the world. Due to the reduced prevalence of Helicobacter pylori infection as well as the increased use of inhibitors of gastric acid secretion, the latter has become the most important cause of gastric hypoacidity. In the present manuscript, we review the microbiological consequences of removing gastric acidity. The resulting susceptibility to infections has not been studied extensively, and focus has mainly been restricted to bacterial and parasitic agents only. The strongest evidence concerning the relationship between hypochlorhydria and predisposition to infections relates to bacterial infections affecting the gastrointestinal tract. However, several other clinical settings with increased susceptibility to infections due to inhibited gastric acidity are discussed. We also discuss the impact of hypochlorhydria on the gut microbiome.
Collapse
|
6
|
Mathipa MG, Bhunia AK, Thantsha MS. Internalin AB-expressing recombinant Lactobacillus casei protects Caco-2 cells from Listeria monocytogenes-induced damages under simulated intestinal conditions. PLoS One 2019; 14:e0220321. [PMID: 31356632 PMCID: PMC6663025 DOI: 10.1371/journal.pone.0220321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background Listeria monocytogenes is an intracellular foodborne pathogen that employs a number of strategies to survive challenging gastrointestinal conditions. It proliferates in the gut and subsequently causes listeriosis in high-risk individuals. Therefore, inhibition of its adherence to the intestinal receptors is crucial in controlling its infection. In this study, the effect of our previously developed recombinant Lactobacillus casei strain expressing invasion protein, Internalin AB of L. monocytogenes (LbcInlAB) on epithelial infection processes of the latter under simulated intestinal conditions was investigated. Materials and methods The confluent Caco-2 cell monolayer was pre-exposed to different L. casei strains at a multiplicity of exposure (MOE) of 10 for various periods before infection with L. monocytogenes at a multiplicity of infection (MOI) of 10 under simulated intestinal conditions. Subsequently, L. monocytogenes adhesion, invasion, and translocation, cytotoxicity and impact on tight junction integrity of the Caco-2 cells were analyzed. Results Under the simulated gastrointestinal condition, LbcInlAB showed a significant increase (p<0.0001) in adherence to, invasion and translocation through the Caco-2 cells when compared with the wild type strain. Although LbcInlAB strain exhibited enhanced inhibition of L. monocytogenes, it was not able to displace L. monocytogenes cells already attached to the monolayer. Additionally, pre-exposure to LbcInlAB reduced L. monocytogenes-mediated cytotoxicity and protected the tight junction barrier function. Conclusion The recombinant L. casei expressing InlAB shows potential for use as a prophylactic intervention strategy for targeted control of L. monocytogenes during the intestinal phase of infection.
Collapse
Affiliation(s)
- Moloko G. Mathipa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Mapitsi S. Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
7
|
Survival of Listeria monocytogenes during in vitro gastrointestinal digestion after exposure to 5 and 0.5 % sodium chloride. Food Microbiol 2019; 77:78-84. [DOI: 10.1016/j.fm.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
|
8
|
Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen. Pathogens 2017; 7:pathogens7010001. [PMID: 29271903 PMCID: PMC5874727 DOI: 10.3390/pathogens7010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause febrile gastroenteritis in healthy subjects and systemic infections in immunocompromised individuals. Despite the high prevalence of L. monocytogenes in the environment and frequent contamination of uncooked meat and poultry products, infections with this pathogen are relatively uncommon, suggesting that protective defenses in the general population are effective. In the mammalian gastrointestinal tract, a variety of defense mechanisms prevent L. monocytogenes growth, epithelial penetration and systemic dissemination. Among these defenses, colonization resistance mediated by the gut microbiota is crucial in protection against a range of intestinal pathogens, including L. monocytogenes. Here we review defined mechanisms of defense against L. monocytogenes in the lumen of the gastro-intestinal tract, with particular emphasis on protection conferred by the autochthonous microbiota. We suggest that selected probiotic species derived from the microbiota may be developed for eventual clinical use to enhance resistance against L. monocytogenes infections.
