1
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
2
|
Ye Q, Lee C, Shin E, Lee SJ. Influence of Redox Imbalances on the Transposition of Insertion Sequences in Deinococcus geothermalis. Antioxidants (Basel) 2021; 10:antiox10101623. [PMID: 34679757 PMCID: PMC8533066 DOI: 10.3390/antiox10101623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
The transposition of insertion sequence elements was evaluated among different Deinococcus geothermalis lineages, including the wild-type, a cystine importer-disrupted mutant, a complemented strain, and a cystine importer-overexpressed strain. Cellular growth reached early exponential growth at OD600 2.0 and late exponential growth at OD600 4.0. Exposing the cells to hydrogen peroxide (80–100 mM) resulted in the transposition of insertion sequences (ISs) in genes associated with the carotenoid biosynthesis pathway. Particularly, ISDge7 (an IS5 family member) and ISDge5 (an IS701 family member) from the cystine importer-disrupted mutant were transposed into phytoene desaturase (dgeo_0524) via replicative transposition. Further, the cystine importer-overexpressed strain Δdgeo_1985R showed transposition of both ISDge2 and ISDge5 elements. In contrast, IS transposition was not detected in the complementary strain. Interestingly, a cystine importer-overexpressing strain exhibited streptomycin resistance, indicating that point mutation occurred in the rpsL (dgeo_1873) gene encoding ribosomal protein S12. qRT-PCR analyses were then conducted to evaluate the expression of oxidative stress response genes, IS elements, and low-molecular-weight thiol compounds such as mycothiol and bacillithiol. Nevertheless, the mechanisms that trigger IS transposition in redox imbalance conditions remain unclear. Here, we report that the active transposition of different IS elements was affected by intracellular redox imbalances caused by cystine importer deficiencies or overexpression.
Collapse
|
3
|
Xie J, Gänzle MG. Characterization of γ-glutamyl cysteine ligases from Limosilactobacillus reuteri producing kokumi-active γ-glutamyl dipeptides. Appl Microbiol Biotechnol 2021; 105:5503-5515. [PMID: 34228184 DOI: 10.1007/s00253-021-11429-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
γ-Glutamyl cysteine ligases (Gcls) catalyze the first step of glutathione synthesis in prokaryotes and many eukaryotes. This study aimed to determine the biochemical properties of three different Gcls from strains of Limosilactobacillus reuteri that accumulate γ-glutamyl dipeptides. Gcl1, Gcl2, and Gcl3 were heterologously expressed in Escherichia coli and purified by affinity chromatography. Gcl1, Gcl2, and Gcl2 exhibited biochemical with respect to the requirement for metal ions, the optimum pH and temperature of activity, and the kinetic constants for the substrates cysteine and glutamate. The substrate specificities of the three Gcls to 14 amino acids were assessed by liquid chromatography-mass spectrometry. All three Gcls converted ala, met, glu, and gln into the corresponding γ-glutamyl dipeptides. None of the three were active with val, asp, and his. Gcl1 and Gcl3 but not Gcl2 formed γ-glu-leu, γ-glu-ile, and γ-glu-phe; Gcl3 exhibited stronger activity with gly, pro, and asp when compared to Gcl2. Phylogenetic analysis of Gcl and the Gcl-domain of GshAB in lactobacilli demonstrated that most of Gcls were present in heterofermentative lactobacilli, while GshAB was identified predominantly in homofermentative lactobacilli. This distribution suggests a different ecological role of the enzyme in homofermentative and heterofermentative lactobacilli. In conclusion, three Gcls exhibited similar biochemical properties but differed with respect to their substrate specificity and thus the synthesis of kokumi-active γ-glutamyl dipeptides. KEY POINTS: • Strains of Limosilactobacillus reuteri encode for up to 3 glutamyl cysteine ligases. • Gcl1, Gcl2, and Gcl3 of Lm. reuteri differ in their substrate specificity. • Gcl1 and Gcl3 produce kokumi-active dipeptides.
