1
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Xie J, Ma Y, Li X, Wu J, Martin F, Zhang D. Multifeature analysis of age-related microbiome structures reveals defense mechanisms of Populus tomentosa trees. THE NEW PHYTOLOGIST 2023; 238:1636-1650. [PMID: 36856329 DOI: 10.1111/nph.18847] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Root microbiota composition shifts during the development of most annual plants. Although some perennial plants can live for centuries, the host-microbiome partnerships and interaction mechanisms underlying their longevity remain unclear. To address this gap, we investigated age-related changes in the root metabolites, transcriptomes, and microbiome compositions of 1- to 35-yr-old Populus tomentosa trees. Ten co-response clusters were obtained according to their accumulation patterns, and members of each cluster displayed a uniform and clear pattern of abundance. Multi-omics network analysis demonstrated that the increased abundance of Actinobacteria with tree age was strongly associated with the flavonoid biosynthesis. Using genetic approaches, we demonstrate that the flavonoid biosynthesis regulator gene Transparent Testa 8 is associated with the recruitment of flavonoid-associated Actinobacteria. Further inoculation experiments of Actinobacteria isolates indicated that their colonization could significantly improve the host's phenotype. Site-directed mutagenesis revealed that the hyBl gene cluster, involved in biosynthesis of an aminocyclitol hygromycin B analog in Streptomyces isolate bj1, is associated with disease suppression. We hypothesize that interactions between perennial plants and soil microorganisms lead to gradual enrichment of a subset of microorganisms that may harbor a wealth of currently unknown functional traits.
Collapse
Affiliation(s)
- Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yuchao Ma
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xian Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Francis Martin
- INRA-Université de Lorraine, INRAe, UMR 1136, Interactions Arbres/Microorganismes, INRAe-Grand Est-Nancy, 54280, Champenoux, France
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
3
|
Gongerowska-Jac M, Szafran MJ, Jakimowicz D. Combining transposon mutagenesis and reporter genes to identify novel regulators of the topA promoter in Streptomyces. Microb Cell Fact 2021; 20:99. [PMID: 33985526 PMCID: PMC8120823 DOI: 10.1186/s12934-021-01590-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying the regulatory factors that control transcriptional activity is a major challenge of gene expression studies. Here, we describe the application of a novel approach for in vivo identification of regulatory proteins that may directly or indirectly control the transcription of a promoter of interest in Streptomyces. RESULTS A method based on the combination of Tn5 minitransposon-driven random mutagenesis and lux reporter genes was applied for the first time for the Streptomyces genus. As a proof of concept, we studied the topA supercoiling-sensitive promoter, whose activity is dependent on unknown regulatory factors. We found that the sco4804 gene product positively influences topA transcription in S. coelicolor, demonstrating SCO4804 as a novel player in the control of chromosome topology in these bacteria. CONCLUSIONS Our approach allows the identification of novel Streptomyces regulators that may be critical for the regulation of gene expression in these antibiotic-producing bacteria.
