1
|
Munson E, Carella A, Carroll KC. Valid and accepted novel bacterial taxa derived from human clinical specimens and taxonomic revisions published in 2022. J Clin Microbiol 2023; 61:e0083823. [PMID: 37889007 PMCID: PMC10662342 DOI: 10.1128/jcm.00838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Although some nomenclature changes have caused consternation among clinical microbiologists, the discovery of novel taxa and improving classification of existing groups of organisms is exciting and adds to our understanding of microbial pathogenesis. In this mini-review, we present an in-depth summary of novel taxonomic designations and revisions to prokaryotic taxonomy that were published in 2022. Henceforth, these bacteriology taxonomic summaries will appear annually. Several of the novel Gram-positive organisms have been associated with disease, namely, the Corynebacterium kroppenstedtii-like organisms Corynebacterium parakroppenstedtii sp. nov. and Corynebacterium pseudokroppenstedtii sp. nov. A newly described Streptococcus species, Streptococcus toyakuensis sp. nov., is noteworthy for exhibiting multi-drug resistance. Among the novel Gram-negative pathogens, Vibrio paracholerae sp. nov. stands out as an organism associated with diarrhea and sepsis and has probably been co-circulating with pandemic Vibrio cholerae for decades. Many new anaerobic organisms have been described in this past year largely from genetic assessments of gastrointestinal microbiome collections. With respect to revised taxa, as discussed in previous reviews, the genus Bacillus continues to undergo further division into additional genera and reassignment of existing species into them. Reassignment of two subspecies of Fusobacterium nucleatum to species designations (Fusobacterium animalis sp. nov. and Fusobacterium vincentii sp. nov.) is also noteworthy. As was typical of previous reviews, literature updates for selected clinically relevant organisms discovered between 2017 and 2021 have been included.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Arianna Carella
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Rehm C, Kolm C, Pleininger S, Heger F, Indra A, Reischer GH, Farnleitner AAH, Kirschner AKT. Vibrio cholerae-An emerging pathogen in Austrian bathing waters? Wien Klin Wochenschr 2023; 135:597-608. [PMID: 37530997 PMCID: PMC10651712 DOI: 10.1007/s00508-023-02241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 08/03/2023]
Abstract
Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health
| | - Claudia Kolm
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Sonja Pleininger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Florian Heger
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Alexander Indra
- Institute for Medical Microbiology and Hygiene, National Reference Centre for Vibrio cholerae, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Georg H Reischer
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Andreas A H Farnleitner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria
- Interuniversity Cooperation Centre Water & Health
- Institute for Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, Technische Universität Wien, Vienna, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Karl-Landsteiner University of Health Sciences, Krems, Austria.
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria.
- Interuniversity Cooperation Centre Water & Health, .
| |
Collapse
|
3
|
Lassalle F, Al-Shalali S, Al-Hakimi M, Njamkepo E, Bashir IM, Dorman MJ, Rauzier J, Blackwell GA, Taylor-Brown A, Beale MA, Cazares A, Al-Somainy AA, Al-Mahbashi A, Almoayed K, Aldawla M, Al-Harazi A, Quilici ML, Weill FX, Dhabaan G, Thomson NR. Genomic epidemiology reveals multidrug resistant plasmid spread between Vibrio cholerae lineages in Yemen. Nat Microbiol 2023; 8:1787-1798. [PMID: 37770747 PMCID: PMC10539172 DOI: 10.1038/s41564-023-01472-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Since 2016, Yemen has been experiencing the largest cholera outbreak in modern history. Multidrug resistance (MDR) emerged among Vibrio cholerae isolates from cholera patients in 2018. Here, to characterize circulating genotypes, we analysed 260 isolates sampled in Yemen between 2018 and 2019. Eighty-four percent of V. cholerae isolates were serogroup O1 belonging to the seventh pandemic El Tor (7PET) lineage, sub-lineage T13, whereas 16% were non-toxigenic, from divergent non-7PET lineages. Treatment of severe cholera with macrolides between 2016 and 2019 coincided with the emergence and dominance of T13 subclones carrying an incompatibility type C (IncC) plasmid harbouring an MDR pseudo-compound transposon. MDR plasmid detection also in endemic non-7PET V. cholerae lineages suggested genetic exchange with 7PET epidemic strains. Stable co-occurrence of the IncC plasmid with the SXT family of integrative and conjugative element in the 7PET background has major implications for cholera control, highlighting the importance of genomic epidemiological surveillance to limit MDR spread.
