1
|
De Bortoli CP, Santos RF, Assirati GJ, Sun X, Hietala L, Jurat-Fuentes JL. Exposure to Cry1 Toxins Increases Long Flight Tendency in Susceptible but Not in Cry1F-Resistant Female Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2023; 15:7. [PMID: 38249013 PMCID: PMC10815942 DOI: 10.3390/insects15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The fall armyworm (JE Smith) (Spodoptera frugiperda) is a polyphagous pest targeted by selected Cry and Vip3A insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) that are produced in transgenic Bt corn and cotton. Available evidence suggests that sublethal larval exposure to Cry1Ac increases flight activity in adult Spodoptera spp. However, it is not known whether this effect is also observed in survivors from generally lethal exposure to Cry1Ac. Moreover, while multiple cases of field-evolved resistance to Bt proteins have been described in the native range of S. frugiperda, the effect of resistance on flight behavior has not been examined. Long-distance migratory flight capacity of S. frugiperda is of concern given its ongoing global spread and the possibility that migrants may be carrying resistance alleles against pesticides and Bt crops. In this study, we used rotational flight mills to test the effects of generally lethal exposure to Cry1Ac in susceptible and sublethal exposure in Cry1F-resistant S. frugiperda strains. The results detected altered pupal weight after larval feeding on diet containing Cry proteins, which only translated in significantly increased tendency for longer flights in female moths from the susceptible strain. This information has relevant implications when considering current models and assumptions for resistance management of Bt crops.
Collapse
Affiliation(s)
- Caroline P. De Bortoli
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Rafael F. Santos
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Giordano J. Assirati
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Xiaocun Sun
- Research Computing Support, Office of Information Technology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Lucas Hietala
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| |
Collapse
|
2
|
Wang FH, Han LY, Jiang QP, Jiao P, Liu JQ, Liu SY, Guan SY, Ma YY. Functional analysis of transgenic cry1Ah-1 maize. Microb Pathog 2023; 185:106455. [PMID: 37995881 DOI: 10.1016/j.micpath.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Maize is an important food crop in the world, but the yield and quality of maize have been significantly reduced due to the impact of insect pests. In order to address this issue, the cry1Ah gene was subjected to error-prone PCR for mutagenesis, and subsequently, the mutant cry1Ah-1 gene was introduced into maize inbred line GSH9901 callus using the Agrobacterium-mediated method. The T2 generation transformed plants were obtained by subculture, and 9 transgenic positive plants were obtained by molecular detection which was carried out by PCR, qRT-PCR, Bt gold-labeled immunoassay test strips, Western blot and ELISA. It was found that the Cry1Ah-1 gene could be transcribed normally in maize leaves, of which OE1 and OE3 had higher relative expression levels and could successfully express proteins of 71.94 KD size. They were expressed in different tissues at the 6-leaf stage, heading stage and grain-filling stage, and could ensure the protection of maize from corn borer throughout the growth period. The biological activities of OE1 and OE3 were tested indoors and in the field, and the results showed that in indoors, the corn borer that fed on OE1 and OE3 corn leaves had a mortality rate of 100 % after 3 days; in the field, OE1 and OE3 had strong insecticidal activity against corn borer, reaching a high resistance level. In conclusion, the transgenic cry1Ah-1 maize has a strong insecticidal effect on corn borer, and has a good prospect of commercialization.
Collapse
Affiliation(s)
- Fan-Hao Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Li-Yuan Han
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Qing-Ping Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Jia-Qi Liu
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Si-Yan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China
| | - Shu-Yan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China.