Collapse
|
4
|
Kormanec J, Novakova R, Csolleiova D, Feckova L, Rezuchova B, Sevcikova B, Homerova D. The antitumor antibiotic mithramycin: new advanced approaches in modification and production. Appl Microbiol Biotechnol 2020; 104:7701-7721. [DOI: 10.1007/s00253-020-10782-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
|
5
|
Peng Q, Gao G, Lü J, Long Q, Chen X, Zhang F, Xu M, Liu K, Wang Y, Deng Z, Li Z, Tao M. Engineered Streptomyces lividans Strains for Optimal Identification and Expression of Cryptic Biosynthetic Gene Clusters. Front Microbiol 2018; 9:3042. [PMID: 30619133 PMCID: PMC6295570 DOI: 10.3389/fmicb.2018.03042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 11/24/2022] Open
Abstract
Streptomyces lividans is a suitable host for the heterologous expression of biosynthetic gene clusters (BGCs) from actinomycetes to discover “cryptic” secondary metabolites. To improve the heterologous expression of BGCs, herein we optimized S. lividans strain SBT5 via the stepwise integration of three global regulatory genes and two codon-optimized multi-drug efflux pump genes and deletion of a negative regulatory gene, yielding four engineered strains. All optimization steps were observed to promote the heterologous production of polyketides, non-ribosomal peptides, and hybrid antibiotics. The production increments of these optimization steps were additional, so that the antibiotic yields were several times or even dozens of times higher than the parent strain SBT5 when the final optimized strain, S. lividans LJ1018, was used as the heterologous expression host. The heterologous production of these antibiotics in S. lividans LJ1018 and GX28 was also much higher than in the strains from which the BGCs were isolated. S. lividans LJ1018 and GX28 markedly promoted the heterologous production of secondary metabolites, without requiring manipulation of gene expression components such as promoters on individual gene clusters. Therefore, these strains are well-suited as heterologous expression hosts for secondary metabolic BGCs. In addition, we successfully conducted high-throughput library expression and functional screening (LEXAS) of one bacterial artificial chromosome library and two cosmid libraries of three Streptomyces genomes using S. lividans GX28 as the library-expression host. The LEXAS experiments identified clones carrying intact BGCs sufficient for the heterologous production of piericidin A1, murayaquinone, actinomycin D, and dehydrorabelomycin. Notably, due to lower antibiotic production, the piericidin A1 BGC had been overlooked in a previous LEXAS screening using S. lividans SBT5 as the expression host. These results demonstrate the feasibility and superiority of S. lividans GX28 as a host for high-throughput screening of genomic libraries to mine cryptic BGCs and bioactive compounds.
Collapse
Affiliation(s)
- Qinying Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guixi Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Lü
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingshan Long
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefei Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Heterologous expression-facilitated natural products' discovery in actinomycetes. J Ind Microbiol Biotechnol 2018; 46:415-431. [PMID: 30446891 DOI: 10.1007/s10295-018-2097-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 12/22/2022]
Abstract
Actinomycetes produce many of the drugs essential for human and animal health as well as crop protection. Genome sequencing projects launched over the past two decades reveal dozens of cryptic natural product biosynthetic gene clusters in each actinomycete genome that are not expressed under regular laboratory conditions. This so-called 'chemical dark matter' represents a potentially rich untapped resource for drug discovery in the genomic era. Through improved understanding of natural product biosynthetic logic coupled with the development of bioinformatic and genetic tools, we are increasingly able to access this 'dark matter' using a wide variety of strategies with downstream potential application in drug development. In this review, we discuss recent research progress in the field of cloning of natural product biosynthetic gene clusters and their heterologous expression in validating the potential of this methodology to drive next-generation drug discovery.
Collapse
|
7
|
Biosynthesis of Tropolones in Streptomyces spp.: Interweaving Biosynthesis and Degradation of Phenylacetic Acid and Hydroxylations on the Tropone Ring. Appl Environ Microbiol 2018; 84:AEM.00349-18. [PMID: 29654178 DOI: 10.1128/aem.00349-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023] Open
Abstract
