1
|
Antunes M, Mota MN, Fernandes PAR, Coelho E, Coimbra MA, Sá-Correia I. Cell wall alterations occurring in an evolved multi-stress tolerant strain of the oleaginous yeast Rhodotorula toruloides. Sci Rep 2024; 14:23366. [PMID: 39375422 PMCID: PMC11458906 DOI: 10.1038/s41598-024-74919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
The oleaginous yeast species Rhodotorula toruloides is a promising candidate for applications in circular bioeconomy due to its ability to efficiently utilize diverse carbon sources being tolerant to cellular stress in bioprocessing. Previous studies including genome-wide analyses of the multi-stress tolerant strain IST536 MM15, derived through adaptive laboratory evolution from a promising IST536 strain for lipid production from sugar beet hydrolysates, suggested the occurrence of significant modifications in the cell wall. In this study, the cell wall integrity and carbohydrate composition of those strains was characterized to gain insights into the physicochemical changes associated to the remarkable multi-stress tolerance phenotype of the evolved strain. Compared to the original strain, the evolved strain exhibited a higher proportion of glucomannans, fucogalactomannans, and chitin relative to (1→4)-linked glucans, and an increased presence of glycoproteins with short glucosamine derived oligosaccharides, which have been found to be associated to ethanol stress tolerance and physical strength of the cell wall. Furthermore, the evolved strain cells were found to be significantly smaller than the original strain and more resistant to thermal and mechanical disruption, consistent with higher proportion of beta-linked polymers instead of glycogen, conferring a more rigid and robust cell wall. These findings provide further insights into the cell wall composition of this basidiomycetous red yeast species and into the alterations occurring in a multi-stress tolerant evolved strain. This new information can guide yeast genome engineering towards more robust strains of biotechnological relevance.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
| | - Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
| | - Pedro A R Fernandes
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Elisabete Coelho
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - Manuel A Coimbra
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal.
| |
Collapse
|
2
|
Fatima T, Fatima Z, Billamboz M, Hameed S. Exploring the antifungal potential of novel carbazate derivatives as promising drug candidates against emerging superbug, Candida auris. Bioorg Chem 2024; 153:107782. [PMID: 39244975 DOI: 10.1016/j.bioorg.2024.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Candida auris (C. auris) has caused notable outbreaks across the globe in last decade and emerged as a life-threatening human pathogenic fungus. Despite significant advances in antifungal research, the drug resistance mechanisms in C. auris still remain elusive. Under such pressing circumstances, research on identification of new antifungal compounds is of immense interest. Thus, our studies aimed at identifying novel drug candidates and elucidate their biological targets in C. auris. After screening of several series of synthetic and hemisynthetic compounds from JUNIA chemical library, compounds C4 (butyl 2-(4-chlorophenyl)hydrazine-1-carboxylate) and C13 (phenyl 2-(4-chlorophenyl) hydrazine-1-carboxylate), belonging to the carbazate series, were identified to display considerable antifungal activities against C. auris as well as its fluconazole resistant isolates. Elucidation of biological targets revealed that C4 and C13 lead to changes in polysaccharide composition of the cell wall and disrupt vacuole homeostasis. Mechanistic insights further unravelled inhibited efflux pump activities of ATP binding cassette transporters and depleted ergosterol content. Additionally, C4 and C13 cause mitochondrial dysfunction and confer oxidative stress. Furthermore, both C4 and C13 impair biofilm formation in C. auris. The in vivo efficacy of C4 and C13 were demonstrated in Caenorhabditis elegans model after C. auris infection showing reduced mortality of the nematodes. Together, promising antifungal properties were observed for C4 and C13 against C. auris that warrant further investigations. To summarise, collected data pave the way for the design and development of future first-in-class antifungal drugs.
Collapse
Affiliation(s)
- Tazeen Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram Manesar 122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram Manesar 122413, India
| | - Muriel Billamboz
- ICL, JUNIA, Université Catholique de Lille, LITL, F-59000 Lille, France.
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram Manesar 122413, India.
| |
Collapse
|
3
|
Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:115. [PMID: 39160588 PMCID: PMC11334397 DOI: 10.1186/s13068-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.
Collapse
Affiliation(s)
- Manman Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Ilhamzah, Tsukuda Y, Yamaguchi Y, Ogita A, Fujita KI. Persimmon tannin promotes the growth of Saccharomyces cerevisiae under ethanol stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6118-6126. [PMID: 38445539 DOI: 10.1002/jsfa.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Saccharomyces cerevisiae plays a pivotal role in various industrial processes, including bioethanol production and alcoholic beverage fermentation. However, during these fermentations, yeasts are subjected to various environmental stresses, such as ethanol stress, which hinder cell growth and ethanol production. Genetic manipulations and the addition of natural ingredients rich in antioxidants to the culture have been shown to overcome this. Here, we investigated the potential of persimmon tannins, known for their antioxidative properties, to enhance the ethanol stress tolerance of yeast. RESULTS Assessment of the effects of 6.25 mg mL-1 persimmon tannins after 48 h incubation revealed cell viability to be increased by 8.9- and 6.5-fold compared to the control treatment with and without 12.5% ethanol, respectively. Furthermore, persimmon tannins reduced ethanol-induced oxidative stress, including the production of cellular reactive oxygen species and acceleration of lipid peroxidation. However, persimmon tannins could hardly overcome ethanol-induced cell membrane damage. CONCLUSION The findings herein indicate the potential of persimmon tannin as a protective agent for increasing yeast tolerance to ethanol stress by restricting oxidative damage but not membrane damage. Overall, this study unveils the implications of persimmon tannins for industries relying on yeast. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ilhamzah
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yuka Tsukuda
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | | | - Akira Ogita
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
| | - Ken-Ichi Fujita
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Pinto CM, Schnepper AP, Trindade PHE, Cardoso LH, Fioretto MN, Justulin LA, Zanelli CF, Valente GT. The joint action of yeast eisosomes and membraneless organelles in response to ethanol stress. Heliyon 2024; 10:e31561. [PMID: 38818138 PMCID: PMC11137566 DOI: 10.1016/j.heliyon.2024.e31561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Elevated ethanol concentrations in yeast affect the plasma membrane. The plasma membrane in yeast has many lipid-protein complexes, such as Pma1 (MCP), Can1 (MCC), and the eisosome complex. We investigated the response of eisosomes, MCPs, and membraneless structures to ethanol stress. We found a correlation between ethanol stress and proton flux with quick acidification of the medium. Moreover, ethanol stress influences the symporter expression in stressed cells. We also suggest that acute stress from ethanol leads to increases in eisosome size and SG number: we hypothesized that eisosomes may protect APC symporters and accumulate an mRNA decay protein in ethanol-stressed cells. Our findings suggest that the joint action of these factors may provide a protective effect on cells under ethanol stress.
Collapse
Affiliation(s)
- Camila Moreira Pinto
- Laboratory of Applied Biotechnology. São Paulo State University (UNESP). Botucatu, Brazil
| | | | - Pedro Henrique Esteves Trindade
- Department of Population Health and Pathobiology College of Veterinary Medicine, North Carolina State University (NCSU) Raleigh, USA
| | - Luiz Henrique Cardoso
- Laboratory of Applied Biotechnology. São Paulo State University (UNESP). Botucatu, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences. São Paulo State University (UNESP). Botucatu, Brazil
| | - Luís Antônio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences. São Paulo State University (UNESP). Botucatu, Brazil
| | | | | |
Collapse
|
6
|
Saengphing T, Sattayawat P, Kalawil T, Suwannarach N, Kumla J, Yamada M, Panbangred W, Rodrussamee N. Improving furfural tolerance in a xylose-fermenting yeast Spathaspora passalidarum CMUWF1-2 via adaptive laboratory evolution. Microb Cell Fact 2024; 23:80. [PMID: 38481222 PMCID: PMC10936021 DOI: 10.1186/s12934-024-02352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Spathaspora passalidarum is a yeast with the highly effective capability of fermenting several monosaccharides in lignocellulosic hydrolysates, especially xylose. However, this yeast was shown to be sensitive to furfural released during pretreatment and hydrolysis processes of lignocellulose biomass. We aimed to improve furfural tolerance in a previously isolated S. passalidarum CMUWF1-2, which presented thermotolerance and no detectable glucose repression, via adaptive laboratory evolution (ALE). RESULTS An adapted strain, AF2.5, was obtained from 17 sequential transfers of CMUWF1-2 in YPD broth with gradually increasing furfural concentration. Strain AF2.5 could tolerate higher concentrations of furfural, ethanol and 5-hydroxymethyl furfuraldehyde (HMF) compared with CMUWF1-2 while maintaining the ability to utilize glucose and other sugars simultaneously. Notably, the lag phase of AF2.5 was 2 times shorter than that of CMUWF1-2 in the presence of 2.0 g/l furfural, which allowed the highest ethanol titers to be reached in a shorter period. To investigate more in-depth effects of furfural, intracellular reactive oxygen species (ROS) accumulation was observed and, in the presence of 2.0 g/l furfural, AF2.5 exhibited 3.41 times less ROS accumulation than CMUWF1-2 consistent with the result from nuclear chromatins diffusion, which the cells number of AF2.5 with diffuse chromatins was also 1.41 and 1.24 times less than CMUWF1-2 at 24 and 36 h, respectively. CONCLUSIONS An enhanced furfural tolerant strain of S. passalidarum was achieved via ALE techniques, which shows faster and higher ethanol productivity than that of the wild type. Not only furfural tolerance but also ethanol and HMF tolerances were improved.