Collapse
|
9
|
Bleakley S, Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017; 6:E33. [PMID: 28445408 PMCID: PMC5447909 DOI: 10.3390/foods6050033] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited "crops". Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined.
Collapse
Affiliation(s)
- Stephen Bleakley
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
- School of Biological Sciences, College of Sciences and Health and Environment, Sustainability and Health Institute, Dublin Institute of Technology, Kevin Street, Dublin D08 NF82, Ireland.
| | - Maria Hayes
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
10
|
Zilelidou E, Karmiri CV, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Tsakalidou E, Papadimitriou K, Drosinos E, Skandamis P. Listeria monocytogenes Strains Underrepresented during Selective Enrichment with an ISO Method Might Dominate during Passage through Simulated Gastric Fluid and In Vitro Infection of Caco-2 Cells. Appl Environ Microbiol 2016; 82:6846-6858. [PMID: 27637880 PMCID: PMC5103084 DOI: 10.1128/aem.02120-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Various Listeria monocytogenes strains may contaminate a single food product, potentially resulting in simultaneous exposure of consumers to multiple strains. However, due to bias in strain recovery, L. monocytogenes strains isolated from foods by selective enrichment (SE) might not always represent those that can better survive the immune system of a patient. We investigated the effect of cocultivation in tryptic soy broth with 0.6% yeast extract (TSB-Y) at 10°C for 8 days on (i) the detection of L. monocytogenes strains during SE with the ISO 11290-1:1996/Amd 1:2004 protocol and (ii) the in vitro virulence of strains toward the Caco-2 human colon epithelial cancer cell line following exposure to simulated gastric fluid (SGF; pH 2.0)-HCl (37°C). We determined whether the strains which were favored by SE would be effective competitors under the conditions of challenges related to gastrointestinal passage of the pathogen. Interstrain competition of L. monocytogenes in TSB-Y determined the relative population of each strain at the beginning of SE. This in turn impacted the outcome of SE (i.e., favoring survival of competitors with better fitness) and the levels exposed subsequently to SGF. However, strong growth competitors could be outcompeted after SGF exposure and infection of Caco-2 cells by strains outgrown in TSB-Y and underdetected (or even missed) during enrichment. Our data demonstrate a preferential selection of certain L. monocytogenes strains during enrichments, often not reflecting a selective advantage of strains during infection. These findings highlight a noteworthy scenario associated with the difficulty of matching the source of infection (food) with the L. monocytogenes isolate appearing to be the causative agent during listeriosis outbreak investigations.IMPORTANCE This report is relevant to understanding the processes involved in selection and prevalence of certain L. monocytogenes strains in different environments (i.e., foods or sites of humans exposed to the pathogen). It highlights the occurrence of multiple strains in the same food as an important aspect contributing to mismatches between clinical isolates and infection sources during listeriosis outbreak investigations.
Collapse
Affiliation(s)
- Evangelia Zilelidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Christina-Vasiliki Karmiri
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Georgia Zoumpopoulou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Effie Tsakalidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Konstantinos Papadimitriou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Eleftherios Drosinos
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Panagiotis Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| |
Collapse
|
11
|
Predictive Modeling for Estimation of Bacterial Behavior from Farm to Table. Food Saf (Tokyo) 2016; 4:33-44. [PMID: 32231903 DOI: 10.14252/foodsafetyfscj.2016006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
Microbial contamination is inevitable for raw and/or minimally processed ready-to-eat foods. As a consequence of the pathogenic bacterial contamination, the risk of food-borne illness increases during distribution and storage until consumption. Prediction of microbial growth and/or inactivation in/on those foods provides important information for ensuring the microbial food safety. Although numerous predictive models for bacterial growth have been proposed for various microorganisms, this review focuses on the modeling of pathogenic bacterial growth in raw and minimally processed ready-to-eat foods such as fresh-cut produce and raw minced-tuna, a common ingredient for sushi. The growth models described here take into account both the environment temperature and microbial competition in the food matrix. Microbial competition plays a key role in real food environments. Food-based predictive models enable not only to directly estimate the microbial growth on those foods, but also to apply to validation of culture-medium-based predictive models. Furthermore, toward a development of accurate and/or realistic bacterial dose-response models, a model for inactivation of pathogenic bacteria during simulated gastric fluid is also introduced.