Tropolonoids are important natural products that contain a unique seven-membered aromatic tropolone core and exhibit remarkable biological activities. 3,7-Dihydroxytropolone (DHT) isolated from Streptomyces species is a multiply hydroxylated tropolone exhibiting antimicrobial, anticancer, and antiviral activities. In this study, we determined the DHT biosynthetic pathway by heterologous expression, gene deletion, and biotransformation. Nine trl genes and some of the aerobic phenylacetic acid degradation pathway genes (paa) located outside the trl biosynthetic gene cluster are required for the heterologous production of DHT. The trlA gene encodes a single-domain protein homologous to the C-terminal enoyl coenzyme A (enoyl-CoA) hydratase domain of PaaZ. TrlA truncates the phenylacetic acid catabolic pathway and redirects it toward the formation of heptacyclic intermediates. TrlB is a 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthase homolog. TrlH is an unusual bifunctional protein bearing an N-terminal prephenate dehydratase domain and a C-terminal chorismate mutase domain. TrlB and TrlH enhanced de novo biosynthesis of phenylpyruvate, thereby providing abundant precursor for the prolific production of DHT in Streptomyces spp. Six seven-membered carbocyclic compounds were identified from the trlC, trlD, trlE, and trlF deletion mutants. Four of these chemicals, including 1,4,6-cycloheptatriene-1-carboxylic acid, tropone, tropolone, and 7-hydroxytropolone, were verified as key biosynthetic intermediates. TrlF is required for the conversion of 1,4,6-cycloheptatriene-1-carboxylic acid into tropone. The monooxygenases TrlE and TrlCD catalyze the regioselective hydroxylations of tropone to produce DHT. This study reveals a natural association of anabolism of chorismate and phenylpyruvate, catabolism of phenylacetic acid, and biosynthesis of tropolones in Streptomyces spp.IMPORTANCE Tropolonoids are promising drug lead compounds because of the versatile bioactivities attributed to their highly oxidized seven-membered aromatic ring scaffolds. Our present study provides clear insight into the biosynthesis of 3,7-dihydroxytropolone (DHT) through the identification of key genes responsible for the formation and modification of the seven-membered aromatic core. We also reveal the intrinsic mechanism of elevated production of DHT and related tropolonoids in Streptomyces spp. The study on DHT biosynthesis in Streptomyces exhibits a good example of antibiotic production in which both anabolic and catabolic pathways of primary metabolism are interwoven into the biosynthesis of secondary metabolites. Furthermore, our study sets the stage for metabolic engineering of the biosynthetic pathway for natural tropolonoid products and provides alternative synthetic biology tools for engineering novel tropolonoids.
Collapse
|
8
|
Zhao Z, Shi T, Xu M, Brock NL, Zhao YL, Wang Y, Deng Z, Pang X, Tao M. Hybrubins: Bipyrrole Tetramic Acids Obtained by Crosstalk between a Truncated Undecylprodigiosin Pathway and Heterologous Tetramic Acid Biosynthetic Genes. Org Lett 2016; 18:572-5. [DOI: 10.1021/acs.orglett.5b03609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhilong Zhao
- State
Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nelson L. Brock
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiuhua Pang
- State
Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
9
|
DNA affinity capturing identifies new regulators of the heterologously expressed novobiocin gene cluster in Streptomyces coelicolor M512. Appl Microbiol Biotechnol 2016; 100:4495-509. [PMID: 26795961 DOI: 10.1007/s00253-016-7306-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Understanding the regulation of a heterologously expressed gene cluster in a host organism is crucial for activation of silent gene clusters or overproduction of the corresponding natural product. In this study, Streptomyces coelicolor M512(nov-BG1) containing the novobiocin biosynthetic gene cluster from Streptomyces niveus NCIMB 11891 was chosen as a model. An improved DNA affinity capturing assay (DACA), combined with semi-quantitative mass spectrometry, was used to identify proteins binding to the promoter regions of the novobiocin gene cluster. Altogether, 2475 proteins were identified in DACA studies with the promoter regions of the pathway-specific regulators novE (PnovE) and novG (PnovG), of the biosynthetic genes novH-W (PnovH) and of the vegetative σ-factor hrdB (PhrdB) as a negative control. A restrictive classification for specific binding reduced this number to 17 proteins. Twelve of them were captured by PnovH, among them, NovG, two were captured by PnovE, and three by PnovG. Unexpectedly some well-known regulatory proteins, such as the global regulators NdgR, AdpA, SlbR, and WhiA were captured in similar intensities by all four tested promoter regions. Of the 17 promoter-specific proteins, three were studied in more detail by deletion mutagenesis and by overexpression. Two of them, BxlRSc and BxlR2Sc, could be identified as positive regulators of novobiocin production in S. coelicolor M512. Deletion of a third gene, sco0460, resulted in reduced novobiocin production, while overexpression had no effect. Furthermore, binding of BxlRSc to PnovH and to its own promoter region was confirmed via surface plasmon resonance spectroscopy.