Collapse
Affiliation(s)
- Florent Lassalle
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
| | | | | | - Elisabeth Njamkepo
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Paris, France
| | | | - Matthew J Dorman
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
- Churchill College, Cambridge, UK
| | - Jean Rauzier
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Paris, France
| | - Grace A Blackwell
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
- EMBL-EBI, Hinxton, UK
| | - Alyce Taylor-Brown
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Mathew A Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Adrián Cazares
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Khaled Almoayed
- National Centre of Public Health Laboratories, Sana'a, Yemen
| | - Mohammed Aldawla
- Ministry of Public Health, Infection Control Unit, Sana'a, Yemen
| | | | - Marie-Laure Quilici
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Paris, France
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Paris, France
| | - Ghulam Dhabaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Nicholas R Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
4
|
Rehm C, Lippert K, Indra A, Kolarević S, Kračun‐Kolarević M, Leopold M, Steinbacher S, Schachner I, Campostrini L, Risslegger A, Farnleitner AH, Kolm C, Kirschner AK. First report on the occurrence of Vibrio cholerae nonO1/nonO139 in natural and artificial lakes and ponds in Serbia: Evidence for a long-distance transfer of strains and the presence of Vibrio paracholerae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:142-152. [PMID: 36779243 PMCID: PMC10103850 DOI: 10.1111/1758-2229.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 05/20/2023]
Abstract
Vibrio cholerae are natural inhabitants of specific aquatic environments. Strains not belonging to serogroups O1 and O139 are usually unable to produce cholera toxin and cause cholera. However, non-toxigenic V. cholerae (NTVC) are able to cause a variety of mild-to-severe human infections (via seafood consumption or recreational activities). The number of unreported cases is considered substantial, as NTVC infections are not notifiable and physicians are mostly unaware of this pathogen. In the northern hemisphere, NTVC infections have been reported to increase due to global warming. In Eastern Europe, climatic and geological conditions favour the existence of inland water-bodies harbouring NTVC. We thus investigated the occurrence of NTVC in nine Serbian natural and artificial lakes and ponds, many of them used for fishing and bathing. With the exception of one highly saline lake, all investigated water-bodies harboured NTVC, ranging from 5.4 × 101 to 1.86 × 104 CFU and 4.5 × 102 to 5.6 × 106 genomic units per 100 ml. The maximum values observed were in the range of bathing waters in other countries, where infections have been reported. Interestingly, 7 out of 39 fully sequenced presumptive V. cholerae isolates were assigned as V. paracholerae, a recently described sister species of V. cholerae. Some clones and sublineages of both V. cholerae and V. paracholerae were shared by different environments indicating an exchange of strains over long distances. Important pathogenicity factors such as hlyA, toxR, and ompU were present in both species. Seasonal monitoring of ponds/lakes used for recreation in Serbia is thus recommended to be prepared for potential occurrence of infections promoted by climate change-induced rise in water temperatures.
Collapse
Affiliation(s)
- Carmen Rehm
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Kathrin Lippert
- Institute für Medical Microbiology and Hygiene, Austrian Agency for Health and Food SafetyViennaAustria
| | - Alexander Indra
- Institute für Medical Microbiology and Hygiene, Austrian Agency for Health and Food SafetyViennaAustria
| | - Stoimir Kolarević
- Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, Department for Hydroecology and Water ProtectionUniversity of BelgradeBelgradeSerbia
| | - Margareta Kračun‐Kolarević
- Institute for Biological Research ¨Siniša Stanković¨, National Institute of the Republic of Serbia, Department for Hydroecology and Water ProtectionUniversity of BelgradeBelgradeSerbia
| | - Melanie Leopold
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Sophia Steinbacher
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Iris Schachner
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Lena Campostrini
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Alexandra Risslegger
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| | - Andreas H. Farnleitner
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Claudia Kolm
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Interuniversity Cooperation Centre Water & HealthAustria
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität WienViennaAustria
| | - Alexander K.T. Kirschner
- Division Water Quality and Health, Department of Physiology, Pharmacology and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
- Institute for Hygiene and Applied Immunology – Water MicrobiologyMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre Water & HealthAustria
| |
Collapse
|
5
|
Jerez SA, Plaza N, Bravo V, Urrutia IM, Blondel CJ. Vibrio type III secretion system 2 is not restricted to the Vibrionaceae and encodes differentially distributed repertoires of effector proteins. Microb Genom 2023; 9:mgen000973. [PMID: 37018030 PMCID: PMC10210961 DOI: 10.1099/mgen.0.000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. A distinctive feature of the O3:K6 pandemic clone, and its derivatives, is the presence of a second, phylogenetically distinct, type III secretion system (T3SS2) encoded within the genomic island VPaI-7. The T3SS2 allows the delivery of effector proteins directly into the cytosol of infected eukaryotic cells to subvert key host-cell processes, critical for V. parahaemolyticus to colonize and cause disease. Furthermore, the T3SS2 also increases the environmental fitness of V. parahaemolyticus in its interaction with bacterivorous protists; hence, it has been proposed that it contributed to the global oceanic spread of the pandemic clone. Several reports have identified T3SS2-related genes in Vibrio and non-Vibrio species, suggesting that the T3SS2 gene cluster is not restricted to the Vibrionaceae and can mobilize through horizontal gene transfer events. In this work, we performed a large-scale genomic analysis to determine the phylogenetic distribution of the T3SS2 gene cluster and its repertoire of effector proteins. We identified putative T3SS2 gene clusters in 1130 bacterial genomes from 8 bacterial genera, 5 bacterial families and 47 bacterial species. A hierarchical clustering analysis allowed us to define six T3SS2 subgroups (I-VI) with different repertoires of effector proteins, redefining the concepts of T3SS2 core and accessory effector proteins. Finally, we identified a subset of the T3SS2 gene clusters (subgroup VI) that lacks most T3SS2 effector proteins described to date and provided a list of 10 novel effector candidates for this subgroup through bioinformatic analysis. Collectively, our findings indicate that the T3SS2 extends beyond the family Vibrionaceae and suggest that different effector protein repertories could have a differential impact on the pathogenic potential and environmental fitness of each bacterium that has acquired the Vibrio T3SS2 gene cluster.
