1
|
Mu D, Li P, Ma T, Wei D, Montalbán-López M, Ai Y, Wu X, Wang Y, Li X, Li X. Advances in the understanding of the production, modification and applications of xylanases in the food industry. Enzyme Microb Technol 2024; 179:110473. [PMID: 38917734 DOI: 10.1016/j.enzmictec.2024.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Xylanases have broad applications in the food industry to decompose the complex carbohydrate xylan. This is applicable to enhance juice clarity, improve dough softness, or reduce beer turbidity. It can also be used to produce prebiotics and increase the nutritional value in foodstuff. However, the low yield and poor stability of most natural xylanases hinders their further applications. Therefore, it is imperative to explore higher-quality xylanases to address the potential challenges that appear in the food industry and to comprehensively improve the production, modification, and utilization of xylanases. Xylanases, due to their various sources, exhibit diverse characteristics that affect production and activity. Most fungi are suitable for solid-state fermentation to produce xylanases, but in liquid fermentation, microbial metabolism is more vigorous, resulting in higher yield. Fungi produce higher xylanase activity, but bacterial xylanases perform better than fungal ones under certain extreme conditions (high temperature, extreme pH). Gene and protein engineering technology helps to improve the production efficiency of xylanases and enhances their thermal stability and catalytic properties.
Collapse
Affiliation(s)
- Dongdong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| | - Penglong Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Tiange Ma
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Dehua Wei
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Manuel Montalbán-López
- Institute of Biotechnology and Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Yaqian Ai
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xuefeng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yifeng Wang
- Anhui Yunshang Cultural Tourism Development Group, Anqing 246600, China
| | - Xu Li
- Anhui Wanyue Xinhe Project Management Company Limited, Anqing 246600, China
| | - Xingjiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| |
Collapse
|
2
|
Pentari C, Kosinas C, Nikolaivits E, Dimarogona M, Topakas E. Structural and molecular insights into a bifunctional glycoside hydrolase 30 xylanase specific to glucuronoxylan. Biotechnol Bioeng 2024; 121:2067-2078. [PMID: 38678481 DOI: 10.1002/bit.28731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Glycoside hydrolase (GH) 30 family xylanases are enzymes of biotechnological interest due to their capacity to degrade recalcitrant hemicelluloses, such as glucuronoxylan (GX). This study focuses on a subfamily 7 GH30, TtXyn30A from Thermothelomyces thermophilus, which acts on GX in an "endo" and "exo" mode, releasing methyl-glucuronic acid branched xylooligosaccharides (XOs) and xylobiose, respectively. The crystal structure of inactive TtXyn30A in complex with 23-(4-O-methyl-α-D-glucuronosyl)-xylotriose (UXX), along with biochemical analyses, corroborate the implication of E233, previously identified as alternative catalytic residue, in the hydrolysis of decorated xylan. At the -1 subsite, the xylose adopts a distorted conformation, indicative of the Michaelis complex of TtXyn30AEE with UXX trapped in the semi-functional active site. The most significant structural rearrangements upon substrate binding are observed at residues W127 and E233. The structures with neutral XOs, representing the "exo" function, clearly show the nonspecific binding at aglycon subsites, contrary to glycon sites, where the xylose molecules are accommodated via multiple interactions. Last, an unproductive ligand binding site is found at the interface between the catalytic and the secondary β-domain which is present in all GH30 enzymes. These findings improve current understanding of the mechanism of bifunctional GH30s, with potential applications in the field of enzyme engineering.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christos Kosinas
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
3
|
St John FJ, Bynum L, Tauscheck DA, Crooks C. Use of xylosidase 3C from Segatella baroniae to discriminate xylan non-reducing terminus substitution characteristics. BMC Res Notes 2024; 17:175. [PMID: 38915023 PMCID: PMC11197168 DOI: 10.1186/s13104-024-06835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE New characterized carbohydrate-active enzymes are needed for use as tools to discriminate complex carbohydrate structural features. Fungal glycoside hydrolase family 3 (GH3) β-xylosidases have been shown to be useful for the structural elucidation of glucuronic acid (GlcA) and arabinofuranose (Araf) substituted oligoxylosides. A homolog of these GH3 fungal enzymes from the bacterium Segatella baroniae (basonym Prevotella bryantii), Xyl3C, has been previously characterized, but those studies did not address important functional specificity features. In an interest to utilize this enzyme for laboratory methods intended to discriminate the structure of the non-reducing terminus of substituted xylooligosaccharides, we have further characterized this GH3 xylosidase. RESULTS In addition to verification of basic functional characteristics of this xylosidase we have determined its mode of action as it relates to non-reducing end xylose release from GlcA and Araf substituted oligoxylosides. Xyl3C cleaves xylose from the non-reducing terminus of β-1,4-xylan until occurrence of a penultimate substituted xylose. If this substitution is O2 linked, then Xyl3C removes the non-reducing xylose to leave the substituted xylose as the new non-reducing terminus. However, if the substitution is O3 linked, Xyl3C does not hydrolyze, thus leaving the substitution one-xylose (penultimate) from the non-reducing terminus. Hence, Xyl3C enables discrimination between O2 and O3 linked substitutions on the xylose penultimate to the non-reducing end. These findings are contrasted using a homologous enzyme also from S. baroniae, Xyl3B, which is found to yield a penultimate substituted nonreducing terminus regardless of which GlcA or Araf substitution exists.