| | - Yi-Yong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
3
|
Fatima N, Bibi Z, Rehman A, Ara Abbas Bukhari D. Biotoxicity comparison of Bacillus thuringiensis to control vector borne diseases against mosquito fauna. Saudi J Biol Sci 2023; 30:103610. [PMID: 37008283 PMCID: PMC10060249 DOI: 10.1016/j.sjbs.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The current study was designed to evaluate the biotoxicity of screened echo-friendly Bacillus thuringiensis strains from different areas of Pakistan. Out of 50 samples, 36% Bt. isolates were quarantined from soil containing cattle waste after morphological, biochemical, and molecular characterization. The toxicity bioassays with Bt. spores and protein diet proved that 11 Bt. isolates were utmost noxious to 3rd instar larvae of mosquitoes Aedes aegypti, Anopheles stephensi, and Culex pipiens. The entopathogenic activity of first 4 Bt. toxins against A. aegypti was highly lethal as compared to the other dipteran larvae. The toxicity (LC50) of spore diet of Bt. strains GCU-DAB-NF4 (442.730 ± 0.38 μg/ml), NF6 (460.845 ± 0.29 μg/ml), NF3 (470.129 ± 0.28 μg/ml), and NF7 (493.637 ± 0.70 μg/ml) was quite high against A. aegypti as compared to the C. pipiens after 24 h of incubation. The highest toxicity of total cell protein was shown by GCU-DAB-NF4 (LC50 = 84.10 ± 50 μg/ml), NF6 (95.122 ± 0.40 μg/ml), NF3 (100.715 ± 06 μg/ml), and NF5 (103.40 ± 07 μg/ml) against A. aegypti after 24 h. So, these strains a have great potential to be used as biological control especially against A. aegypti as compared to the C. pipiens.
Collapse
|
4
|
Wang Y, Quan Y, Wang Z, He K. Rotation of Multiple Single-Gene Transgenic Crops Did Not Slow the Evolution of Resistance to Cry1F or Cry1Ie in Ostrinia furnacalis. INSECTS 2023; 14:74. [PMID: 36662002 PMCID: PMC9866647 DOI: 10.3390/insects14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
A common strategy for delaying the evolution of resistance to transgenic crops that produce insecticidal proteins from Bacillus thuringiensis is to ensure that insect pests are exposed to multiple toxins with different mechanisms of action (MoAs). This can take the form of planting crops in a rotation pattern when different crops expressing single toxins are available on the market. The efficacy of a rotation strategy is reliant on mathematical models based on biological assumptions. Here, we designed laboratory evolution experiments to test whether Bt-based insecticidal proteins with different MoAs used in rotation could delay resistance from developing in Asian corn borer (ACB), Ostrinia furnacalis. We investigated the proteins Cry1Ab, Cry1F, and Cry1Ie, which are widely utilized for commercial insect control. We found that rotation of multiple toxins did not slow the evolution of resistance to Cry1F or Cry1Ie. Furthermore, the evolution of ACB to the Cry1Ab toxin develops faster when Cry1F or Cry1Ie is present, as compared to Cry1Ab exposure only. Our results suggest that toxins used in a rotation fashion do not work as an effective strategy in delaying ACB resistance evolution to Cry toxins over one-toxin exposure. Our result highlights the need to better understand the biological factors leading to insecticidal protein resistance and to develop IRM strategies against target insects.
Collapse
Affiliation(s)
| | | | | | - Kanglai He
- Correspondence: ; Tel./Fax: +86-10-6281-5932
| |
Collapse
|
5
|
Khorramnejad A, Bel Y, Talaei-Hassanloui R, Escriche B. Activation of Bacillus thuringiensis Cry1I to a 50 kDa stable core impairs its full toxicity to Ostrinia nubilalis. Appl Microbiol Biotechnol 2022; 106:1745-1758. [PMID: 35138453 PMCID: PMC8882101 DOI: 10.1007/s00253-022-11808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis Cry1I insecticidal proteins are structurally similar to other three-domain Cry proteins, although their size, activity spectrum, and expression at the stationary phase are unique among other members of the Cry1 family. The mode of action of Cry1 proteins is not completely understood but the existence of an activation step prior to specific binding is widely accepted. In this study, we attempted to characterize and determine the importance of the activation process in the mode of action of Cry1I, as Cry1Ia protoxin or its partially processed form showed significantly higher toxicity to Ostrinia nubilalis than the fully processed protein either activated with trypsin or with O. nubilalis midgut juice. Oligomerization studies showed that Cry1Ia protoxin, in solution, formed dimers spontaneously, and the incubation of Cry1Ia protoxin with O. nubilalis brush border membrane vesicles (BBMV) promoted the formation of dimers of the partially processed form. While no oligomerization of fully activated proteins after incubation with BBMV was detected. The results of the in vitro competition assays showed that both the Cry1Ia protoxin and the approx. 50 kDa activated proteins bind specifically to the O. nubilalis BBMV and compete for the same binding sites. Accordingly, the in vivo binding competition assays show a decrease in toxicity following the addition of an excess of 50 kDa activated protein. Consequently, as full activation of Cry1I protein diminishes its toxicity against lepidopterans, preventing or decelerating proteolysis might increase the efficacy of this protein in Bt-based products. KEY POINTS: • Processing Cry1I to a 50 kDa stable core impairs its full toxicity to O. nubilalis • Partially processed Cry1Ia protoxin retains the toxicity of protoxin vs O. nubilalis • Protoxin and its final processed forms compete for the same functional binding sites.