Collapse
Affiliation(s)
- Jin Xie
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
4
|
Strain-specific interaction of Fructilactobacillus sanfranciscensis with yeasts in the sourdough fermentation. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03722-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractFructilactobacillus (F.) sanfranciscensis is a key bacterium in traditional (type 1) sourdough fermentations. It typically occurs in combination with the sourdough yeast Kazachstania (K.) humilis or the generalist Saccharomyces (S.) cerevisiae. Previous studies revealed intra-species diversity in competitiveness or dominance in sourdoughs of F. sanfranciscensis, as well as preferences for a life with or without a specific yeast. In this study representative, differently behaving strains were studied in media with different sugars and electron acceptors, and in rye sourdough fermentations in the presence and absence of K. humilis or S. cerevisiae. Strain-specific differences were observed in sugar and organic acids spectra in media, and in sourdoughs with F. sanfranciscensis strains in combination with K. humilis or S. cerevisiae. F. sanfranciscensis TMW 1.1150 proved dominant in the presence and absence of any yeast because it most effectively used maltose. Its maltose fermentation was unaffected by electron acceptors. F. sanfranciscensis TMW 1.2138 was the weakest maltose fermenter and incapable of glucose fermentation, and evidently not competitive against the other strains. F. sanfranciscensis TMW 1.392 was the most versatile strain regarding the utilization of different carbohydrates and its ability to exploit electron acceptors like fructose and oxygen. In sourdoughs without yeasts, it outcompeted other strains. The metabolism of F. sanfranciscensis TMW 1.907 was stimulated in combination with S. cerevisiae. In competitive trials, it was assertive only with S. cerevisiae. The intra-species differences in carbohydrate metabolism can widely explain the differences in their behavior in sourdough fermentation. Interaction between F. sanfranciscensis and the yeasts was strain specific and supposedly commensal with K. humilis and rather competitive with S. cerevisiae.
Collapse
|
5
|
Rogalski E, Ehrmann MA, Vogel RF. Intraspecies diversity and genome-phenotype-associations in Fructilactobacillus sanfranciscensis. Microbiol Res 2020; 243:126625. [PMID: 33129664 DOI: 10.1016/j.micres.2020.126625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 02/04/2023]
Abstract
In this study the intraspecies diversity of Fructilactobacillus (F.) sanfranciscensis (formerly Lactobacillus sanfranciscensis) was characterized by comparative genomics supported by physiological data. Twenty-four strains of F. sanfranciscensis were analyzed and sorted into six different genomic clusters. The core genome comprised only 43,14 % of the pan genome, i.e. 0.87 Mbp of 2.04 Mbp. The main annotated genomic differences reside in maltose, fructose and sucrose as well as nucleotide metabolism, use of electron acceptors, and exopolysacchride formation. Furthermore, all strains are well equipped to cope with oxidative stress via NADH oxidase and a distinct thiol metabolism. Only ten of 24 genomes contain two maltose phosphorylase genes (mapA and mapB). In F. sanfranciscensis TMW 1.897 only mapA was found. All strains except those from genomic cluster 2 contained the mannitol dehydrogenase and should therefore be able to use fructose as external electron acceptor. Moreover, six strains were able to grow on fructose as sole carbon source, as they contained a functional fructokinase gene. No growth was observed on pentoses, i.e. xylose, arabinose or ribose, as sole carbon source. This can be referred to the absence of ribose pyranase rbsD in all genomes, and absence of or mutations in numerous other genes, which are essential for arabinose and xylose metabolism. Seven strains were able to produce exopolysaccharides (EPS) from sucrose. In addition, the strains containing levS were able to grow on sucrose as sole carbon source. Strains of one cluster exhibit auxotrophies for purine nucleotides. The physiological and genomic analyses suggest that the biodiversity of F. sanfranciscensis is larger than anticipated. Consequently, "original" habitats and lifestyles of F. sanfranciscensis may vary but can generally be referred to an adaptation to sugary (maltose/sucrose/fructose-rich) and aerobic environments as found in plants and insects. It can dominate sourdoughs as a result of reductive evolution and cooperation with fructose-delivering, acetate-tolerant yeasts.