Collapse
|
10
|
Wang W, Li X, Li Y, Li S, Fan K, Yang K. A genetic biosensor for identification of transcriptional repressors of target promoters. Sci Rep 2015; 5:15887. [PMID: 26510468 PMCID: PMC4625125 DOI: 10.1038/srep15887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Transcriptional repressors provide widespread biological significance in the regulation of gene expression. However, in prokaryotes, it is particularly difficult to find transcriptional repressors that recognize specific target promoters on genome-scale. To address this need, a genetic biosensor for identifying repressors of target promoters was developed in Escherichia coli from a de novo designed genetic circuit. This circuit can convert the negative input of repressors into positive output of reporters, thereby facilitating the selection and identification of repressors. After evaluating the sensitivity and bias, the biosensor was used to identify the repressors of scbA and aco promoters (PscbA and Paco), which control the transcription of signalling molecule synthase genes in Streptomyces coelicolor and Streptomyces avermitilis, respectively. Two previously unknown repressors of PscbA were identified from a library of TetR family regulators in S. coelicolor, and three novel repressors of Paco were identified from a genomic library of S. avermitilis. Further in vivo and in vitro experiments confirmed that these newly identified repressors attenuated the transcription of their target promoters by direct binding. Overall, the genetic biosensor developed here presents an innovative and powerful strategy that could be applied for identifying genome-wide unknown repressors of promoters in bacteria.
Collapse
Affiliation(s)
- Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| |
Collapse
|
11
|
Qin Z, Huang S, Yu Y, Deng H. Dithiolopyrrolone natural products: isolation, synthesis and biosynthesis. Mar Drugs 2013; 11:3970-97. [PMID: 24141227 PMCID: PMC3826145 DOI: 10.3390/md11103970] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022] Open
Abstract
Dithiolopyrrolones are a class of antibiotics that possess the unique pyrrolinonodithiole (4H-[1,2] dithiolo [4,3-b] pyrrol-5-one) skeleton linked to two variable acyl groups. To date, there are approximately 30 naturally occurring dithiolopyrrolone compounds, including holomycin, thiolutin, and aureothricin, and more recently thiomarinols, a unique class of hybrid marine bacterial natural products containing a dithiolopyrrolone framework linked by an amide bridge with an 8-hydroxyoctanoyl chain linked to a monic acid. Generally, dithiolopyrrolone antibiotics have broad-spectrum antibacterial activity against various microorganisms, including Gram-positive and Gram-negative bacteria, and even parasites. Holomycin appeared to be active against rifamycin-resistant bacteria and also inhibit the growth of the clinical pathogen methicillin-resistant Staphylococcus aureus N315. Its mode of action is believed to inhibit RNA synthesis although the exact mechanism has yet to be established in vitro. A recent work demonstrated that the fish pathogen Yersinia ruckeri employs an RNA methyltransferase for self-resistance during the holomycin production. Moreover, some dithiolopyrrolone derivatives have demonstrated promising antitumor activities. The biosynthetic gene clusters of holomycin have recently been identified in S. clavuligerus and characterized biochemically and genetically. The biosynthetic gene cluster of thiomarinol was also identified from the marine bacterium Pseudoalteromonas sp. SANK 73390, which was uniquely encoded by two independent pathways for pseudomonic acid and pyrrothine in a novel plasmid. The aim of this review is to give an overview about the isolations, characterizations, synthesis, biosynthesis, bioactivities and mode of action of this unique family of dithiolopyrrolone natural products, focusing on the period from 1940s until now.
Collapse
Affiliation(s)
- Zhiwei Qin
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; E-Mails: (Z.Q.); (S.H.)
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Sheng Huang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; E-Mails: (Z.Q.); (S.H.)
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; E-Mails: (Z.Q.); (S.H.)
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| |
Collapse
|