Collapse
Affiliation(s)
- Ayda Khorramnejad
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.,Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Yolanda Bel
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.
| | - Reza Talaei-Hassanloui
- Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Baltasar Escriche
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.
| |
Collapse
|
6
|
Zhang M, Ma Y, Luo J, Ji J, Gao X, Wu C, Zhu X, Wang L, Zhang K, Li D, Wang L, Niu L, Cui J. Transgenic insect-resistant Bt cotton expressing Cry1Ac/1Ab does not harm the insect predator Geocoris pallidipennis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113129. [PMID: 34979310 DOI: 10.1016/j.ecoenv.2021.113129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The large-scale commercial cultivation of genetically modified (GM) cotton has brought significant economic and environmental benefits. However, GM crops must undergo strict environmental monitoring and long-term observation. An important natural enemy insect in cotton fields, Geocoris pallidipennis, can ingest the Bt protein expressed in GM cotton by feeding on herbivorous insects that feed on the cotton. However, the potential risk of GM cotton to G. pallidipennis is still unclear. We here evaluated the effects of Bt cotton expressing the Cry1Ac/1Ab protein on nymphs and adults G. pallidipennis. Cry1Ac protein was detected in the midgut of the cotton bollworm, Helicoverpa armigera, after it ingested Bt cotton, and in the midgut of G. pallidipennis nymphs and adults preying on Bt-fed H. armigera. However, the survival rate, growth, development, and fecundity of G. pallidipennis were not adversely affected. Furthermore, G. pallidipennis cadherins, and those genes related to detoxification, antioxidant activity, nutrient utilization, and immune function were not differentially expressed in response to Cry1Ac exposure. Finally, we showed that Cry1Ac could not bind to brush border membrane vesicles (BBMV) proteins in G. pallidipennis nymphs or adults. In summary, these results indicate that the potential negative effect of transgenic Cry1Ac/1Ab cotton on the insect redator G. pallidipennis is negligible.
Collapse
Affiliation(s)
- Meng Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yamin Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Changcai Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangzhen Zhu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kaixin Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyang Li
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lisha Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
7
|
Jin W, Zhai Y, Yang Y, Wu Y, Wang X. Cadherin Protein Is Involved in the Action of Bacillus thuringiensis Cry1Ac Toxin in Ostrinia furnacalis. Toxins (Basel) 2021; 13:658. [PMID: 34564662 PMCID: PMC8473148 DOI: 10.3390/toxins13090658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal proteins have been extensively planted for insect pest control, but the evolution of Bt resistance in target pests threatens the sustainability of this approach. Mutations of cadherin in the midgut brush border membrane was associated with Cry1Ac resistance in several lepidoptera species, including the Asian corn borer, Ostrinia furnacalis, a major pest of maize in Asian-Western Pacific countries. However, the causality of O. furnacalis cadherin (OfCad) with Cry1Ac resistance remains to be clarified. In this study, in vitro and in vivo approaches were employed to examine the involvement of OfCad in mediating Cry1Ac toxicity. Sf9 cells transfected with OfCad showed significant immunofluorescent binding with Cry1Ac toxin and exhibited a concentration-dependent mortality effect when exposed to Cry1Ac. The OfCad knockout strain OfCad-KO, bearing homozygous 15.4 kb deletion of the OfCad gene generated by CRISPR/Cas9 mutagenesis, exhibited moderate-level resistance to Cry1Ac (14-fold) and low-level resistance to Cry1Aa (4.6-fold), but no significant changes in susceptibility to Cry1Ab and Cry1Fa, compared with the original NJ-S strain. The Cry1Ac resistance phenotype was inherited as autosomal, recessive mode, and significantly linked with the OfCad knockout in the OfCad-KO strain. These results demonstrate that the OfCad protein is a functional receptor for Cry1Ac, and disruption of OfCad confers a moderate Cry1Ac resistance in O. furnacalis. This study provides new insights into the mode of action of the Cry1Ac toxin and useful information for designing resistance monitoring and management strategies for O. furnacalis.
