1
|
Thao HV, Cong NV, Nhung LTC, Kha TH, Khanh HC, Dang LV, Duy NP, Tinh HQ, Vi TNL, Chi NP, Nam TS. Methane and nitrous oxide emissions in the rice-shrimp rotation system of the Vietnamese Mekong Delta. Heliyon 2024; 10:e35759. [PMID: 39247308 PMCID: PMC11379990 DOI: 10.1016/j.heliyon.2024.e35759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Rice-shrimp rotation systems are one of the widespread farming practices in the Vietnamese Mekong Delta coastal areas. However, greenhouse gas (GHG) emissions in the system have remained unclear. This study aimed to examine methane (CH4) and nitrous oxide (N2O) emissions from the system, including (i) land-based versus high-density polyethylene-lined (HDPE) nursery ponds and (ii) conventional versus improved grow-out ponds inoculated with effective microorganisms (EM) bioproducts. The results showed that CH4 flux in land-based and HDPE-lined nursery ponds were 1.04 and 0.25 mgCH4 m-2 h-1, respectively, while the N2O flux was 8.37 and 6.62 μgN2O m-2 h-1, respectively. Global warming potential (GWP) from land-based nursery ponds (18.3 g CO2eq m-2) was approximately 3 folds higher than that of the HDPE-lined nursery pond (6.1 g CO2eq m-2). Similarly, the mean CH4 and N2O fluxes were 15.84 mg CH4 m-2 h-1 and 7.17 μg N2O m-2 h-1 for the conventional ponds, and 10.51 mg CH4 m-2 h-1 and 7.72 μg N2O m-2 h-1 for the improved grow-out ponds. Conventional practices (2388 g CO2eq m-2) had a higher 1.5-fold GWP compared to the improved grow-out pond (1635 g CO2eq m-2). The continuation of the land-based nursery pond and conventional aquacultural farming practices increase CH4 emission and GWP, while applying HDPE-lined nursery ponds combined with improved grow-out ponds could be a promising approach for reducing GHG emissions in rice-shrimp rotation systems. This study recommends further works in the rice-shrimp rotation systems, including (i) an examination of the effects of remaining rice stubbles in the platform on the availability of TOC levels and GHG emissions and (ii) ameliorating dissolved oxygen (DO) concentration on the effectiveness of GHG emission reduction.
Collapse
Affiliation(s)
- Huynh Van Thao
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city, 900000, Viet Nam
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu city, 183-8538, Tokyo, Japan
| | - Nguyen Van Cong
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city, 900000, Viet Nam
| | - Le Thi Cam Nhung
- Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot city, Dak Lak, 630000, Viet Nam
| | - Tran Hoang Kha
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city, 900000, Viet Nam
| | - Huynh Cong Khanh
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city, 900000, Viet Nam
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki city, 852-8521, Japan
| | - Le Van Dang
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu city, 183-8538, Tokyo, Japan
- College of Agriculture, Can Tho University, Can Tho city, 900000, Viet Nam
| | - Nguyen Phuong Duy
- WWF-Vietnam, No. 6, Lane 18, Nguyen Co Thach Street, Nam Tu Liem District, Ha Noi, 100000, Viet Nam
| | - Huynh Quoc Tinh
- WWF-Vietnam, No. 6, Lane 18, Nguyen Co Thach Street, Nam Tu Liem District, Ha Noi, 100000, Viet Nam
| | - Trieu Nguyen Lan Vi
- WWF-Vietnam, No. 6, Lane 18, Nguyen Co Thach Street, Nam Tu Liem District, Ha Noi, 100000, Viet Nam
| | - Nguyen Phuong Chi
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city, 900000, Viet Nam
| | - Tran Sy Nam
- Department of Environmental Sciences, College of Environment and Natural Resources, Can Tho University, 3/2 street, Can Tho city, 900000, Viet Nam
| |
Collapse
|
2
|
Dairain A, Voet H, Vafeiadou AM, De Meester N, Rigaux A, Van Colen C, Vanaverbeke J, Moens T. Structurally stable but functionally disrupted marine microbial communities under a future climate change scenario: Potential importance for nitrous oxide emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167928. [PMID: 37863213 DOI: 10.1016/j.scitotenv.2023.167928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The blue mussel Mytilus edulis is a widespread and abundant bivalve species along the North Sea with high economic and ecological importance as an engineer species. The shell of mussels is intensively colonized by microbial organisms that can produce significant quantities of nitrous oxide (N2O), a potent greenhouse gas. To characterize the impacts of climate change on the composition, structure and