Collapse
Affiliation(s)
- Thanyalak Saengphing
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thitisuda Kalawil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, 755-8611, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | | | - Nadchanok Rodrussamee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
7
|
Yang T, Zhang S, Pan Y, Li X, Liu G, Sun H, Zhang R, Zhang C. Breeding of high-tolerance yeast by adaptive evolution and high-gravity brewing of mutant. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:686-697. [PMID: 37654243 DOI: 10.1002/jsfa.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/13/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Ethanol and osmotic stresses are the major limiting factors for brewing strong beer with high-gravity wort. Breeding of yeast strains with high osmotic and ethanol tolerance and studying very-high-gravity (VHG) brewing technology is of great significance for brewing strong beer. RESULTS This study used an optimized microbial microdroplet culture (MMC) system for adaptive laboratory evolution (ALE) of Saccharomyces cerevisiae YN81 to improve its tolerance to osmotic and ethanol stress. Meanwhile, we investigated the VHG and VHG with added ethanol (VHGAE) brewing processes for the evolved mutants in brewing strong beer. The results showed that three evolved mutants were obtained; among them, the growth performance of YN81mc-8.3 under 300, 340, 380, 420 and 460 g L-1 sucrose stresses was greater than that of the other strains. The ethanol tolerance of YN81mc-8.3 was 12%, which was 20% higher than that of YN81. During strong-beer brewing in a 100 L cylindrical cone-bottom tank, the sugar utilization and ethanol yield of YN81mc-8.3 outperformed those of YN81 in both the VHG and VHGAE brewing processes. Measurement of the diacetyl concentration showed that YN81mc-8.3 had a stronger diacetyl reduction ability; in particular, the real degree of fermentation of beers brewed by YN81mc-8.3 in VHG and VHGAE brewing processes was 75.35% and 66.71%, respectively - higher than those of the two samples brewed by YN81. Meanwhile, the visual, olfactive and gustative properties of the strong beer produced by YN81mc-8.3 were better than those of the other beers. CONCLUSION In this study, the mutant YN81mc-8.3 and the VHGAE brewing process were optimal and represented a better alternative strong-beer brewing process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianyou Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Shishuang Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China
| | - Yuru Pan
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xu Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Gaifeng Liu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Sun
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Rongxian Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chaohui Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
8
|
Postaru M, Tucaliuc A, Cascaval D, Galaction AI. Cellular Stress Impact on Yeast Activity in Biotechnological Processes-A Short Overview. Microorganisms 2023; 11:2522. [PMID: 37894181 PMCID: PMC10609598 DOI: 10.3390/microorganisms11102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of Saccharomyces cerevisiae yeast cells is known worldwide, as they are the most used microorganisms in biotechnology for bioethanol and biofuel production. Also, they are analyzed and studied for their similar internal biochemical processes to human cells, for a better understanding of cell aging and response to cell stressors. The special ability of S. cerevisiae cells to develop in both aerobic and anaerobic conditions makes this microorganism a viable model to study the transformations and the way in which cellular metabolism is directed to face the stress conditions due to environmental changes. Thus, this review will emphasize the effects of oxidative, ethanol, and osmotic stress and also the physiological and genetic response of stress mitigation in yeast cells.
Collapse
Affiliation(s)
- Madalina Postaru
- Department of Biomedical Science, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, M. Kogălniceanu 9-13, 700454 Iasi, Romania;
| | - Alexandra Tucaliuc
- Department of Organic, Biochemical and Food, “Cristofor Simionescu” Faculty of Chemical, Engineering and Environmental Protection, Engineering, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania; (A.T.); (D.C.)
| | - Dan Cascaval
- Department of Organic, Biochemical and Food, “Cristofor Simionescu” Faculty of Chemical, Engineering and Environmental Protection, Engineering, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania; (A.T.); (D.C.)
| | - Anca-Irina Galaction
- Department of Biomedical Science, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, M. Kogălniceanu 9-13, 700454 Iasi, Romania;
| |
Collapse
|
9
|
Joniak J, Stankovičová H, Budzák Š, Sýkora M, Gaplovská-Kyselá K, Filo J, Cigáň M. Rigidized 3-aminocoumarins as fluorescent probes for strongly acidic environments and rapid yeast vacuolar lumen staining: mechanism and application. Phys Chem Chem Phys 2023. [PMID: 37470103 DOI: 10.1039/d3cp01090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Coumarins remain one of the most important groups of fluorescent bio-probes, thanks to their high quantum yields, moderate photostability, efficient cell permeation and low (cyto)toxicity. Herein, we introduce new 3-aminocoumarins as turn-on pH probes under strongly acidic conditions and for indicators capable of significantly improving yeast vacuolar lumen staining compared to the commercial CMAC derivatives. We present the details of the on-off switching mechanism revealed by the TD-DFT and ab initio calculations complemented by a Franck-Condon analysis of the probes' emission profiles.
Collapse
Affiliation(s)
- Jakub Joniak
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia.
| | - Henrieta Stankovičová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia.
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Milan Sýkora
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Katarína Gaplovská-Kyselá
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia.
| | - Marek Cigáň
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia.
| |
Collapse
|
10
|
Zeng X, Mo Z, Zheng J, Wei C, Dai Y, Yan Y, Qiu S. Effects of biofilm and co-culture with Bacillus velezensis on the synthesis of esters in the strong flavor Baijiu. Int J Food Microbiol 2023; 394:110166. [PMID: 36921483 DOI: 10.1016/j.ijfoodmicro.2023.110166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Biofilm plays an important role in resisting the adverse environment, improving the taste and texture, and promoting the synthesis of flavor substances. However, to date, the findings on the effect of biofilm and dominating bacteria Bacillus on the ester synthesis in the Baijiu field have been largely lacked. Therefore, the objectives of the present study were to primarily isolate biofilm-producing microbes in the fermented grains, evaluate the stress tolerance capacity, and unveil the effect of biofilm and co-culture with Bacillus on the ester synthesis in the strong flavor Baijiu. Results indicated that after isolation and evaluation of stress-tolerance capacity, bacterial strain BG-5 and yeast strains YM-21 and YL-10 were demonstrated as mediate or strong biofilm-producing microbes and were identified as Bacillus velezensis, Saccharomycopsis fibuligera, and Zygosaccharomyces bailii, respectively. Solid phase microextraction/gas chromatography-mass spectrometer indicated that biofilm could enhance the diversity of esters while reduce the contents of ester. The scanning electron microscopy showed an inhibitory effect of B. velezensis on the growth of S. fibuligera, further restraining the production of esters. Taken together, both biofilm and B. velezensis influence the ester synthesis process. The present study is the first to reveal the biofilm-producing microorganisms in fermented grains and to preliminarily investigate the effect of biofilm on the ester synthesis in the Baijiu field.
Collapse
Affiliation(s)
- Xiangyong Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China.
| | - Zhenni Mo
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Department of Light Industry and Chemical Engineering, Guizhou Light Industry Technical College, Guiyang City 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co Ltd, No.150 Minjiang West Road, Yibin City 644007, China
| | - Chaoyang Wei
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Yifeng Dai
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Yan Yan
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Shuyi Qiu
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| |
Collapse
|
11
|
Sun C, Li X, Zhang Y, Lu L. Subunit C of V-ATPase-VmaC Is Required for Hyphal Growth and Conidiation in A. fumigatus by Affecting Vacuolar Calcium Homeostasis and Cell Wall Integration. J Fungi (Basel) 2022; 8:1219. [PMID: 36422040 PMCID: PMC9699406 DOI: 10.3390/jof8111219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/21/2023] Open
Abstract
Aspergillus fumigatus is a widespread airborne fungal pathogen in humans. However, the functional genes in A. fumigatus that may contribute to its pathogenesis have not yet been fully identified. Vacuolar H+-ATPase is universal in eukaryotic organisms but exhibits specific roles in various species. Here, we identified VmaC as a putative subunit of vacuolar H+-ATPase in A. fumigatus that is widely conserved through evolution. The C-terminal hydrophobic domain of VmaC plays a critical role in its vacuolar localization and growth and conidiation. Deletion or turn-off of VmaC encoding gene-AfvmaC expression is not lethal but leads to a very sick and tiny colony phenotype, which is different from that of yeast with conditional ScvmaC defects. Furthermore, we found that AfvmaC not only participates in maintaining calcium homeostasis and vacuolar acidity but is also involved in cell wall integration pathway regulation, highlighting the importance of the vacuole as a storage organelle associated with many aspects of cellular homeostasis. This study indicates that fungal VmaC is relatively conserved. When compared to that in model yeasts, VmaC in A. fumigatus is required for hyphal growth and conidiation, suggesting that specific motifs in VmaC might be functioned in Aspergilli.