Collapse
|
12
|
Melo J, Andrew P, Faleiro M. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. Arch Microbiol 2014; 196:719-27. [DOI: 10.1007/s00203-014-1013-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/16/2014] [Accepted: 07/03/2014] [Indexed: 01/18/2023]
|
14
|
Efficacy of different antimicrobials on inhibition of Listeria monocytogenes growth in laboratory medium and on cold-smoked salmon. Int J Food Microbiol 2013; 165:265-75. [DOI: 10.1016/j.ijfoodmicro.2013.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/20/2022]
|
15
|
Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Int J Biol Macromol 2013; 58:160-8. [DOI: 10.1016/j.ijbiomac.2013.03.064] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/28/2013] [Accepted: 03/28/2013] [Indexed: 11/17/2022]
|
16
|
Listeria monocytogenes dairy isolates show a different proteome response to sequential exposure to gastric and intestinal fluids. Int J Food Microbiol 2013; 163:51-63. [PMID: 23558187 DOI: 10.1016/j.ijfoodmicro.2013.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/23/2013] [Accepted: 03/01/2013] [Indexed: 01/10/2023]
Abstract
The gastrointestinal system poses different stresses to the foodborne pathogen, Listeria monocytogenes, including the low pH of the stomach and the presence of bile and the high osmolality of the intestinal fluid. The present study evaluated how previous exposure of three L. monocytogenes dairy isolates (C882 and T8, serovar 4b isolates and A9 serovar 1/2a or 3b isolate) to a cheese-simulated medium (p H5.5 and 3.5% NaCl [w/v], adapted cultures) affected subsequent survival in a simulated gastrointestinal system. Listerial cultures exposed to the cheese-simulated medium at pH7.0, with no added NaCl, were considered non-adapted. To investigate the main events involved in listerial survival during the gastric and intestinal subsequent challenge, a proteomic approach was used. All L. monocytogenes strains were able to survive the deleterious effects of the gastrointestinal fluids and no significant differences were observed between adapted and non-adapted cells. However the L. monocytogenes strains showed a different protein pattern in response to the gastrointestinal stress. Data indicated that synthesis of stress related proteins is more pronounced in non-adapted cells. Although, a significant number of enzymes involved in glycolysis and energy production were also consistently over-produced by the three strains. These findings provided new insights into the means used by L. monocytogenes to overcome the gastrointestinal system and allow the pathogen to move to the next phase of the infectious process.
Collapse
|
17
|
Melo J, Schrama D, Andrew PW, Faleiro ML. Proteomic Analysis Shows That IndividualListeria monocytogenesStrains Use Different Strategies in Response to Gastric Stress. Foodborne Pathog Dis 2013; 10:107-19. [DOI: 10.1089/fpd.2012.1297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jessie Melo
- IBB-Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve-FCT, Campus de Gambelas, Faro, Portugal
| | - Denise Schrama
- IBB-Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve-FCT, Campus de Gambelas, Faro, Portugal
| | - Peter W. Andrew
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom
| | - M. Leonor Faleiro
- IBB-Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve-FCT, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
18
|
Smith JL, Liu Y, Paoli GC. How does Listeria monocytogenes combat acid conditions? Can J Microbiol 2012; 59:141-52. [PMID: 23540331 DOI: 10.1139/cjm-2012-0392] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Listeria monocytogenes, a major foodborne pathogen, possesses a number of mechanisms that enable it to combat the challenges posed by acidic environments, such as that of acidic foods and the gastrointestinal tract. One mechanism employed by L. monocytogenes for survival at low pH is the adaptive acid tolerance response (ATR) in which a short adaptive period at a nonlethal pH induces metabolic changes that allow the organism to survive a lethal pH. Overcoming acid conditions by L. monocytogenes involves a variety of regulatory responses, including the LisRK 2-component regulatory system, the SOS response, components of the σ(B) regulon, changes in membrane fluidity, the F0F1-ATPase proton pump, and at least 2 enzymatic systems that regulate internal hydrogen ion concentration (glutamate decarboxylase and arginine deiminase). It is not clear if these mechanisms exert their protective effects separately or in concert, but it is probable that these mechanisms overlap. Studies using mutants indicate that the glutamate decarboxylase system can protect L. monocytogenes when the organism is present in acidic juices, yogurt, salad dressing, mayonnaise, and modified CO2 atmospheres. The glutamate decarboxylase system also has a role in protecting L. monocytogenes against the acidic environment of the stomach. There is a need to study other acid resistance mechanisms of L. monocytogenes to determine their effectiveness in protecting the organism in acidic foods or during transit through the acid stomach.