functioning of microbial biofilms on the shell surface of M. edulis, we experimentally exposed them to orthogonal combinations of increased seawater temperature (20 vs. 23 °C) and decreased pH (8.0 vs. 7.7) for six weeks. We used amplicon sequencing of the 16S rRNA gene to characterize the alpha and beta diversity of microbial communities on the mussel shell. The functioning of microbial biofilms was assessed by measuring aerobic respiration and nitrogen emission rates. We did not report any significant impacts of climate change treatments on the diversity of mussel microbiomes nor on the structure of these communities. Lowered pH and increased temperature had antagonistic effects on the functioning of microbial communities with decreased aerobic respiration and N2O emission rates of microbial biofilms in acidified seawater compared to increased rates in warmer conditions. An overriding impact of acidification over warming was finally observed on N2O emissions when the two factors were combined. Although acidification and warming in combination significantly reduced N2O biofilm emissions, the promotion of aquaculture activities in coastal waters where shellfish do not normally occur at high biomass and density could nonetheless result in unwanted emissions of this greenhouse gas in a near future.
Collapse
Affiliation(s)
- Annabelle Dairain
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin, Place Georges Teissier, CS90074, 29688 Roscoff Cedex, France.
| | - Helena Voet
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium; Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium
| | - Anna-Maria Vafeiadou
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - Nele De Meester
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - Annelien Rigaux
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - Carl Van Colen
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - Jan Vanaverbeke
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium; Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium
| | - Tom Moens
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| |
Collapse
|
3
|
Abstract
White spot syndrome virus (WSSV) is a major cause of disease in shrimp cultures worldwide. The infection process of this large circular double-stranded DNA virus has been well studied, but its entry mechanism remains controversial. The major virion envelope protein VP28 has been implicated in oral and systemic viral infection in shrimp. However, genetic analysis of viral DNA has shown the presence of a few genes related to proteins of per os infectivity factor (PIF) complex in baculoviruses. This complex is essential for the entry of baculoviruses, large terrestrial circular DNA viruses, into the midgut epithelial cells of insect larvae. In this study, we aimed to determine whether a PIF complex exists in WSSV, the components of this complex, whether it functions as an oral infectivity complex in shrimp, and the biochemical properties that contribute to its function in a marine environment. The results revealed a WSSV PIF complex (~720 kDa) comprising at least eight proteins, four of which were not identified as PIF homologs: WSV134, VP124 (WSV216), WSSV021, and WSV136. WSV134 is suggested to be a PIF4 homolog due to predicted structural similarity and amino acid sequence identity. The WSSV PIF complex is resistant to alkali, proteolysis, and high salt, properties that are important for maintaining infectivity in aquatic environments. Oral infection can be neutralized by PIF-specific antibodies but not by VP28-specific antibodies. These results indicate that the WSSV PIF complex is critical for WSSV entry into shrimp; the complex's evolutionary significance is also discussed. IMPORTANCE White spot disease, caused by the white spot syndrome virus (WSSV), is a major scourge in cultured shrimp production facilities worldwide. This disease is only effectively controlled by sanitation. Intervention strategies are urgently needed but are limited by a lack of appropriate targets. Our identification of a per os infectivity factor (PIF) complex, which is pivotal for the entry of WSSV into shrimp, could provide new targets for antibody- or dsRNA-based intervention strategies. In addition, the presence of a PIF complex with at least eight components in WSSV, which is ancestrally related to the PIF complex of invertebrate baculoviruses, suggests that this complex is structurally and functionally conserved in disparate virus taxa.