Collapse
Affiliation(s)
| | | | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
12
|
Shen D, He X, Weng P, Liu Y, Wu Z. A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation. FEMS Yeast Res 2022; 22:6775076. [PMID: 36288242 DOI: 10.1093/femsyr/foac050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 10/22/2022] [Indexed: 01/07/2023] Open
Abstract
Yeast is widely used in the fermentation industry, and the major challenges in fermentation production system are high capital cost and low reaction rate. High cell-density culture is an effective method to increase the volumetric productivity of the fermentation process, thus making the fermentation process faster and more robust. During fermentation, yeast is subjected to various environmental stresses, including osmotic, ethanol, oxidation, and heat stress. To cope with these stresses, yeast cells need appropriate adaptive responses to acquire stress tolerances to prevent stress-induced cell damage. Since a single stressor can trigger multiple effects, both specific and nonspecific effects, general and specific stress responses are required to achieve comprehensive protection of cells. Since all these stresses disrupt protein structure, the upregulation of heat shock proteins and trehalose genes is induced when yeast cells are exposed to stress. A better understanding of the research status of yeast HCDC and its underlying response mechanism to various stresses during fermentation is essential for designing effective culture control strategies and improving the fermentation efficiency and stress resistance of yeast.
Collapse
Affiliation(s)
- Dongxu Shen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Xiaoli He
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
13
|
Müller H, Lesur A, Dittmar G, Gentzel M, Kettner K. Proteomic consequences of TDA1 deficiency in Saccharomyces cerevisiae: Protein kinase Tda1 is essential for Hxk1 and Hxk2 serine 15 phosphorylation. Sci Rep 2022; 12:18084. [PMID: 36302925 PMCID: PMC9613766 DOI: 10.1038/s41598-022-21414-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Hexokinase 2 (Hxk2) of Saccharomyces cerevisiae is a dual function hexokinase, acting as a glycolytic enzyme and being involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by phosphorylation of Hxk2 at serine 15, which has been attributed to the protein kinase Tda1. To explore the role of Tda1 beyond Hxk2 phosphorylation, the proteomic consequences of TDA1 deficiency were investigated by difference gel electrophoresis (2D-DIGE) comparing a wild type and a Δtda1 deletion mutant. To additionally address possible consequences of glucose repression/derepression, both were grown at 2% and 0.1% (w/v) glucose. A total of eight protein spots exhibiting a minimum twofold enhanced or reduced fluorescence upon TDA1 deficiency was detected and identified by mass spectrometry. Among the spot identities are-besides the expected Hxk2-two proteoforms of hexokinase 1 (Hxk1). Targeted proteomics analyses in conjunction with 2D-DIGE demonstrated that TDA1 is indispensable for Hxk2 and Hxk1 phosphorylation at serine 15. Thirty-six glucose-concentration-dependent protein spots were identified. A simple method to improve spot quantification, approximating spots as rotationally symmetric solids, is presented along with new data on the quantities of Hxk1 and Hxk2 and their serine 15 phosphorylated forms at high and low glucose growth conditions. The Δtda1 deletion mutant exhibited no altered growth under high or low glucose conditions or on alternative carbon sources. Also, invertase activity, serving as a reporter for glucose derepression, was not significantly altered. Instead, an involvement of Tda1 in oxidative stress response is suggested.
Collapse
Affiliation(s)
- Henry Müller
- grid.4488.00000 0001 2111 7257Institute of Physiological Chemistry, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Antoine Lesur
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Gunnar Dittmar
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg ,grid.16008.3f0000 0001 2295 9843Department of Life Sciences and Medicine, University of Luxembourg, 6 Avenue de Swing, 4367 Belvaux, Luxembourg
| | - Marc Gentzel
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering (CMCB), TP Molecular Analysis / Mass Spectrometry, Technische Universität Dresden, Tatzberg 46/47, 01307 Dresden, Germany
| | - Karina Kettner
- grid.4488.00000 0001 2111 7257Institute of Physiological Chemistry, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
14
|
Protective effects of peptides on the cell wall structure of yeast under osmotic stress. Appl Microbiol Biotechnol 2022; 106:7051-7061. [PMID: 36184688 DOI: 10.1007/s00253-022-12207-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Three peptides (LL, LML, and LLL) were used to examine their influences on the osmotic stress tolerance and cell wall properties of brewer's yeast. Results suggested that peptide supplementation improved the osmotic stress tolerance of yeast through enhancing the integrity and stability of the cell wall. Transmission electron micrographs showed that the thickness of yeast cell wall was increased by peptide addition under osmotic stress. Additionally, quantitative analysis of cell wall polysaccharide components in the LL and LLL groups revealed that they had 27.34% and 24.41% higher chitin levels, 25.73% and 22.59% higher mannan levels, and 17.86% and 21.35% higher β-1,3-glucan levels, respectively, than the control. Furthermore, peptide supplementation could positively modulate the cell wall integrity pathway and up-regulate the expressions of cell wall remodeling-related genes, including FKS1, FKS2, KRE6, MNN9, and CRH1. Thus, these results demonstrated that peptides improved the osmotic stress tolerance of yeast via remodeling the yeast cell wall and reinforcing the structure of the cell wall. KEY POINTS: • Peptide supplementation improved yeast osmotic stress tolerance via cell wall remodeling. • Peptide supplementation enhanced cell wall thickness and stability under osmotic stress. • Peptide supplementation positively modulated the CWI pathway under osmotic stress.
Collapse
|
15
|
Nguyet VTA, Furutani N, Ando R, Izawa S. Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130241. [PMID: 36075516 DOI: 10.1016/j.bbagen.2022.130241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the budding yeast, Saccharomyces cerevisiae, produces ethanol via alcoholic fermentation, high-concentration ethanol is harmful to yeast cells. Severe ethanol stress (> 9% v/v) inhibits protein synthesis and increases the level of intracellular protein aggregates. However, its effect on proteolysis in yeast cells remains largely unknown. METHODS We examined the effects of ethanol on proteasomal proteolysis in yeast cells through the cycloheximide-chase analysis of short-lived proteins. We also assayed protein degradation in the auxin-inducible degron system and the ubiquitin-independent degradation of Spe1 under ethanol stress conditions. RESULTS We demonstrated that severe ethanol stress strongly inhibited the degradation of the short-lived proteins Rim101 and Gic2. Severe ethanol stress also inhibited protein degradation in the auxin-inducible degron system (Paf1-AID*-6FLAG) and the ubiquitin-independent degradation of Spe1. Proteasomal degradation of these proteins, which was inhibited by severe ethanol stress, resumed rapidly once the ethanol was removed. These results suggested that proteasomal proteolysis in yeast cells is reversibly inhibited by severe ethanol stress. Furthermore, yeast cells pretreated with mild ethanol stress (6% v/v) showed proteasomal proteolysis even with 10% (v/v) ethanol, indicating that yeast cells acquired resistance to proteasome inhibition caused by severe ethanol stress. However, yeast cells failed to acquire sufficient resistance to severe ethanol stress-induced proteasome inhibition when new protein synthesis was blocked with cycloheximide during pretreatment, or when Rpn4 was lost. CONCLUSIONS AND GENERAL SIGNIFICANCE Our results provide novel insights into the adverse effects of severe ethanol stress on proteasomal proteolysis and ethanol adaptability in yeast.