Collapse
Affiliation(s)
- Esther Rogalski
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.
| |
Collapse
|
6
|
Gao Y, Liu Y, Ma F, Sun M, Mu G, Tuo Y. Global transcriptomic and proteomics analysis of Lactobacillus plantarum Y44 response to 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress. J Proteomics 2020; 226:103903. [PMID: 32682107 DOI: 10.1016/j.jprot.2020.103903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/23/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Our previous study demonstrated that Lactobacillus plantarum Y44 exhibited antioxidant activity. However, the physiological characteristics of L. plantarum Y44 exposure to oxidative stress was not clear. In this research, the differentially expressed proteins and genes in L. plantarum Y44 under 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress at different concentrations were studied by using integrated transcriptomic and proteomic methods. Under 100 mM AAPH stress condition, 1139 differentially expressed genes (DEGs, 546 up-regulated and 593 down-regulated) and 329 differentially expressed proteins (DEPs, 127 up-regulated and 202 down-regulated) were observed. Under 200 mM AAPH stress condition, 1526 DEGs (751 up-regulated and 775 down-regulated) and 382 DEPs (139 up-regulated and 243 down-regulated) were observed. Overall, we found that L. plantarum Y44 fought against AAPH induced oxidative stress by up-regulating antioxidant enzymes and DNA repair proteins, such as ATP-dependent DNA helicase RuvA, adenine DNA glycosylase, single-strand DNA-binding protein SSB, DNA-binding ferritin-like protein DPS, thioredoxin reductase, protein-methionine-S-oxide reductase and glutathione peroxidase. Additionally, cell envelope composition of L. plantarum Y44 was highly remodeled by accelerating peptidoglycan and teichoic-acid (LTA) biosynthesis and modulating the fatty acids (FA) composition to achieve a higher ratio of unsaturated/saturated fatty acids (UFAs/SFAs) against AAPH stress. Moreover, metabolism processes including carbohydrate metabolism, amino acid biosynthesis, and nucleotide metabolism altered to respond to AAPH-induced damage. Altogether, our findings allow us to facilitate a better understanding of L. plantarum Y44 against oxidative stress. SIGNIFICANCE: This study represents an integrated proteomic and transcriptomic analysis of Lactobacillus plantarum Y44 response to 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress. Differentially expressed proteins and genes were identified between the proteome and transcriptome of L. plantarum Y44 under different AAPH stress. AAPH-induced response of L. plantarum Y44 appears to be primarily based on ROS scavenging, DNA repair, highly remodeled cell surface and specific metabolic processes. The knowledge about these proteomes and transcriptomes provides significant insights into the oxidative stress response of Lactobacillus plantarum.
Collapse
Affiliation(s)
- Yuan Gao
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yujun Liu
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fenglian Ma
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanfeng Tuo
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Adaptation of Lactobacillus plantarum to Ampicillin Involves Mechanisms That Maintain Protein Homeostasis. mSystems 2020; 5:5/1/e00853-19. [PMID: 31992633 PMCID: PMC6989132 DOI: 10.1128/msystems.00853-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widespread use of antibiotics has caused great concern in the biosafety of probiotics. In this study, we conducted a 12-month adaptive laboratory evolution (ALE) experiment to select for antibiotics-adapted Lactobacillus plantarum P-8, a dairy-originated probiotic bacterium. During the ALE process, the ampicillin MIC for the parental L. plantarum P-8 strain increased gradually and reached the maximum level of bacterial fitness. To elucidate the molecular mechanisms underlying the ampicillin-resistant phenotype, we comparatively analyzed the genomes and proteomes of the parental strain (L. plantarum P-8) and two adapted lines (L. plantarum 400g and L. plantarum 1600g). The adapted lines showed alterations in their carbon, amino acid, and cell surface-associated metabolic pathways. Then, gene disruption mutants were created to determine the role of six highly expressed genes in contributing to the enhanced ampicillin resistance. Inactivation of an ATP-dependent Clp protease/the ATP-binding subunit ClpL, a small heat shock protein, or a hypothetical protein resulted in partial but significant phenotypic reversion, confirming their necessary roles in the bacterial adaptation to ampicillin. Genomic analysis confirmed that none of the ampicillin-specific differential expressed genes were flanked by any mobile genetic elements; thus, even though long-term exposure to ampicillin upregulated their expression, there is low risk of spread of these genes and adapted drug resistance to other bacteria via horizontal gene transfer. Our study has provided evidence of the biosafety of probiotics even when used in the presence of antibiotics.IMPORTANCE Antibiotic resistance acquired by adaptation to certain antibiotics has led to growing public concerns. Here, a long-term evolution experiment was used together with proteomic analysis to identify genes/proteins responsible for the adaptive phenotype. This work has provided novel insights into the biosafety of new probiotics with high tolerance to antibiotics.