Collapse
|
4
|
Intrahabitat Differences in Bacterial Communities Associated with Corbicula fluminea in the Large Shallow Eutrophic Lake Taihu. Appl Environ Microbiol 2022; 88:e0232821. [PMID: 35285714 DOI: 10.1128/aem.02328-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Asian clam Corbicula fluminea is a keystone zoobenthos in freshwater ecosystems. However, its associated microbiome is not well understood. We investigated the bacterial communities of this clam and its surrounding environment, including sediment and water simultaneously, in a large lake by means of 16S rRNA gene sequencing. Approximately two-thirds of the bacterial operational taxonomic units (OTUs) associated with clams were observed in the surrounding environment and mostly from particle-associated samples. The associated bacterial communities were site specific and more similar to environmental bacteria from the same site than those at other sites, suggesting a local environmental influence on host bacteria. However, the significant differences in bacterial diversities and compositions between the clam and the environment also indicated strong host selection pressure on bacteria from the surrounding environment. Bacteria affiliated with Firmicutes, Spirochaetes, Tenericutes, Bacteroidetes, Epsilonbacteraeota, Patescibacteria, and Fusobacteria were found to be significantly enriched in the clams in comparison to their local environment. Oligotyping analyses of the core-associated bacterial OTUs also demonstrated that most of the core OTUs had lower relative abundances and occurrence frequencies in environmental samples. The core bacterial OTUs were found to play an important role in maintaining the stability of the bacterial community network. These core bacteria included the two most abundant taxa Romboutsia and Paraclostridium with the potential function of fermenting polysaccharides for assisting host clams in food digestion. Overall, we demonstrate that clam-associated bacteria were spatially dynamic and site specific, which were mainly structured both by local environments and host selection. IMPORTANCE The Asian clam Corbicula fluminea is an important benthic clam in freshwater ecosystems due to its high population densities and high filtering efficiency for particulate organic matter. While the associated microbiota is believed to be vital for host living, our knowledge about the compositions, sources, and potential functions is still lacking. We found that C. fluminea offers a unique ecological niche for specific lake bacteria. We also observed high intrahabitat variation in the associated bacterial communities. Such variations were driven mainly by local environments, followed by host selection pressure. While the local microbes served as a source of the clam-associated bacteria, host selection resulted in enrichments of bacterial taxa with the potential for assisting the host in organic matter digestion. These results significantly advance our current understanding of the origins and ecological roles of the microbiota associated with a keynote clam in freshwater ecosystems.
Collapse
|
5
|
Kosten S, Almeida RM, Barbosa I, Mendonça R, Santos Muzitano I, Sobreira Oliveira-Junior E, Vroom RJE, Wang HJ, Barros N. Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141247. [PMID: 32798864 DOI: 10.1016/j.scitotenv.2020.141247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
While providing protein for a fast-growing human population, the ongoing boom in global aquaculture comes with environmental costs. Particularly, the intense greenhouse gas (GHG) emissions reported for several aquaculture systems are a source of concern. Still, we argue that actual emissions could be multiple times higher than currently thought. Most studies supporting existing estimates solely rely on measurements of water-atmosphere diffusive fluxes of GHG, whereas methane (CH4) and nitrous oxide (N2O) emissions during drainage and refilling and CH4 bubbles emerging from sediments are largely ignored. Yet, abundant evidence for similar aquatic ecosystems suggests that these largely unaccounted emission pathways may be responsible for a large share of annual GHG emissions. Uncertainties from overlooking important emission pathways may have serious consequences, including incorrect advice on mitigation strategies and overly optimistic assessments of the GHG footprint of cultured freshwater fish. To ensure a low-carbon future for global aquaculture, we contend that GHG assessments in fish-farming ponds must extend beyond the focus on diffusive water-atmosphere fluxes and include all emission pathways and possible carbon burial in the sediment. In parallel, we call for a better understanding of the biological, microbiological and physical drivers of aquaculture emissions to effectively support mitigation strategies to minimize the footprint of this nutritionally valuable protein source.