Collapse
Affiliation(s)
- Vo Thi Anh Nguyet
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Noboru Furutani
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoko Ando
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
16
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Vanacloig-Pedros E, Fisher KJ, Liu L, Debrauske DJ, Young MKM, Place M, Hittinger CT, Sato TK, Gasch AP. Comparative chemical genomic profiling across plant-based hydrolysate toxins reveals widespread antagonism in fitness contributions. FEMS Yeast Res 2022; 21:6650360. [PMID: 35883225 PMCID: PMC9508847 DOI: 10.1093/femsyr/foac036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used extensively in fermentative industrial processes, including biofuel production from sustainable plant-based hydrolysates. Myriad toxins and stressors found in hydrolysates inhibit microbial metabolism and product formation. Overcoming these stresses requires mitigation strategies that include strain engineering. To identify shared and divergent mechanisms of toxicity and to implicate gene targets for genetic engineering, we used a chemical genomic approach to study fitness effects across a library of S. cerevisiae deletion mutants cultured anaerobically in dozens of individual compounds found in different types of hydrolysates. Relationships in chemical genomic profiles identified classes of toxins that provoked similar cellular responses, spanning inhibitor relationships that were not expected from chemical classification. Our results also revealed widespread antagonistic effects across inhibitors, such that the same gene deletions were beneficial for surviving some toxins but detrimental for others. This work presents a rich dataset relating gene function to chemical compounds, which both expands our understanding of plant-based hydrolysates and provides a useful resource to identify engineering targets.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Kaitlin J Fisher
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Derek J Debrauske
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Megan K M Young
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Trey K Sato
- Corresponding author: Trey K. Sato, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 4117 Wisconsin Energy Institute, 1552 University Ave, Madison, WI 53726. Tel: (608) 890-2546; E-mail:
| | - Audrey P Gasch
- Corresponding author: Audrey P. Gasch, Center for Genomic Science Innovation, University of Wisconsin-Madison, 3422 Genetics-Biotechnology Center, 425 Henry Mall, Madison, WI 53704, United States. Tel: (608)265-0859; E-mail:
| |
Collapse
|
18
|
Jin X, Yang H, Coldea TE, Andersen ML, Zhao H. Wheat Gluten Peptides Enhance Ethanol Stress Tolerance by Regulating the Membrane Lipid Composition in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5057-5065. [PMID: 35426662 DOI: 10.1021/acs.jafc.2c00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheat gluten peptides (WGPs), identified as Leu-Leu (LL), Leu-Leu-Leu (LLL), and Leu-Met-Leu (LML), were tested for their impacts on cell growth, membrane lipid composition, and membrane homeostasis of yeast under ethanol stress. The results showed that WGP supplementation could strengthen cell growth and viability and enhance the ethanol stress tolerance of yeast. WGP supplementation increased the expressions of OLE1 and ERG1 and enhanced the levels of oleic acid (C18:1) and ergosterol in yeast cell membranes. Moreover, LLL and LML exhibited a better protective effect for yeast under ethanol stress compared to LL. LLL and LML supplementation led to 20.3 ± 1.5% and 18.9 ± 1.7% enhancement in cell membrane fluidity, 21.8 ± 1.6% and 30.5 ± 1.1% increase in membrane integrity, and 26.3 ± 4.8% and 27.6 ± 4.6% decrease in membrane permeability in yeast under ethanol stress, respectively. The results from scanning electron microscopy (SEM) elucidated that WGP supplementation is favorable for the maintenance of yeast cell morphology under ethanol stress. All of these results revealed that WGP is an efficient enhancer for improving the ethanol stress tolerance of yeast by regulating the membrane lipid composition.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Mogens Larsen Andersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| |
Collapse
|
19
|
Saada OA, Tsouris A, Large C, Friedrich A, Dunham MJ, Schacherer J. Phased polyploid genomes provide deeper insight into the multiple origins of domesticated Saccharomyces cerevisiae beer yeasts. Curr Biol 2022; 32:1350-1361.e3. [PMID: 35180385 DOI: 10.1016/j.cub.2022.01.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Yeasts, and in particular Saccharomyces cerevisiae, have been used for brewing beer for thousands of years. Population genomic surveys highlighted that beer yeasts are polyphyletic, with the emergence of different domesticated subpopulations characterized by high genetic diversity and ploidy level. However, the different origins of these subpopulations are still unclear as reconstruction of polyploid genomes is required. To gain better insight into the differential evolutionary trajectories, we sequenced the genomes of 35 Saccharomyces cerevisiae isolates coming from different beer-brewing clades, using a long-read sequencing strategy. By phasing the genomes and using a windowed approach, we identified three main beer subpopulations based on allelic content (European dominant, Asian dominant, and African beer). They were derived from different admixtures between populations and are characterized by distinctive genomic patterns. By comparing the fully phased genes, the most diverse in our dataset are enriched for functions relevant to the brewing environment such as carbon metabolism, oxidoreduction, and cell wall organization activity. Finally, independent domestication, evolution, and adaptation events across subpopulations were also highlighted by investigating specific genes previously linked to the brewing process. Altogether, our analysis based on phased polyploid genomes has led to new insight into the contrasting evolutionary history of beer isolates.
Collapse
Affiliation(s)
- Omar Abou Saada
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Chris Large
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
20
|
de Moura Ferreira MA, da Silveira FA, da Silveira WB. Ethanol stress responses in Kluyveromyces marxianus: current knowledge and perspectives. Appl Microbiol Biotechnol 2022; 106:1341-1353. [DOI: 10.1007/s00253-022-11799-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
|
21
|
Lewis AG, Caldwell R, Rogers JV, Ingaramo M, Wang RY, Soifer I, Hendrickson DG, McIsaac RS, Botstein D, Gibney PA. Loss of major nutrient sensing and signaling pathways suppresses starvation lethality in electron transport chain mutants. Mol Biol Cell 2021; 32:ar39. [PMID: 34668730 PMCID: PMC8694083 DOI: 10.1091/mbc.e21-06-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The electron transport chain (ETC) is a well-studied and highly conserved metabolic pathway that produces ATP through generation of a proton gradient across the inner mitochondrial membrane coupled to oxidative phosphorylation. ETC mutations are associated with a wide array of human disease conditions and to aging-related phenotypes in a number of different organisms. In this study, we sought to better understand the role of the ETC in aging using a yeast model. A panel of ETC mutant strains that fail to survive starvation was used to isolate suppressor mutants that survive. These suppressors tend to fall into major nutrient sensing and signaling pathways, suggesting that the ETC is involved in proper starvation signaling to these pathways in yeast. These suppressors also partially restore ETC-associated gene expression and pH homeostasis defects, though it remains unclear whether these phenotypes directly cause the suppression or are simply effects. This work further highlights the complex cellular network connections between metabolic pathways and signaling events in the cell and their potential roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Alisha G Lewis
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | | | | | | | | | - Ilya Soifer
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | | | | | | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853.,Calico Life Sciences LLC, South San Francisco, CA 94080
| |
Collapse
|
22
|
Sunyer-Figueres M, Mas A, Beltran G, Torija MJ. Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress. Antioxidants (Basel) 2021; 10:antiox10111735. [PMID: 34829606 PMCID: PMC8615028 DOI: 10.3390/antiox10111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae is subjected to several stresses, among which ethanol is of capital importance. Melatonin, a bioactive molecule synthesized by yeast during alcoholic fermentation, has an antioxidant role and is proposed to contribute to counteracting fermentation-associated stresses. The aim of this study was to unravel the protective effect of melatonin on yeast cells subjected to ethanol stress. For that purpose, the effect of ethanol concentrations (6 to 12%) on a wine strain and a lab strain of S. cerevisiae was evaluated, monitoring the viability, growth capacity, mortality, and several indicators of oxidative stress over time, such as reactive oxygen species (ROS) accumulation, lipid peroxidation, and the activity of catalase and superoxide dismutase enzymes. In general, ethanol exposure reduced the cell growth of S. cerevisiae and increased mortality, ROS accumulation, lipid peroxidation and antioxidant enzyme activity. Melatonin supplementation softened the effect of ethanol, enhancing cell growth and decreasing oxidative damage by lowering ROS accumulation, lipid peroxidation, and antioxidant enzyme activities. However, the effects of melatonin were dependent on strain, melatonin concentration, and growth phase. The results of this study indicate that melatonin has a protective role against mild ethanol stress, mainly by reducing the oxidative stress triggered by this alcohol.
Collapse
|
23
|
Heidelman M, Dhakal B, Gikunda M, Silva KPT, Risal L, Rodriguez AI, Abe F, Urayama P. Cellular NADH and NADPH Conformation as a Real-Time Fluorescence-Based Metabolic Indicator under Pressurized Conditions. Molecules 2021; 26:5020. [PMID: 34443607 PMCID: PMC8402201 DOI: 10.3390/molecules26165020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Cellular conformation of reduced pyridine nucleotides NADH and NADPH sensed using autofluorescence spectroscopy is presented as a real-time metabolic indicator under pressurized conditions. The approach provides information on the role of pressure in energy metabolism and antioxidant defense with applications in agriculture and food technologies. Here, we use spectral phasor analysis on UV-excited autofluorescence from Saccharomyces cerevisiae (baker's yeast) to assess the involvement of one or multiple NADH- or NADPH-linked pathways based on the presence of two-component spectral behavior during a metabolic response. To demonstrate metabolic monitoring under pressure, we first present the autofluorescence response to cyanide (a respiratory inhibitor) at 32 MPa. Although ambient and high-pressure responses remain similar, pressure itself also induces a response that is consistent with a change in cellular redox state and ROS production. Next, as an example of an autofluorescence response altered by pressurization, we investigate the response to ethanol at ambient, 12 MPa, and 30 MPa pressure. Ethanol (another respiratory inhibitor) and cyanide induce similar responses at ambient pressure. The onset of non-two-component spectral behavior upon pressurization suggests a change in the mechanism of ethanol action. Overall, results point to new avenues of investigation in piezophysiology by providing a way of visualizing metabolism and mitochondrial function under pressurized conditions.