Collapse
Affiliation(s)
| | | | | | | | - Xingliang Wang
- Key Laboratory of Integrated Pest Management on Crops in East China (MARA), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (W.J.); (Y.Z.); (Y.Y.); (Y.W.)
| |
Collapse
|
8
|
Li Y, Hallerman EM, Wu K, Peng Y. Insect-Resistant Genetically Engineered Crops in China: Development, Application, and Prospects for Use. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:273-292. [PMID: 31594412 DOI: 10.1146/annurev-ento-011019-025039] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
With 20% of the world's population but just 7% of the arable land, China has invested heavily in crop biotechnology to increase agricultural productivity. We examine research on insect-resistant genetically engineered (IRGE) crops in China, including strategies to promote their sustainable use. IRGE cotton, rice, and corn lines have been developed and proven efficacious for controlling lepidopteran crop pests. Ecological impact studies have demonstrated conservation of natural enemies of crop pests and halo suppression of crop-pest populations on a local scale. Economic, social, and human health effects are largely positive and, in the case of Bt cotton, have proven sustainable over 20 years of commercial production. Wider adoption of IRGE crops in China is constrained by relatively limited innovation capacity, public misperception, and regulatory inaction, suggesting the need for further financial investment in innovation and greater scientific engagement with the public. The Chinese experience with Bt cotton might inform adoption of other Bt crops in China and other developing countries.
Collapse
Affiliation(s)
- Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Eric M Hallerman
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute for Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
9
|
Wang Y, Quan Y, Yang J, Shu C, Wang Z, Zhang J, Gatehouse AMR, Tabashnik BE, He K. Evolution of Asian Corn Borer Resistance to Bt Toxins Used Singly or in Pairs. Toxins (Basel) 2019; 11:E461. [PMID: 31390820 PMCID: PMC6723947 DOI: 10.3390/toxins11080461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized pest control, but the benefits of this approach have been reduced by the evolution of resistance in pests. The widely adopted 'pyramid strategy' for delaying resistance entails transgenic crops producing two or more distinct toxins that kill the same pest. The limited experimental evidence supporting this strategy comes primarily from a model system under ideal conditions. Here we tested the pyramid strategy under nearly worst-case conditions, including some cross-resistance between the toxins in the pyramid. In a laboratory selection experiment with an artificial diet, we used Bt toxins Cry1Ab, Cry1F, and Cry1Ie singly or in pairs against Ostrinia furnacalis, one of the most destructive pests of corn in Asia. Under the conditions evaluated, pairs of toxins did not consistently delay the evolution of resistance relative to single toxins.
Collapse
Affiliation(s)
- Yueqin Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yudong Quan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changlong Shu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Kanglai He
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Abdelgaffar H, Tague ED, Castro Gonzalez HF, Campagna SR, Jurat-Fuentes JL. Midgut metabolomic profiling of fall armyworm (Spodoptera frugiperda) with field-evolved resistance to Cry1F corn. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:1-9. [PMID: 30630033 DOI: 10.1016/j.ibmb.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Populations of the fall armyworm (Spodoptera frugiperda) have developed resistance to transgenic corn producing the Cry1F insecticidal protein from the bacterium Bacillus thuringiensis (Bt). Resistance in S. frugiperda from Puerto Rico is genetically linked to a mutation in an ATP Binding Cassette subfamily C2 gene (SfABCC2) that results in a truncated, non-functional Cry1F toxin receptor protein. Since ABCC2 proteins are involved in active export of xenobiotics and other metabolites from the cell, we hypothesized that Cry1F-resistant fall armyworm with a non-functional SfABCC2 protein would display altered gut metabolome composition when compared to susceptible insects. Mass spectrometry and multivariate statistical analyses identified 126 unique metabolites from larval guts, of which 7 were found to display statistically significant altered levels between midguts from susceptible and Cry1F-resistant S. frugiperda larvae when feeding on meridic diet. Among these 7 differentially present metabolites, 6 were found to significantly accumulate (1.3-3.5-fold) in midguts from Cry1F-resistant larvae, including nucleosides, asparagine, and carbohydrates such as trehalose 6-phosphate and sedoheptulose 1/7-phosphate. In contrast, metabolomic comparisons of larvae fed on non-transgenic corn identified 5 metabolites with statistically significant altered levels and only 2 of them, 2-isopropylmalate and 3-phosphoserine, that significantly accumulated (2.3- and 3.5-fold, respectively) in midguts from Cry1F-resistant compared to susceptible larvae. These results identify a short list of candidate metabolites that may be transported by SfABCC2 and that may have the potential to be used as resistance markers.