Collapse
Affiliation(s)
- Sebastian A. Jerez
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicolas Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Veronica Bravo
- Programa Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Italo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
6
|
Santoriello FJ, Kirchberger PC, Boucher Y, Pukatzki S. Pandemic Vibrio cholerae acquired competitive traits from an environmental Vibrio species. Life Sci Alliance 2023; 6:6/2/e202201437. [PMID: 36446527 PMCID: PMC9711863 DOI: 10.26508/lsa.202201437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Vibrio cholerae is a human pathogen that thrives in estuarine environments. Within the environment and human host, V. cholerae uses the type VI secretion system (T6SS) to inject toxic effectors into neighboring microbes and to establish its replicative niche. V. cholerae strains encode a wide variety of horizontally shared effectors, but pandemic isolates encode an identical set of distinct effectors. Effector set retention in pandemic strains despite mobility between disparate strains suggests that horizontal acquisition of these effectors was crucial for evolving pandemic V. cholerae We attempted to locate the donor of the pandemic effectors to V. cholerae To this end, we identified potential gene transfer events of the pandemic-associated T6SS clusters between a fish pathogen, Vibrio anguillarum, and V. cholerae We supported the likelihood of interaction between these species by demonstrating that homologous effector-immunity pairs from V. cholerae and V. anguillarum can cross-neutralize one another. Thus, V. anguillarum constitutes an environmental reservoir of pandemic-associated V. cholerae T6SS effectors that may have initially facilitated competition between pre-pandemic V. cholerae and V. anguillarum for an environmental niche.
Collapse
Affiliation(s)
- Francis J Santoriello
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biology, The City College of New York, New York, NY, USA
| | - Paul C Kirchberger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Yann Boucher
- Saw Swee Hock School of Public Health and National University Hospital System, National University of Singapore, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| | - Stefan Pukatzki
- Department of Biology, The City College of New York, New York, NY, USA
| |
Collapse
|
7
|
Orata FD, Hussain NAS, Liang KYH, Hu D, Boucher YF. Genomes of Vibrio metoecus co-isolated with Vibrio cholerae extend our understanding of differences between these closely related species. Gut Pathog 2022; 14:42. [PMID: 36404338 PMCID: PMC9677704 DOI: 10.1186/s13099-022-00516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Vibrio cholerae, the causative agent of cholera, is a well-studied species, whereas Vibrio metoecus is a recently described close relative that is also associated with human infections. The availability of V. metoecus genomes provides further insight into its genetic differences from V. cholerae. Additionally, both species have been co-isolated from a cholera-free brackish coastal pond and have been suggested to interact with each other by horizontal gene transfer (HGT). RESULTS The genomes of 17 strains from each species were sequenced. All strains share a large core genome (2675 gene families) and very few genes are unique to each species (< 3% of the pan-genome of both species). This led to the identification of potential molecular markers-for nitrite reduction, as well as peptidase and rhodanese activities-to further distinguish V. metoecus from V. cholerae. Interspecies HGT events were inferred in 21% of the core genes and 45% of the accessory genes. A directional bias in gene transfer events was found in the core genome, where V. metoecus was a recipient of three times (75%) more genes from V. cholerae than it was a donor (25%). CONCLUSION V. metoecus was misclassified as an atypical variant of V. cholerae due to their resemblance in a majority of biochemical characteristics. More distinguishing phenotypic assays can be developed based on the discovery of potential gene markers to avoid any future misclassifications. Furthermore, differences in relative abundance or seasonality were observed between the species and could contribute to the bias in directionality of HGT.