Collapse
Affiliation(s)
- James L Smith
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038-8598, USA.
| | | | | |
Collapse
|
19
|
Vaz M, Hogg T, Couto JA. The antimicrobial effect of wine on Bacillus cereus in simulated gastro-intestinal conditions. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Etcheverry P, Grusak MA, Fleige LE. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B(6), B(12), D, and E. Front Physiol 2012; 3:317. [PMID: 22934067 PMCID: PMC3429087 DOI: 10.3389/fphys.2012.00317] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/19/2012] [Indexed: 01/11/2023] Open
Abstract
A review of in vitro bioaccessibility and bioavailability methods for polyphenols and selected nutrients is presented. The review focuses on in vitro solubility, dialyzability, the dynamic gastrointestinal model (TIM)™, and Caco-2 cell models, the latter primarily for uptake and transport, and a discussion of how these methods have been applied to generate data for a range of nutrients, carotenoids, and polyphenols. Recommendations are given regarding which methods are most justified for answering bioaccessibility or bioavailability related questions for specific nutrients. The need for more validation studies in which in vivo results are compared to in vitro results is also discussed.
Collapse
Affiliation(s)
- Paz Etcheverry
- Department of Pediatrics, USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston TX, USA
| | | | | |
Collapse
|
21
|
Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 2012; 4:149-63. [PMID: 24300185 PMCID: PMC3834910 DOI: 10.3390/pharmaceutics4010149] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 12/02/2022] Open
Abstract
Probiotic encapsulation technology (PET) has the potential to protect microorgansisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This paper reviews the methodological approach of probiotics encapsulation including biomaterials selection, choice of appropriate technology, in vitro release studies of encapsulated probiotics, and highlights the challenges to be overcome in this area.
Collapse
|
22
|
Birk T, Kristensen K, Harboe A, Hansen TB, Ingmer H, De Jonge R, Takumi K, Aabo S. Dietary proteins extend the survival of Salmonella Dublin in a gastric acid environment. J Food Prot 2012; 75:353-8. [PMID: 22289597 DOI: 10.4315/0362-028x.jfp-11-132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pH of the human stomach is dynamic and changes over time, depending on the composition of the food ingested and a number of host-related factors such as age. To evaluate the number of bacteria surviving the gastric acid barrier, we have developed a simple gastric acid model, in which we mimicked the dynamic pH changes in the human stomach. In the present study, model gastric fluid was set up to imitate pH dynamics in the stomachs of young and elderly people after ingestion of a standard meal. To model a serious foodborne pathogen, we followed the survival of Salmonella enterica serotype Dublin, and found that the addition of proteins such as pepsin, ovalbumin, and blended turkey meat to the simple gastric acid model significantly delayed pathogen inactivation compared with the control, for which no proteins were added. In contrast, no delay in inactivation was observed in the presence of bovine serum albumin, indicating that protection could be protein specific. The simple gastric acid model was validated against a more laborious and complex fermenter model, and similar survival of Salmonella Dublin was observed in both models. Our gastric acid model allowed us to evaluate the influence of food components on survival of pathogens under gastric conditions, and the model could contribute to a broader understanding of the impact of specific food components on the inactivation of pathogens during gastric passage.