Collapse
Affiliation(s)
- Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, 37996, USA
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA
| | - Hector F Castro Gonzalez
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA; Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, 37996, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA; Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, 37996, USA
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
11
|
Niu L, Tian Z, Liu H, Zhou H, Ma W, Lei C, Chen L. Transgenic Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/EPSPS does not affect the plant bug Adelphocoris suturalis or the pollinating beetle Haptoncus luteolus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:788-793. [PMID: 29247941 DOI: 10.1016/j.envpol.2017.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/23/2017] [Accepted: 11/12/2017] [Indexed: 05/25/2023]
Abstract
The widespread cultivation of transgenic Bt cotton makes assessing the potential effects of this recombinant crop on non-target organisms a priority. However, the effect of Bt cotton on many insects is currently virtually unknown. The plant bug Adelphocoris suturalis is now a major pest of cotton in southern China and the beetle Haptoncus luteolus is one of the most ancient cotton pollinators. We conducted laboratory experiments to evaluate the toxicity of the Bt cotton varieties ZMSJ, which expresses the toxins Cry1Ac and Cry2Ab, and ZMKCKC, which expresses Cry1Ac and EPSPS, on adult A. suturalis and H. luteolus. No significant increase in the mortality of either species was detected after feeding on Bt cotton leaves or pollen for 7 days. Trace amounts of Cry1Ac and Cry2Ab proteins could be detected in both species but in vitro binding experiments found no evidence of Cry1Ac and Cry2Ab binding proteins. These results demonstrate that feeding on the leaves or pollen of these two Bt cotton varieties has no toxic effects on adult A. suturalis or H. luteolus.
Collapse
Affiliation(s)
- Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenya Tian
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hui Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
12
|
Mushtaq R, Behle R, Liu R, Niu L, Song P, Shakoori AR, Jurat-Fuentes JL. Activity of Bacillus thuringiensis Cry1Ie2, Cry2Ac7, Vip3Aa11 and Cry7Ab3 proteins against Anticarsia gemmatalis, Chrysodeixis includens and Ceratoma trifurcata. J Invertebr Pathol 2017; 150:70-72. [PMID: 28919015 DOI: 10.1016/j.jip.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
Transgenic soybean producing the Cry1Ac insecticidal protein from the bacterium Bacillus thuringiensis is used to control larvae of the velvetbean caterpillar (Anticarsia gemmatalis Hübner) and the soybean looper [Chrysodeixis includens (Walker)]. The main threat to the sustainability of this technology is the development of resistance, which could be delayed by using pyramiding of diverse Bt insecticidal genes. We report high activity of Cry2Ac7 and Vip3Aa11 but not Cry1Ie2 against larvae of A. gemmatalis and C. includens. In addition, we also report anti-feeding activity of Cry1Ie2 and Cry7Ab3 in adults of the bean leaf beetle [Ceratoma trifurcata (Foster)], an alternative pest of soybean.
Collapse
Affiliation(s)
- Rubina Mushtaq
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Robert Behle
- Crop Bioprotection Research Unit, USDA-ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Rongmei Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ping Song
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei 071000, China
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan.
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
13
|
Niu L, Ma W, Lei C, Jurat-Fuentes JL, Chen L. Herbicide and insect resistant Bt cotton pollen assessment finds no detrimental effects on adult honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:479-485. [PMID: 28688300 DOI: 10.1016/j.envpol.2017.06.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
One important concern regarding the use of transgenic cotton expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) is its potential detrimental effect on non-target organisms. The honey bee (Apis mellifera) is the most important pollinator species worldwide and it is directly exposed to transgenic crops by the consumption of genetically modified (GM) pollen. However, the potential effects of Bt cotton on A. mellifera remain unclear. In the present study, we assessed the effects of two Bt cotton varieties; ZMSJ expressing the Cry1Ac and Cry2Ab insecticidal proteins, and ZMKCKC producing Cry1Ac and EPSPS, on A. mellifera. Feeding on pollen from two Bt cotton varieties led to detection of low levels of Cry toxins (<10 ng/g fresh weight) in the midgut of A. mellifera adults, yet expression of detoxification genes did not change significantly compared to feeding on non-Bt cotton. Binding assays showed no Cry1Ac or Cry2Ab binding to midgut brush border membrane proteins from A. mellifera adults. Taken together, these results support minimal risk for potential negative effects on A. mellifera by exposure to Bt cotton.