Collapse
Affiliation(s)
- Martin Heidelman
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Bibek Dhakal
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Millicent Gikunda
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Kalinga Pavan Thushara Silva
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Laxmi Risal
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Andrew I. Rodriguez
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan;
| | - Paul Urayama
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| |
Collapse
|
24
|
Costa P, Usai G, Re A, Manfredi M, Mannino G, Bertea CM, Pessione E, Mazzoli R. Clostridium cellulovorans Proteomic Responses to Butanol Stress. Front Microbiol 2021; 12:674639. [PMID: 34367082 PMCID: PMC8336468 DOI: 10.3389/fmicb.2021.674639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. Clostridium cellulovorans is among the microbial strains with the highest potential for direct production of n-butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and C. cellulovorans tolerance to this solvent is low. In the present investigation, comparative gel-free proteomics was used to study the response of C. cellulovorans to butanol challenge and understand the tolerance mechanisms activated in this condition. Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH-MS) analysis allowed identification and quantification of differentially expressed soluble proteins. The study data are available via ProteomeXchange with the identifier PXD024183. The most important response concerned modulation of protein biosynthesis, folding and degradation. Coherent with previous studies on other bacteria, several heat shock proteins (HSPs), involved in protein quality control, were up-regulated such as the chaperones GroES (Cpn10), Hsp90, and DnaJ. Globally, our data indicate that protein biosynthesis is reduced, likely not to overload HSPs. Several additional metabolic adaptations were triggered by butanol exposure such as the up-regulation of V- and F-type ATPases (involved in ATP synthesis/generation of proton motive force), enzymes involved in amino acid (e.g., arginine, lysine, methionine, and branched chain amino acids) biosynthesis and proteins involved in cell envelope re-arrangement (e.g., the products of Clocel_4136, Clocel_4137, Clocel_4144, Clocel_4162 and Clocel_4352, involved in the biosynthesis of saturated fatty acids) and a redistribution of carbon flux through fermentative pathways (acetate and formate yields were increased and decreased, respectively). Based on these experimental findings, several potential gene targets for metabolic engineering strategies aimed at improving butanol tolerance in C. cellulovorans are suggested. This includes overexpression of HSPs (e.g., GroES, Hsp90, DnaJ, ClpC), RNA chaperone Hfq, V- and F-type ATPases and a number of genes whose function in C. cellulovorans is currently unknown.
Collapse
Affiliation(s)
- Paolo Costa
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giulia Usai
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Enrica Pessione
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
25
|
Ramírez-Cota GY, López-Villegas EO, Jiménez-Aparicio AR, Hernández-Sánchez H. Modeling the Ethanol Tolerance of the Probiotic Yeast Saccharomyces cerevisiae var. boulardii CNCM I-745 for its Possible Use in a Functional Beer. Probiotics Antimicrob Proteins 2021; 13:187-194. [PMID: 32613533 DOI: 10.1007/s12602-020-09680-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Saccharomyces yeasts are able to ferment simple sugars to generate levels of ethanol that are toxic to other yeasts and bacteria. The tolerance to ethanol of different yeasts depends also on the incubation temperature. In this study, the ethanol stress responses of S. cerevisiae and the probiotic yeast S. boulardii CNCM I-745 were evaluated at two temperatures. The growth kinetics parameters were obtained by fitting the Baranyi and Roberts model to the experimental data. The four-parameter logistic Hill equation was used to describe the ethanol tolerance of the yeasts at the temperatures of 28 and 37 °C. Adequate determination coefficients were obtained (R2 > 0.91) in all cases. S. boulardii grown at 28 °C was selected as the yeast with the best ethanol tolerance (6-8%) for use in the elaboration of functional craft beers.
Collapse
Affiliation(s)
- G Yedid Ramírez-Cota
- Escuela Nacional de Ciencias Biológicas, Unidad Adolfo Mateos, Instituto Politécnico Nacional, CP 07738, Ciudad de México, Mexico
| | - E Oliver López-Villegas
- Escuela Nacional de Ciencias Biológicas, Unidad Lázaro Cárdenas, Instituto Politécnico Nacional, CP 11340, Ciudad de México, Mexico
| | - Antonio R Jiménez-Aparicio
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, CP 62731, Yautepec, Morelos, Mexico
| | - Humberto Hernández-Sánchez
- Escuela Nacional de Ciencias Biológicas, Unidad Adolfo Mateos, Instituto Politécnico Nacional, CP 07738, Ciudad de México, Mexico.
| |
Collapse
|
26
|
Basile A, De Pascale F, Bianca F, Rossi A, Frizzarin M, De Bernardini N, Bosaro M, Baldisseri A, Antoniali P, Lopreiato R, Treu L, Campanaro S. Large-scale sequencing and comparative analysis of oenological Saccharomyces cerevisiae strains supported by nanopore refinement of key genomes. Food Microbiol 2021; 97:103753. [PMID: 33653526 DOI: 10.1016/j.fm.2021.103753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Saccharomyces cerevisiae has long been part of human activities related to the production of food and wine. The industrial demand for fermented beverages with well-defined and stable characteristics boosted the isolation and selection of strains conferring a distinctive aroma profile to the final product. To uncover variants characterizing oenological strains, the sequencing of 65 new S. cerevisiae isolates, and the comparison with other 503 publicly available genomes were performed. A hybrid approach based on short Illumina and long Oxford Nanopore reads allowed the in-depth investigation of eleven genomes and the identification of putative laterally transferred regions and structural variants. A comparative analysis between clusters of strains belonging to different datasets allowed the identification of novel relevant genetic features including single nucleotide polymorphisms, insertions and structural variants. Detection of oenological single nucleotide variants shed light on the existence of different levels of modulation for the mevalonate pathway relevant for the biosynthesis of aromatic compounds.
Collapse
Affiliation(s)
- Arianna Basile
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Fabio De Pascale
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Federico Bianca
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Alessandro Rossi
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Martina Frizzarin
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy; Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | | | - Matteo Bosaro
- Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | - Anna Baldisseri
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy
| | - Paolo Antoniali
- Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padua, 35131, Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, 35131, Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, 35131, Padova, Italy; CRIBI Biotechnology Center, University of Padua, 35121, Padova, Italy
| |
Collapse
|
27
|
Mota MN, Martins LC, Sá-Correia I. The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering. J Fungi (Basel) 2021; 7:90. [PMID: 33513997 PMCID: PMC7911966 DOI: 10.3390/jof7020090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Methanol is a promising feedstock for metabolically competent yeast strains-based biorefineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 °C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, such as chromatin remodeling, DNA repair and fatty acid biosynthesis. Several genes involved in DNA repair (eight RAD genes), identified as specific for methanol toxicity, were previously reported as tolerance determinants for formaldehyde, a methanol detoxification pathway intermediate. This study provides new valuable information on genes and potential regulatory networks involved in overcoming methanol toxicity. This knowledge is an important starting point for the improvement of methanol tolerance in yeasts capable of catabolizing and copying with methanol concentrations present in promising bioeconomy feedstocks, including industrial residues.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
28
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Co-culture with Tetragenococcus halophilus improved the ethanol tolerance of Zygosaccharomyces rouxii by maintaining cell surface properties. Food Microbiol 2021; 97:103750. [PMID: 33653523 DOI: 10.1016/j.fm.2021.103750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of ethanol has a negative effect on the viability and fermentation performance of microorganisms during the production of fermented foods because of its toxicity. In this study, we investigated the effect of co-culture with Tetragenococcus halophilus on ethanol stress resistance of Zygosaccharomyces rouxii. The result showed that co-culture with T. halophilus promoted cell survival of Z. rouxii under ethanol stress, and the tolerance improved with increasing co-culture time when ethanol content was 8%. Physiological analysis showed that the co-cultured Z. rouxii cells maintained higher intracellular content of trehalose and amino acids including tyrosine, tryptophan, arginine and proline after 8% ethanol stress for 90 min. The membrane integrity analysis and biophysical analysis of the cell surface indicated that the presence of ethanol resulted in cell membrane damage and changes of Young's modulus value and roughness of cell surface. While the co-cultured Z. rouxii cells exhibited better membrane integrity, stiffer and smoother cell surface than single-cultured cells under ethanol stress. As for transcriptomic analyses, the genes involved in unsaturated fatty acid biosynthesis, trehalose biosynthesis, various types of N-glycan biosynthesis, inositol phosphate metabolism, MAPK signaling pathway and tight junction had higher expression in co-cultured Z. rouxii cells with down-regulation of majority of gene expression after stress. And these genes may function in the improvement of ethanol tolerance of Z. rouxii in co-culture.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
29
|
Kollu NV, LaJeunesse DR. Cell Rupture and Morphogenesis Control of the Dimorphic Yeast Candida albicans by Nanostructured Surfaces. ACS OMEGA 2021; 6:1361-1369. [PMID: 33490795 PMCID: PMC7818643 DOI: 10.1021/acsomega.0c04980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Nanostructured surfaces control microbial biofilm formation by killing mechanically via surface architecture. However, the interactions between nanostructured surfaces (NSS) and cellular fungi have not been thoroughly investigated and the application of NSS as a means of controlling fungal biofilms is uncertain. Cellular yeast such as Candida albicans are structurally and biologically distinct from prokaryotic microbes and therefore are predicted to react differently to nanostructured surfaces. The dimorphic opportunistic fungal pathogen, C. albicans, is responsible for most cases of invasive candidiasis and is a serious health concern due to the rapid increase of drug resistance strains. In this paper, we show that the nanostructured surfaces from a cicada wing alter C. albicans' viability, biofilm formation, adhesion, and morphogenesis through physical contact. However, the fungal cell response to the NSS suggests that nanoscale mechanical interactions impact C. albicans differently than prokaryotic microbes. This study informs on the use of nanoscale architecture for the control of eukaryotic biofilm formation and illustrates some potential caveats with the application of NSS as an antimicrobial means.