Collapse
Affiliation(s)
- Tina Birk
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, 2860 Søborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Altuntas EG, Kocan D, Cosansu S, Ayhan K, Juneja VK, Materon L. Antibiotic and Bacteriocin Sensitivity of <i>Listeria monocytogenes</i> Strains Isolated from Different Foods. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.33052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Bavishi C, Dupont HL. Systematic review: the use of proton pump inhibitors and increased susceptibility to enteric infection. Aliment Pharmacol Ther 2011; 34:1269-81. [PMID: 21999643 DOI: 10.1111/j.1365-2036.2011.04874.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of proton pump inhibitors (PPIs) is increasing worldwide. Suppression of gastric acid alters the susceptibility to enteric bacterial pathogens. AIM This systematic review was undertaken to examine the relationship between PPI use and susceptibility to enteric infections by a specific pathogen based on published literature and to discuss the potential mechanisms of PPI enhanced pathogenesis of enteric infections. METHODS PubMed, OVID Medline Databases were searched. Search terms included proton pump inhibitors and mechanisms of, actions of, gastric acid, enteric infections, diarrhoea, Clostridium difficile, Salmonella, Shigella and Campylobacter. RESULTS The use of PPIs increases gastric pH, encourages growth of the gut microflora, increases bacterial translocation and alters various immunomodulatory and anti-inflammatory effects. Enteric pathogens show variable gastric acid pH susceptibility and acid tolerance levels. By multiple mechanisms, PPIs appear to increase susceptibility to the following bacterial enteropathogens: Salmonella, Campylobacter jejuni, invasive strains of Escherichia coli, vegetative cells of Clostridium difficile, Vibrio cholerae and Listeria. We describe the available evidence for enhanced susceptibility to enteric infection caused by Salmonella, Campylobacter and C. difficile by PPI use, with adjusted relative risk ranges of 4.2-8.3 (two studies); 3.5-11.7 (four studies); and 1.2-5.0 (17 of 27 studies) for the three respective organisms. CONCLUSIONS Severe hypochlorhydria generated by PPI use leads to bacterial colonisation and increased susceptibility to enteric bacterial infection. The clinical implication of chronic PPI use among hospitalized patients placed on antibiotics and travellers departing for areas with high incidence of diarrhoea should be considered by their physicians.
Collapse
Affiliation(s)
- C Bavishi
- University of Texas Health Science Center at Houston School of Public Health, Center for Infectious Diseases, Houston, USA
| | | |
Collapse
|
25
|
Takahashi H, Kuramoto S, Miya S, Kimura B. Desiccation survival of Listeria monocytogenes and other potential foodborne pathogens on stainless steel surfaces is affected by different food soils. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Koseki S, Mizuno Y, Sotome I. Modeling of pathogen survival during simulated gastric digestion. Appl Environ Microbiol 2011; 77:1021-32. [PMID: 21131530 PMCID: PMC3028731 DOI: 10.1128/aem.02139-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/23/2010] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens.
Collapse
Affiliation(s)
- Shige Koseki
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | | | | |
Collapse
|
27
|
Bergholz TM, den Bakker HC, Fortes ED, Boor KJ, Wiedmann M. Salt stress phenotypes in Listeria monocytogenes vary by genetic lineage and temperature. Foodborne Pathog Dis 2010; 7:1537-49. [PMID: 20707723 PMCID: PMC3022828 DOI: 10.1089/fpd.2010.0624] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Listeria monocytogenes can survive and grow under wide-ranging environmental stress conditions encountered both in foods and in the host. The ability of certain L. monocytogenes subtypes to thrive under stress conditions present in specific niches was hypothesized to reflect genetic characteristics and phenotypic capabilities conserved among strains within a subtype. To quantify variations in salt stress phenotypes among 40 strains selected to represent the diversity of the three major L. monocytogenes genetic lineages and to determine if salt stress phenotypes were associated with genetic relatedness, we measured growth under salt stress at both 7°C and 37°C. At 7°C, in brain-heart infusion with 6% NaCl, average growth rates among the lineages were similar. A comparison of doubling times after exposure to salt stress at 7°C or 37°C indicated that growth at 7°C provided crossprotection to subsequent salt stress for strains in lineages I and II. At 37°C, in brain-heart infusion with 6% NaCl, lineage I and III strains grew significantly faster (p<0.0001) than lineage II strains. Under salt stress at 37°C, differences in growth parameters were significantly (p<0.005) associated with genetic relatedness of the strains. Compatible solute uptake is part of the L. monocytogenes salt stress response, but growth differences between the lineages were not related to differences in transcript levels of osmolyte transporter-encoding genes betL, gbuA, oppA, and opuCA. The combination of phylogenetic and phenotypic data suggests that L. monocytogenes lineage I and III strains, which are most commonly associated with human and animal disease, may be better adapted to osmotic stress at 37°C, conditions that are present in the host gastrointestinal tract.