Collapse
Affiliation(s)
- Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
14
|
Niu L, Mannakkara A, Qiu L, Wang X, Hua H, Lei C, Jurat-Fuentes JL, Ma W. Transgenic Bt rice lines producing Cry1Ac, Cry2Aa or Cry1Ca have no detrimental effects on Brown Planthopper and Pond Wolf Spider. Sci Rep 2017; 7:1940. [PMID: 28512299 PMCID: PMC5434062 DOI: 10.1038/s41598-017-02207-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 12/28/2022] Open
Abstract
Transgenic rice expressing cry genes from the bacterium Bacillus thuringiensis (Bt rice) is highly resistant to lepidopteran pests. The brown planthopper (BPH, Nilaparvata lugens) is the main non-target sap-sucking insect pest of Bt transgenic rice. The pond wolf spider (PWS, Pardosa pseudoannulata) is one of the most dominant predators of BPH in rice fields. Consequently, the safety evaluation of Bt rice on BPH and PWS should be conducted before commercialization. In the current study, two experiments were performed to assess the potential ecological effects of Bt rice on BPH and PWS: (1) a tritrophic experiment to evaluate the transmission of Cry1Ac, Cry2Aa and Cry1Ca protein in the food chain; and (2) binding assays of Cry1Ac, Cry2Aa and Cry1Ca to midgut brush border membrane proteins from BPH and PWS. Trace amounts of the three Cry proteins were detected in BPH feeding on Bt rice cultivars, but only Cry1Ac and Cry2Aa proteins could be transferred to PWS through feeding on BPH. In vitro binding of biotinylated Cry proteins and competition assays in midgut protein vesicles showed weak binding, and ligand blot analysis confirmed the binding specificity. Thus, we inferred that the tested Bt rice varieties have negligible effects on BPH and PWS.
Collapse
Affiliation(s)
- Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Amani Mannakkara
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, 81100, Sri Lanka
| | - Lin Qiu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Anal Biochem 2017; 518:53-59. [DOI: 10.1016/j.ab.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022]
|
16
|
Han L, Jiang X, Peng Y. Potential resistance management for the sustainable use of insect-resistant genetically modified corn and rice in China. CURRENT OPINION IN INSECT SCIENCE 2016; 15:139-143. [PMID: 27436744 DOI: 10.1016/j.cois.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 06/06/2023]
Abstract
Many lines of insect-resistant genetically modified (IRGM) corn and rice containing Bacillus thuringiensis (Bt) insecticidal genes have been developed and undergone different environmental biosafety assessments stages in China, showing robust application prospects. The potential of targeted pests to develop resistance to Bt crops is widespread, which threatens the sustainable utility of IRGM corn and rice. In this study, the potential risks of target pest complexes developing resistance to IRGM corn and rice are evaluated. Theoretical and empirical studies implementing precautionary insect resistance management (IRM) strategies to delay resistance evolution are summarized and challenges to IRM are discussed. Additionally, solutions facing these challenges are proposed. Finally, directions for future studies in developing IRGM corn and rice and IRM plans are discussed.
Collapse
Affiliation(s)
- Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
17
|
Farias DF, Peijnenburg AACM, Grossi-de-Sá MF, Carvalho AFU. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants. Bioengineered 2015; 6:323-7. [PMID: 26513483 DOI: 10.1080/21655979.2015.1109755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods.
Collapse
Affiliation(s)
- Davi F Farias
- a Federal University of Ceará; Graduate Program in Biochemistry; Campus Pici ; Fortaleza , Brazil
| | - Ad A C M Peijnenburg
- b RIKILT Institute of Food Safety; Wageningen University and Research Center ; Wageningen , The Netherlands
| | - Maria F Grossi-de-Sá
- c National Center of Genetic Resources (Embrapa-Cenargen) ; Parque Estação Biológica - PqEB; Brasília , DF , Brazil.,d Catholic University of Brasília, Graduate Program in Genomics Sciences and Biotechnology ; Asa Norte , Brasília, DF , Brazil
| | - Ana F U Carvalho
- a Federal University of Ceará; Graduate Program in Biochemistry; Campus Pici ; Fortaleza , Brazil
| |
Collapse
|