Collapse
Affiliation(s)
- Naga Venkatesh Kollu
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27401, United States
| | - Dennis R. LaJeunesse
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
30
|
Jing H, Liu H, Lu Z, liuqing, C, Tan X. Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae. J Microbiol Biotechnol 2020; 30:1876-1884. [PMID: 33046676 PMCID: PMC9728279 DOI: 10.4014/jmb.2004.04073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.
Collapse
Affiliation(s)
- Hongjuan Jing
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China,Corresponding authors H.Jing Phone: +86-371-67756513 E-mail:
| | - Huanhuan Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Zhang Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Cui liuqing,
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Xiaorong Tan
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China,X.Tan Phone: +86-371-67756513 E-mail:
| |
Collapse
|
31
|
Peng L, Yu Q, Zhu H, Zhu N, Zhang B, Wei H, Xu J, Li M. The V-ATPase regulates localization of the TRP Ca 2+ channel Yvc1 in response to oxidative stress in Candida albicans. Int J Med Microbiol 2020; 310:151466. [PMID: 33291030 DOI: 10.1016/j.ijmm.2020.151466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/08/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a highly conserved protein complex among the eukaryotic cells. We previously revealed that both the V-ATPase and the transient receptor potential (TRP) channel Yvc1 are involved in oxidative stress response (OSR). However, the relationship between V-ATPase and Yvc1 during OSR remains unknown. In this study, disruption of the V-ATPase-encoding genes VPH2 and TFP1, similar with disruption of YVC1, caused H2O2 hypersensitivity and enhancement of vacuolar membrane permeability (VMP) under oxidative stress. Further investigations showed that unlike the wild type strain with vacuole membrane-localized Yvc1, both vph2Δ/Δ and tfp1Δ/Δ had Yvc1 localization in the vacuole cavity, indicating that disruption of VPH2 or TFP1 impaired normal vacuolar membrane-localization of Yvc1. Interestingly, addition of CaCl2 alleviated the growth defect of vph2Δ/Δ and tfp1Δ/Δ under oxidative stress, leading to prevention of VMP, decrease in ROS levels and activation of OSR. In contrast, addition of the Ca2+ chelating agent glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) aggravated H2O2 hypersensitivity of the mutants. These results showed that the V-ATPase plays an important role in maintenance of normal Yvc1 localization, which contributes to Ca2+ transport from the vacuoles to the cytosol for activation of OSR. This work sheds a novel light on the interaction between V-ATPase and Ca2+ transport for regulation of OSR in C. albicans.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Henan Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jiachun Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
32
|
Yang J, Tavazoie S. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress. PLoS One 2020; 15:e0239528. [PMID: 33170850 PMCID: PMC7654773 DOI: 10.1371/journal.pone.0239528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been the subject of many studies aimed at understanding mechanisms of adaptation to environmental stresses. Most of these studies have focused on adaptation to sub-lethal stresses, upon which a stereotypic transcriptional program called the environmental stress response (ESR) is activated. However, the genetic and regulatory factors that underlie the adaptation and survival of yeast cells to stresses that cross the lethality threshold have not been systematically studied. Here, we utilized a combination of gene expression profiling, deletion-library fitness profiling, and experimental evolution to systematically explore adaptation of S. cerevisiae to acute exposure to threshold lethal ethanol concentrations—a stress with important biotechnological implications. We found that yeast cells activate a rapid transcriptional reprogramming process that is likely adaptive in terms of post-stress survival. We also utilized repeated cycles of lethal ethanol exposure to evolve yeast strains with substantially higher ethanol tolerance and survival. Importantly, these strains displayed bulk growth-rates that were indistinguishable from the parental wild-type strain. Remarkably, these hyper-ethanol tolerant strains had reprogrammed their pre-stress gene expression states to match the likely adaptive post-stress response in the wild-type strain. Our studies reveal critical determinants of yeast survival to lethal ethanol stress and highlight potentially general principles that may underlie evolutionary adaptation to lethal stresses in general.
Collapse
Affiliation(s)
- Jamie Yang
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York City, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York City, New York, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses. Appl Environ Microbiol 2020; 86:AEM.01339-20. [PMID: 32859590 DOI: 10.1128/aem.01339-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Contamination of soil and water with heavy metals and metalloids is a serious environmental problem. Cadmium and arsenic are major environmental contaminants that pose a serious threat to human health. Although toxicities of cadmium and arsenic to living organisms have been extensively studied, the molecular mechanisms of cellular responses to cadmium and arsenic remain poorly understood. In this study, we demonstrate that the cell wall integrity (CWI) pathway is involved in coping with cell wall stresses induced by cadmium and arsenate through its role in the regulation of cell wall modification. Interestingly, the Rlm1p and SBF (Swi4p-Swi6p) complex transcription factors of the CWI pathway were shown to be specifically required for tolerance to cadmium and arsenate, respectively. Furthermore, we found the PIR2 gene, encoding cell wall O-mannosylated heat shock protein, whose expression is under the control of the CWI pathway, is important for maintaining cell wall integrity during cadmium and arsenate stresses. In addition, our results revealed that the CWI pathway is involved in modulating the expression of genes involved in cell wall biosynthesis and cell cycle control in response to cadmium and arsenate via distinct sets of transcriptional regulators.IMPORTANCE Environmental pollution by metal/metalloids such as cadmium and arsenic has become a serious problem in many countries, especially in developing countries. This study shows that in the yeast S. cerevisiae, the CWI pathway plays a protective role against cadmium and arsenate through the upregulation of genes involved in cell wall biosynthesis and cell cycle control, possibly in order to modulate cell wall reconstruction and cell cycle phase transition, respectively. These data provide insights into molecular mechanisms underlying adaptive responses to cadmium and arsenate.
Collapse
|
34
|
Johnston NR, Nallur S, Gordon PB, Smith KD, Strobel SA. Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in Saccharomyces cerevisiae. Front Microbiol 2020; 11:1410. [PMID: 32670247 PMCID: PMC7329995 DOI: 10.3389/fmicb.2020.01410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Hydrofluoric acid elicits cell cycle arrest through a mechanism that has long been presumed to be linked with the high affinity of fluoride to metals. However, we have recently found that the acid stress from fluoride exposure is sufficient to elicit many of the hallmark phenotypes of fluoride toxicity. Here we report the systematic screening of genes involved in fluoride resistance and general acid resistance using a genome deletion library in Saccharomyces cerevisiae. We compare these to a variety of acids - 2,4-dinitrophenol, FCCP, hydrochloric acid, and sulfuric acid - none of which has a high metal affinity. Pathways involved in endocytosis, vesicle trafficking, pH maintenance, and vacuolar function are of particular importance to fluoride tolerance. The majority of genes conferring resistance to fluoride stress also enhanced resistance to general acid toxicity. Genes whose expression regulate Golgi-mediated vesicle transport were specific to fluoride resistance, and may be linked with fluoride-metal interactions. These results support the notion that acidity is an important and underappreciated principle underlying the mechanisms of fluoride toxicity.