Collapse
Affiliation(s)
- Teresa M Bergholz
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
28
|
Expanded Fermi solution for estimating the survival of ingested pathogenic and probiotic microbial cells and spores. Appl Environ Microbiol 2010; 77:312-9. [PMID: 21057020 DOI: 10.1128/aem.01448-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expanded Fermi solution was originally developed for estimating the number of food-poisoning victims when information concerning the circumstances of exposure is scarce. The method has been modified for estimating the initial number of pathogenic or probiotic cells or spores so that enough of them will survive the food preparation and digestive tract's obstacles to reach or colonize the gut in sufficient numbers to have an effect. The method is based on identifying the relevant obstacles and assigning each a survival probability range. The assumed number of needed survivors is also specified as a range. The initial number is then estimated to be the ratio of the number of survivors to the product of the survival probabilities. Assuming that the values of the number of survivors and the survival probabilities are uniformly distributed over their respective ranges, the sought initial number is construed as a random variable with a probability distribution whose parameters are explicitly determined by the individual factors' ranges. The distribution of the initial number is often approximately lognormal, and its mode is taken to be the best estimate of the initial number. The distribution also provides a credible interval for this estimated initial number. The best estimate and credible interval are shown to be robust against small perturbations of the ranges and therefore can help assessors achieve consensus where hard knowledge is scant. The calculation procedure has been automated and made freely downloadable as a Wolfram Demonstration.
Collapse
|
29
|
Transcriptomic and phenotypic responses of Listeria monocytogenes strains possessing different growth efficiencies under acidic conditions. Appl Environ Microbiol 2010; 76:4836-50. [PMID: 20511423 DOI: 10.1128/aem.00315-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In an experiment delineating aciduric strains, food and clinical Listeria monocytogenes isolates tended to produce the most biomass whereas ovine and avian strains produced comparatively less biomass when exposed to high levels of sodium diacetate (SD) and potassium sorbate. Compared to reference strains that exhibited greater acid sensitivity, representative food isolates with comparatively good growth capacities in the presence of 21 mM SD at pH 5.0 accumulated reduced levels of acetate anion and K(+) ion. The aciduric nature of SD-resistant strains was also reflected by comparatively high tolerance to pH 2.4 (HCl) acid challenges, a property boosted by the presence of SD. Exposure to elevated levels of SD (21 mM SD at pH 5.0) was found to have broad effects on gene expression, as differentiated from effects caused by mildly acidic conditions (pH 5.0). SD-resistant strain FW04/0025 was more responsive to elevated SD, increasing the expression of 222 genes (>2-fold change [P < 0.05]), compared to the more sensitive EGD reference strain, which exhibited increases in expression of 112 genes. Key differences between the strains in relation to SD-enhanced transcripts were notably associated with the cell envelope, oxidative stress management, and intermediary metabolism. SD thus appears to differentially influence growth efficiency and survival of strains, under conditions relevant to acidic foods, that could be due to altered cell wall and metabolic phenotypes.