Collapse
|
8
|
Gänzle MG, Zheng J. Lifestyles of sourdough lactobacilli – Do they matter for microbial ecology and bread quality? Int J Food Microbiol 2019; 302:15-23. [DOI: 10.1016/j.ijfoodmicro.2018.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
|
9
|
Zhang G, Tu J, Sadiq FA, Zhang W, Wang W. Prevalence, Genetic Diversity, and Technological Functions of theLactobacillus sanfranciscensisin Sourdough: A Review. Compr Rev Food Sci Food Saf 2019; 18:1209-1226. [DOI: 10.1111/1541-4337.12459] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Guohua Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Jian Tu
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | | | - Weizhen Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Wei Wang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| |
Collapse
|
10
|
Microbial Ecology and Process Technology of Sourdough Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:49-160. [PMID: 28732554 DOI: 10.1016/bs.aambs.2017.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes.
Collapse
|
11
|
Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01. J Proteomics 2016; 150:216-229. [PMID: 27585996 DOI: 10.1016/j.jprot.2016.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/24/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Lactobacillus salivarius LI01, isolated from healthy humans, has demonstrated probiotic properties in the prevention and treatment of liver failure. Tolerance to bile stress is crucial to allow lactobacilli to survive in the gastrointestinal tract and exert their benefits. In this work, we used a Digital Gene Expression transcriptomic and iTRAQ LC-MS/MS proteomic approach to examine the characteristics of LI01 in response to bile stress. Using culture medium with or without 0.15% ox bile, 591 differentially transcribed genes and 347 differentially expressed proteins were detected in LI01. Overall, we found the bile resistance of LI01 to be based on a highly remodeled cell envelope and a reinforced bile efflux system rather than on the activity of bile salt hydrolases. Additionally, some differentially expressed genes related to regulatory systems, the general stress response and central metabolism processes, also play roles in stress sensing, bile-induced damage prevention and energy efficiency. Moreover, bile salts appear to enhance proteolysis and amino acid uptake (especially aromatic amino acids) by LI01, which may support the liver protection properties of this strain. Altogether, this study establishes a model of global response mechanism to bile stress in L. salivarius LI01. BIOLOGICAL SIGNIFICANCE L. salivarius strain LI01 exhibits not only antibacterial and antifungal properties but also exerts a good health-promoting effect in acute liver failure. As a potential probiotic strain, the bile-tolerance trait of strain LI01 is important, though this has not yet been explored. In this study, an analysis based on DGE and iTRAQ was performed to investigate the gene expression in strain LI01 under bile stress at the mRNA and protein levels, respectively. To our knowledge, this work also represents the first combined transcriptomic and proteomic analysis of the bile stress response mechanism in L. salivarius.
Collapse
|
12
|
Genotypic diversity of Lactobacillus sanfranciscensis strains isolated from French organic sourdoughs. Int J Food Microbiol 2016; 226:13-9. [DOI: 10.1016/j.ijfoodmicro.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
|