Collapse
Affiliation(s)
- Nichole R Johnston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Sunitha Nallur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Patricia B Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Kathryn D Smith
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
35
|
Techo T, Jindarungrueng S, Tatip S, Limcharoensuk T, Pokethitiyook P, Kruatrachue M, Auesukaree C. Vacuolar H + -ATPase is involved in preventing heavy metal-induced oxidative stress in Saccharomyces cerevisiae. Environ Microbiol 2020; 22:2403-2418. [PMID: 32291875 DOI: 10.1111/1462-2920.15022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/12/2020] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae, vacuolar H+ -ATPase (V-ATPase) involved in the regulation of intracellular pH homeostasis has been shown to be important for tolerances to cadmium, cobalt and nickel. However, the molecular mechanism underlying the protective role of V-ATPase against these metals remains unclear. In this study, we show that cadmium, cobalt and nickel disturbed intracellular pH balance by triggering cytosolic acidification and vacuolar alkalinization, likely via their membrane permeabilizing effects. Since V-ATPase plays a crucial role in pumping excessive cytosolic protons into the vacuole, the metal-sensitive phenotypes of the Δvma2 and Δvma3 mutants lacking V-ATPase activity were supposed to result from highly acidified cytosol. However, we found that the metal-sensitive phenotypes of these mutants were caused by increased production of reactive oxygen species, likely as a result of decreased expression and activities of manganese superoxide dismutase and catalase. In addition, the loss of V-ATPase function led to aberrant vacuolar morphology and defective endocytic trafficking. Furthermore, the sensitivities of the Δvma mutants to other chemical compounds (i.e. acetic acid, H2 O2 , menadione, tunicamycin and cycloheximide) were a consequence of increased endogenous oxidative stress. These findings, therefore, suggest the important role of V-ATPase in preventing endogenous oxidative stress induced by metals and other chemical compounds.
Collapse
Affiliation(s)
- Todsapol Techo
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supat Jindarungrueng
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Supinda Tatip
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Choowong Auesukaree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand.,Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Zhao F, Li J, Lin K, Chen H, Lin Y, Zheng S, Liang S, Han S. Genome-wide screening of Saccharomyces cerevisiae deletion mutants reveals cellular processes required for tolerance to the cell wall antagonist calcofluor white. Biochem Biophys Res Commun 2019; 518:1-6. [PMID: 31427087 DOI: 10.1016/j.bbrc.2019.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 11/26/2022]
Abstract
We screened a haploid library of Saccharomyces cerevisiae single-gene deletion mutants to identify nonessential genes associated with increased sensitivity to or resistance against the cell wall antagonist calcofluor white. Through a genome-wide screen, we isolated 537 strains that had an altered growth rate relative to wild type, of which 485 showed increased sensitivity and 52 showed increased resistance to calcofluor white. The MAPK signaling pathway, N-glycan biosynthesis, endocytosis, vacuole acidification, autophagy, and the sulfur relay system were identified as being associated with calcofluor white sensitivity. Resistance genes were mainly involved in chitin metabolism and the RIM101 pathway or encoded several components of the ESCRT complexes or related to cysteine and methionine metabolism and RNA degradation. Further investigation indicated a clear global response network that S. cerevisiae relies on in the presence of the cell wall antagonist calcofluor white, which may help us to understand fungal cell wall remodeling and the mechanisms of toxicity of calcofluor white with respect to eukaryotic cells.
Collapse
Affiliation(s)
- Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jingwen Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hong Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
37
|
Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae. Appl Environ Microbiol 2019; 85:AEM.00551-19. [PMID: 31101611 DOI: 10.1128/aem.00551-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/09/2019] [Indexed: 11/20/2022] Open
Abstract
During fermentation, a high ethanol concentration is a major stress that influences the vitality and viability of yeast cells, which in turn leads to a termination of the fermentation process. In this study, we show that the BCK1 and SLT2 genes encoding mitogen-activated protein kinase kinase kinase (MAPKKK) and mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, respectively, are essential for ethanol tolerance, suggesting that the CWI pathway is involved in the response to ethanol-induced cell wall stress. Upon ethanol exposure, the CWI pathway induces the expression of specific cell wall-remodeling genes, including FKS2, CRH1, and PIR3 (encoding β-1,3-glucan synthase, chitin transglycosylase, and O-glycosylated cell wall protein, respectively), which eventually leads to the remodeling of the cell wall structure. Our results revealed that in response to ethanol stress, the high-osmolarity glycerol (HOG) pathway plays a collaborative role with the CWI pathway in inducing cell wall remodeling via the upregulation of specific cell wall biosynthesis genes such as the CRH1 gene. Furthermore, the substantial expression of CWI-responsive genes is also triggered by external hyperosmolarity, suggesting that the adaptive changes in the cell wall are crucial for protecting yeast cells against not only cell wall stress but also osmotic stress. On the other hand, the cell wall stress-inducing agent calcofluor white has no effect on promoting the expression of GPD1, a major target gene of the HOG pathway. Collectively, these findings suggest that during ethanol stress, the CWI and HOG pathways collaboratively regulate the transcription of specific cell wall biosynthesis genes, thereby leading to adaptive changes in the cell wall.IMPORTANCE The budding yeast Saccharomyces cerevisiae has been widely used in industrial fermentations, including the production of alcoholic beverages and bioethanol. During fermentation, an increased ethanol concentration is the main stress that affects yeast metabolism and inhibits ethanol production. This work presents evidence that in response to ethanol stress, both CWI and HOG pathways cooperate to control the expression of cell wall-remodeling genes in order to build the adaptive strength of the cell wall. These findings will contribute to a better understanding of the molecular mechanisms underlying adaptive responses and tolerance of yeast to ethanol stress, which is essential for successful engineering of yeast strains for improved ethanol tolerance.
Collapse
|
38
|
Trilisenko L, Zvonarev A, Valiakhmetov A, Penin AA, Eliseeva IA, Ostroumov V, Kulakovskiy IV, Kulakovskaya T. The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae. Cells 2019; 8:cells8050461. [PMID: 31096715 PMCID: PMC6562782 DOI: 10.3390/cells8050461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport.
Collapse
Affiliation(s)
- Ludmila Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Anton Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Airat Valiakhmetov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| | - Alexey A Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19 bld .1, Moscow 127051, Russia.
| | - Irina A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Russia.
| | - Vladimir Ostroumov
- Institute of Physicochemical and Biological Problems of Soil Science, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 2, Pushchino 142290, Russia.
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, Moscow GSP-1 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow GSP-1 119991, Russia.
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Vitkevicha 1, Pushchino 142290, Russia.
| | - Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, Pushchino 142290, Russia.
| |
Collapse
|
39
|
Aufschnaiter A, Büttner S. The vacuolar shapes of ageing: From function to morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:957-970. [PMID: 30796938 DOI: 10.1016/j.bbamcr.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Cellular ageing results in accumulating damage to various macromolecules and the progressive decline of organelle function. Yeast vacuoles as well as their counterpart in higher eukaryotes, the lysosomes, emerge as central organelles in lifespan determination. These acidic organelles integrate enzymatic breakdown and recycling of cellular waste with nutrient sensing, storage, signalling and mobilization. Establishing physical contact with virtually all other organelles, vacuoles serve as hubs of cellular homeostasis. Studies in Saccharomyces cerevisiae contributed substantially to our understanding of the ageing process per se and the multifaceted roles of vacuoles/lysosomes in the maintenance of cellular fitness with progressing age. Here, we discuss the multiple roles of the vacuole during ageing, ranging from vacuolar dynamics and acidification as determinants of lifespan to the function of this organelle as waste bin, recycling facility, nutrient reservoir and integrator of nutrient signalling.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden.
| |
Collapse
|
40
|
Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:61-83. [PMID: 30911889 DOI: 10.1007/978-3-030-13035-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.
Collapse
|
41
|
Yang H, Zong X, Xu Y, Zeng Y, Zhao H. Improvement of Multiple-Stress Tolerance and Ethanol Production in Yeast during Very-High-Gravity Fermentation by Supplementation of Wheat-Gluten Hydrolysates and Their Ultrafiltration Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10233-10241. [PMID: 30203970 DOI: 10.1021/acs.jafc.8b04196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of wheat-gluten hydrolysates (WGH) and their ultrafiltration fractions on multiple-stress tolerance and ethanol production in yeast during very-high-gravity (VHG) fermentation were examined. The results showed that WGH and WHG-ultrafiltration-fraction supplementations could significantly enhance the growth and viability of yeast and further improve the tolerance of yeast to osmotic stress and ethanol stress. The addition of MW < 1 kDa fractions led to 51.08 and 21.70% enhancements in cell-membrane integrity, 30.74 and 10.43% decreases in intracellular ROS accumulation, and 34.18 and 26.16% increases in mitochondrial membrane potential (ΔΨm) in yeast under osmotic stress and ethanol stress, respectively. Moreover, WGH and WHG-ultrafiltration-fraction supplementations also improved the growth and ethanol production of yeast during VHG fermentation, and supplementation with the <1 kDa fraction resulted in a maximum biomass of 16.47 g/L dry cell and an ethanol content of 18.50% (v/v) after VHG fermentation.