Collapse
|
30
|
Sofos JN, Geornaras I. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci 2010; 86:2-14. [PMID: 20510532 DOI: 10.1016/j.meatsci.2010.04.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/24/2022]
Abstract
As meat consumption is increasing around the world, so do concerns and challenges to meat hygiene and safety. These concerns are mostly of a biological nature and include bacterial pathogens, such as Escherichia coli O157:H7, Salmonella and Campylobacter in raw meat and poultry, and Listeria monocytogenes in ready-to-eat processed products, while viral pathogens are of major concern at foodservice. A major goal of scientists, industry, public health and regulatory authorities is to control pathogenic microorganisms and improve meat product hygiene and safety within a country and internationally. This paper is not a comprehensive or critical review of the scientific literature on the broad area of meat hygiene and safety, but it provides an overview of major current meat hygiene and safety issues, and then a summary of studies on biofilm formation by pathogens, control of E. coli O157:H7 in nonintact meat products, and control of L. monocytogenes in ready-to-eat meat products, conducted at the Center for Meat Safety & Quality and Food Safety Cluster of Colorado State University in recent years.
Collapse
Affiliation(s)
- John N Sofos
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523-1171, USA.
| | | |
Collapse
|
31
|
Duary RK, Batish VK, Grover S. Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR. Res Microbiol 2010; 161:399-405. [PMID: 20416373 DOI: 10.1016/j.resmic.2010.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/24/2010] [Accepted: 03/29/2010] [Indexed: 12/22/2022]
Abstract
F(1)F(0)-ATPase has been identified as an operon directly involved in the tolerance of probiotic bacteria towards a hostile acidic environment encountered in the stomach. Expression of atpD (a key part of the F(1)F(0)-ATPase operon) gene of the two putative probiotic Lactobacillus plantarum isolates (Lp9 and Lp91) under different in vitro pH conditions which closely mimic the physiological environment prevalent in the human gut was investigated by quantitative real-time PCR (RT-qPCR). A battery of housekeeping genes, i.e. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA, were evaluated using geNorm 3.4 Excel-based application for normalizing atpD gene expression in Lp9 and Lp91. The most stably expressed genes were found to be gapB, gyrA and ldhD. Although both putative probiotic L. plantarum isolates investigated in this study were able to survive acid stress under in vitro conditions, amongst the two, Lp91 exhibited relatively greater acid tolerance, as revealed by 4.7-fold upregulation of the atpD gene as well as higher log counts at pH 2.5 after 90 min These results clearly demonstrate that expression of the 'atp' operon was chiefly instrumental in in vitro survival and tolerance of test cultures at acidic conditions encountered in the stomach.
Collapse
Affiliation(s)
- Raj Kumar Duary
- Molecular Biology Unit, Dept. of Dairy Microbiology, National Dairy Research Institute, Karnal, Haryana 132001, India
| | | | | |
Collapse
|
32
|
Ramalheira R, Almeida M, Azeredo J, Brandão TR, Almeida G, Silva J, Teixeira P. Survival of Clinical and Food Isolates of Listeria monocytogenes Through Simulated Gastrointestinal Tract Conditions. Foodborne Pathog Dis 2010; 7:121-8. [DOI: 10.1089/fpd.2009.0319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rosário Ramalheira
- CBQF/Biotechnology School, Portuguese Catholic University, Oporto, Portugal
| | - Marta Almeida
- Biological Engineering Department, University of Minho, Braga, Portugal
| | - Joana Azeredo
- Biological Engineering Department, University of Minho, Braga, Portugal
| | | | - Gonçalo Almeida
- CBQF/Biotechnology School, Portuguese Catholic University, Oporto, Portugal
| | - Joana Silva
- CBQF/Biotechnology School, Portuguese Catholic University, Oporto, Portugal
| | - Paula Teixeira
- CBQF/Biotechnology School, Portuguese Catholic University, Oporto, Portugal
| |
Collapse
|
33
|
CHEN XIA, SUN ZHIHONG, MENG HE, ZHANG HEPING. The acid tolerance association with expression of H+-ATPase inLactobacillus casei. INT J DAIRY TECHNOL 2009. [DOI: 10.1111/j.1471-0307.2009.00461.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|