Collapse
Affiliation(s)
- Fabini D. Orata
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.17089.370000 0001 2190 316XDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta Canada
| | - Nora A. S. Hussain
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada
| | - Kevin Y. H. Liang
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.14709.3b0000 0004 1936 8649Department of Quantitative Life Sciences, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Dalong Hu
- grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Yann F. Boucher
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| |
Collapse
|
8
|
Nasreen T, Islam MT, Liang KYH, Johura FT, Kirchberger PC, Hill E, Sultana M, Case RJ, Alam M, Boucher YF. Dynamic Subspecies Population Structure of Vibrio cholerae in Dhaka, Bangladesh. MICROBIAL ECOLOGY 2022; 84:730-745. [PMID: 34633491 DOI: 10.1007/s00248-021-01838-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Cholera has been endemic to the Ganges Delta for centuries. Although the causative agent, Vibrio cholerae, is autochthonous to coastal and brackish water, cholera occurs continually in Dhaka, the inland capital city of Bangladesh which is surrounded by fresh water. Despite the persistence of this problem, little is known about the environmental abundance and distribution of lineages of V. cholerae, the most important being the pandemic generating (PG) lineage consisting mostly of serogroup O1 strains. To understand spatial and temporal dynamics of PG lineage and other lineages belonging to the V. cholerae species in surface water in and around Dhaka City, we used qPCR and high-throughput amplicon sequencing. Seven different freshwater sites across Dhaka were investigated for six consecutive months, and physiochemical parameters were measured in situ. Total abundance of V. cholerae was found to be relatively stable throughout the 6-month sampling period, with 2 × 105 to 4 × 105 genome copies/L at six sites and around 5 × 105 genome copies/L at the site located in the most densely populated part of Dhaka City. PG O1 V. cholerae was present in high abundance during the entire sampling period and composed between 24 and 92% of the total V. cholerae population, only showing occasional but sudden reductions in abundance. In instances where PG O1 lost its dominance, other lineages underwent a rapid expansion while the size of the total V. cholerae population remained almost unchanged. Intraspecies richness of V. cholerae was positively correlated with salinity, conductivity, and total dissolved solids (TDS), while it was negatively correlated with dissolved oxygen (DO) concentration in water. Interestingly, negative correlation was observed specifically between PG O1 and salinity, even though the changes in this variable were minor (0-0.8 ppt). Observations in this study suggest that at the subspecies level, population composition of naturally occurring V. cholerae can be influenced by fluctuations in environmental factors, which can lead to altered competition dynamics among the lineages.
Collapse
Affiliation(s)
- Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | | | - Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Fatema-Tuz Johura
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Paul C Kirchberger
- Department of Integrative Biology, University of Texas At Austin, Austin, TX, 78712, USA
| | - Eric Hill
- Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore
| | - Marzia Sultana
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Islam MT, Liang K, Orata FD, Im MS, Alam M, Lee CC, Boucher YF. Vibrio tarriae sp. nov., a novel member of the Cholerae clade. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of bacteria with close resemblance to
Vibrio cholerae
have been isolated over the years by the Centres for Disease Control and Prevention (CDC), which could not be assigned a proper taxonomic designation on the basis of the results from preliminary identification methods. Nine such isolates have been found to share 16S rRNA gene identity exceeding 99 % with V. cholerae, yet DNA–DNA hybridization (60.4–62.1 %) and average nucleotide identity values (94.4–95.1 %) were below the species cut-off, indicating a potentially novel species. Phylogenetic analysis of core genomes places this group of isolates in a monophyletic clade, within the ‘Cholerae clade’, but distinct from any other species. Extensive phenotypic characterization reveals unique biochemical properties that distinguish this novel species from
V. cholerae
. Comparative genomic analysis reveals a unique set of siderophore genes, indicating that iron acquisition strategies could be vital for the divergence of the novel species from a common ancestor with
V. cholerae
. On the basis of the genetic, phylogenetic and phenotypic differences observed, we propose that these isolates represent a novel species of the genus
Vibrio
, for which the name Vibrio tarriae sp. nov. is proposed. Strain 2521-89 T (= DSM 112461=CCUG 75318), isolated from lake water, is the type strain.
Collapse
Affiliation(s)
- Mohammad Tarequl Islam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Kevin Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Fabini D. Orata
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Monica S. Im
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Christine C. Lee
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yann F. Boucher
- Saw Swee Hock School of Public Health and National University Hospital System, National University of Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore
| |
Collapse
|
10
|
Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203. Int J Syst Evol Microbiol 2022; 72. [PMID: 35108178 DOI: 10.1099/ijsem.0.005167] [Citation(s) in RCA: 275] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|