Collapse
Affiliation(s)
- Huirong Yang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Xuyan Zong
- School of Biotechnology , Sichuan University of Science and Engineering , Zigong 643000 , PR China
| | - Yingchao Xu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Yingjie Zeng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| | - Haifeng Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , PR China
| |
Collapse
|
42
|
Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Sci Rep 2018; 8:13069. [PMID: 30166576 PMCID: PMC6117276 DOI: 10.1038/s41598-018-31558-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/21/2018] [Indexed: 11/09/2022] Open
Abstract
During fermentation, yeast cells encounter a number of stresses, including hyperosmolarity, high ethanol concentration, and high temperature. Previous deletome analysis in the yeast Saccharomyces cerevisiae has revealed that SOD1 gene encoding cytosolic Cu/Zn-superoxide dismutase (SOD), a major antioxidant enzyme, was required for tolerances to not only oxidative stress but also other stresses present during fermentation such as osmotic, ethanol, and heat stresses. It is therefore possible that these fermentation-associated stresses may also induce endogenous oxidative stress. In this study, we show that osmotic, ethanol, and heat stresses promoted generation of intracellular reactive oxygen species (ROS) such as superoxide anion in the cytosol through a mitochondria-independent mechanism. Consistent with this finding, cytosolic Cu/Zn-SOD, but not mitochondrial Mn-SOD, was required for protection against oxidative stress induced by these fermentation-associated stresses. Furthermore, supplementation of ROS scavengers such as N-acetyl-L-cysteine (NAC) alleviated oxidative stress induced during very high gravity (VHG) fermentation and enhanced fermentation performance at both normal and high temperatures. In addition, NAC also plays an important role in maintaining the Cu/Zn-SOD activity during VHG fermentation. These findings suggest the potential role of ROS scavengers for application in industrial-scale VHG ethanol fermentation.
Collapse
|
43
|
Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L. Colletotrichum higginsianum as a Model for Understanding Host⁻Pathogen Interactions: A Review. Int J Mol Sci 2018; 19:E2142. [PMID: 30041456 PMCID: PMC6073530 DOI: 10.3390/ijms19072142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum⁻Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal⁻plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal⁻plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.
Collapse
Affiliation(s)
- Yaqin Yan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qinfeng Yuan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintian Tang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. J Fungi (Basel) 2017; 4:jof4010001. [PMID: 29371494 PMCID: PMC5872304 DOI: 10.3390/jof4010001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.
Collapse
|
45
|
Zhang M, Zhang K, Mehmood MA, Zhao ZK, Bai F, Zhao X. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid. BIORESOURCE TECHNOLOGY 2017; 245:1461-1468. [PMID: 28606754 DOI: 10.1016/j.biortech.2017.05.191] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 05/24/2023]
Abstract
The aim of this work was to study the effects of deleting acetate transporter gene ADY2 on growth and fermentation of Saccharomyces cerevisiae in the presence of inhibitors. Comparative transcriptome analysis revealed that three genes encoding plasma membrane carboxylic acid transporters, especially ADY2, were significantly downregulated under the zinc sulfate addition condition in the presence of acetic acid stress, and the deletion of ADY2 improved growth of S. cerevisiae under acetic acid, ethanol and hydrogen peroxide stresses. Consistently, a concomitant increase in ethanol production by 14.7% in the presence of 3.6g/L acetic acid was observed in the ADY2 deletion mutant of S. cerevisiae BY4741. Decreased intracellular acetic acid, ROS accumulation, and plasma membrane permeability were observed in the ADY2 deletion mutant. These findings would be useful for developing robust yeast strains for efficient ethanol production.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Keyu Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Aamer Mehmood
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zongbao Kent Zhao
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
46
|
Nguyen TD, Walker ME, Gardner JM, Jiranek V. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation. Food Microbiol 2017; 70:262-268. [PMID: 29173635 DOI: 10.1016/j.fm.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/05/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Abstract
Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L-1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L-1 or 200 g L-1. These findings offer insight to the importance of VA to cell growth in high sugar media.
Collapse
Affiliation(s)
- Trung D Nguyen
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Michelle E Walker
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Jennifer M Gardner
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Vladimir Jiranek
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia; Australian Research Council Training Centre for Innovative Wine Production, Australia.
| |
Collapse
|
47
|
Auesukaree C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J Biosci Bioeng 2017; 124:133-142. [PMID: 28427825 DOI: 10.1016/j.jbiosc.2017.03.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 12/28/2022]
Abstract
During ethanol fermentation, yeast cells encounter various stresses including sugar substrates-induced high osmolarity, increased ethanol concentration, oxygen metabolism-derived reactive oxygen species (ROS), and elevated temperature. To cope with these fermentation-associated stresses, appropriate adaptive responses are required to prevent stress-induced cellular dysfunctions and to acquire stress tolerances. This review will focus on the cellular effects of these stresses, molecular basis of the adaptive response to each stress, and the cellular mechanisms contributing to stress tolerance. Since a single stress can cause diverse effects, including specific and non-specific effects, both specific and general stress responses are needed for achieving comprehensive protection. For instance, the high-osmolarity glycerol (HOG) pathway and the Yap1/Skn7-mediated pathways are specifically involved in responses to osmotic and oxidative stresses, respectively. On the other hand, due to the common effect of these stresses on disturbing protein structures, the upregulation of heat shock proteins (HSPs) and trehalose is induced upon exposures to all of these stresses. A better understanding of molecular mechanisms underlying yeast tolerance to these fermentation-associated stresses is essential for improvement of yeast stress tolerance by genetic engineering approaches.
Collapse
Affiliation(s)
- Choowong Auesukaree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
48
|
Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:AEM.02759-16. [PMID: 27864171 DOI: 10.1128/aem.02759-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022] Open
Abstract
There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria.
Collapse
|
49
|
Kitichantaropas Y, Boonchird C, Sugiyama M, Kaneko Y, Harashima S, Auesukaree C. Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express 2016; 6:107. [PMID: 27826949 PMCID: PMC5101244 DOI: 10.1186/s13568-016-0285-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
High-temperature ethanol fermentation has several benefits including a reduction in cooling cost, minimizing risk of bacterial contamination, and enabling simultaneous saccharification and fermentation. To achieve the efficient ethanol fermentation at high temperature, yeast strain that tolerates to not only high temperature but also the other stresses present during fermentation, e.g., ethanol, osmotic, and oxidative stresses, is indispensable. The C3253, C3751, and C4377 Saccharomyces cerevisiae strains, which have been previously isolated as thermotolerant yeasts, were found to be multiple stress-tolerant. In these strains, continuous expression of heat shock protein genes and intracellular trehalose accumulation were induced in response to stresses causing protein denaturation. Compared to the control strains, these multiple stress-tolerant strains displayed low intracellular reactive oxygen species levels and effective cell wall remodeling upon exposures to almost all stresses tested. In response to simultaneous multi-stress mimicking fermentation stress, cell wall remodeling and redox homeostasis seem to be the primary mechanisms required for protection against cell damage. Moreover, these strains showed better performances of ethanol production than the control strains at both optimal and high temperatures, suggesting their potential use in high-temperature ethanol fermentation.
Collapse
|
50
|
Hernández-Villa G, Velasco-Bedrán H, González-Brambila M, Campos-Guzmán E. Influence of an Alkaline Zeolite on the Carbon Flow in Anaerobiosis of Three Strains of Saccharomyces cerevisiae. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2016. [DOI: 10.1515/ijcre-2016-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nowadays ethanol is considered an alternative to liquid fossil fuels, as a product of fermentation of sugars by Saccharomyces cerevisiae and other microorganisms. It is very important in the food, pharmaceutical and chemical industries. Prior studies show that the addition of certain amount of zeolite induces an increase in the ethanol/glucose yield. In this work, the effect of zeolite on the carbon flux of S. cerevisiae in different culture conditions is reported. An explanation for the effect of the zeolite on the yeast metabolism is offered. Results show a 20 % increase in yield, thus lowering production costs and improving the use of raw materials, which would increase the possibilities of using alcohol as biofuel.
Collapse
|