Collapse
Affiliation(s)
- Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - Rafael M Almeida
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Icaro Barbosa
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Raquel Mendonça
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ive Santos Muzitano
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Fundação Instituto de Pesca do Estado do Rio de Janeiro, Brazil
| | - Ernandes Sobreira Oliveira-Junior
- Graduate Program in Environmental Sciences, Laboratory of Ichthyology of the North Pantanal, University of the State of Mato Grosso, 78200-000 Cáceres, Brazil
| | - Renske J E Vroom
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Hai-Jun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nathan Barros
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| |
Collapse
|
6
|
Peng JX, He PP, Wei PY, Zhang B, Zhao YZ, Li QY, Chen XL, Peng M, Zeng DG, Yang CL, Chen X. Proteomic Responses Under Cold Stress Reveal Unique Cold Tolerance Mechanisms in the Pacific White Shrimp ( Litopenaeus vannamei). Front Physiol 2018; 9:1399. [PMID: 30483139 PMCID: PMC6243039 DOI: 10.3389/fphys.2018.01399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
The Pacific white shrimp (Litopenaeus vannamei), one of the most widely cultured shrimp species in the world, often suffers from cold stress. To understand the molecular mechanism of cold tolerance in Pacific white shrimp, we conducted a proteomic analysis on two contrasting shrimp cultivars, namely, cold-tolerant Guihai2 (GH2) and cold-sensitive Guihai1 (GH1), under normal temperature (28°C), under cold stress (16°C), and during recovery to 28°C. In total, 3,349 proteins were identified, among which 2,736 proteins were quantified. Based on gene ontology annotations, differentially expressed proteins largely belonged to biological processes, cellular components, and molecular functions. KEGG pathway annotations indicated that the main changes were observed in the lysosome, ribosomes, and oxidative phosphorylation. Subcellular localization analysis showed a significant increase in proteins present in cytosol, extracellular regions, and mitochondria. Combining enrichment-based clustering analysis and qRT-PCR analysis, we found that glutathione S-transferase, zinc proteinase, m7GpppX diphosphatase, AP2 transcription complex, and zinc-finger transcription factors played a major role in the cold stress response in Pacific white shrimp. Moreover, structure proteins, including different types of lectin and DAPPUDRAFT, were indispensable for cold stress tolerance of the Pacific white shrimp. Results indicate the molecular mechanisms of the Pacific white shrimp in response to cold stress and provide new insight into breeding new cultivars with increased cold tolerance.
Collapse
Affiliation(s)
- Jin-Xia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Ping-Ping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Pin-Yuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yong-Zhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qiang-Yong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiu-Li Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Di-Gang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Chun-Ling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
7
|
Hall SJ, Huber DP, Hughes RF. Invasion of Hawaiian rainforests by an introduced amphibian predator and N2-fixing tree increases soil N2O emissions. Ecosphere 2018. [DOI: 10.1002/ecs2.2416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Sharon J. Hall
- School of Life Sciences; Arizona State University; Tempe Arizona 85287-4501 USA
| | - David P. Huber
- Northwest Watershed Research Center; USDA-Agricultural Research Service; Boise Idaho 83712 USA
| | - R. Flint Hughes
- Institute for Pacific Islands Forestry; Pacific Southwest Research Station; USDA Forest Service; Hilo Hawaii 96720 USA
| |
Collapse
|
8
|
Methane fluxes from coastal sediments are enhanced by macrofauna. Sci Rep 2017; 7:13145. [PMID: 29030563 PMCID: PMC5640653 DOI: 10.1038/s41598-017-13263-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/22/2017] [Indexed: 11/08/2022] Open
Abstract
Methane and nitrous oxide are potent greenhouse gases (GHGs) that contribute to climate change. Coastal sediments are important GHG producers, but the contribution of macrofauna (benthic invertebrates larger than 1 mm) inhabiting them is currently unknown. Through a combination of trace gas, isotope, and molecular analyses, we studied the direct and indirect contribution of two macrofaunal groups, polychaetes and bivalves, to methane and nitrous oxide fluxes from coastal sediments. Our results indicate that macrofauna increases benthic methane efflux by a factor of up to eight, potentially accounting for an estimated 9.5% of total emissions from the Baltic Sea. Polychaetes indirectly enhance methane efflux through bioturbation, while bivalves have a direct effect on methane release. Bivalves host archaeal methanogenic symbionts carrying out preferentially hydrogenotrophic methanogenesis, as suggested by analysis of methane isotopes. Low temperatures (8 °C) also stimulate production of nitrous oxide, which is consumed by benthic denitrifying bacteria before it reaches the water column. We show that macrofauna contributes to GHG production and that the extent is dependent on lineage. Thus, macrofauna may play an important, but overlooked role in regulating GHG production and exchange in coastal sediment ecosystems.
Collapse
|