Collapse
Affiliation(s)
- Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Dr, Madison, WI, 53726, USA.
| | - Loreen Bynum
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Dr, Madison, WI, 53726, USA
| | - Dante A Tauscheck
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Dr, Madison, WI, 53726, USA
| | - Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Dr, Madison, WI, 53726, USA
| |
Collapse
|
4
|
Šuchová K, Fathallah W, Puchart V. Characterization of a novel GH30 non-specific endoxylanase AcXyn30B from Acetivibrio clariflavus. Appl Microbiol Biotechnol 2024; 108:312. [PMID: 38683242 PMCID: PMC11058611 DOI: 10.1007/s00253-024-13155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The xylanolytic enzymes Clocl_1795 and Clocl_2746 from glycoside hydrolase (GH) family 30 are highly abundant in the hemicellulolytic system of Acetivibrio clariflavus (Hungateiclostridium, Clostridium clariflavum). Clocl_1795 has been shown to be a xylobiohydrolase AcXbh30A releasing xylobiose from the non-reducing end of xylan and xylooligosaccharides. In this work, biochemical characterization of Clocl_2746 is presented. The protein, designated AcXyn30B, shows low sequence similarity to other GH30 members and phylogenetic analysis revealed that AcXyn30B and related proteins form a separate clade that is proposed to be a new subfamily GH30_12. AcXyn30B exhibits similar specific activity on glucuronoxylan, arabinoxylan, and aryl glycosides of linear xylooligosaccharides suggesting that it is a non-specific xylanase. From polymeric substrates, it releases the fragments of degrees of polymerization (DP) 2-6. Hydrolysis of different xylooligosaccharides indicates that AcXyn30B requires at least four occupied catalytic subsites for effective cleavage. The ability of the enzyme to hydrolyze a wide range of substrates is interesting for biotechnological applications. In addition to subfamilies GH30_7, GH30_8, and GH30_10, the newly proposed subfamily GH30_12 further widens the spectrum of GH30 subfamilies containing xylanolytic enzymes. KEY POINTS: Bacterial GH30 endoxylanase from A. clariflavus (AcXyn30B) has been characterized AcXyn30B is non-specific xylanase hydrolyzing various xylans and xylooligosaccharides Phylogenetic analysis placed AcXyn30B in a new GH30_12 subfamily.
Collapse
Affiliation(s)
- Katarína Šuchová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Walid Fathallah
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
- Faculty of Science, Beni-Suef University, Beni-Suef, 625 11, Egypt
| | - Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
5
|
Pentari C, Zerva A, Dimarogona M, Topakas E. The xylobiohydrolase activity of a GH30 xylanase on natively acetylated xylan may hold the key for the degradation of recalcitrant xylan. Carbohydr Polym 2023; 305:120527. [PMID: 36737185 DOI: 10.1016/j.carbpol.2022.120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Acetyl substitutions are common on the hemicellulosic structures of lignocellulose, which up until recently were known to inhibit xylanase activity. Emerging data, however, suggest that xylanases are able to accommodate acetyl side-groups within their catalytic site. In the present work, a fungal GH30 xylanase from Thermothelomyces thermophila, namely TtXyn30A, was shown to release acetylated xylobiose when acting on pretreated lignocellulosic substrate. The released disaccharides could be acetylated at the 2-OH, 3-OH or both positions of the non-reducing end xylose, but the existence of the acetylation on the reducing end cannot be excluded. The synergy of TtXyn30A with acetyl esterases indicates that particular subsites within its active site cannot tolerate acetylated xylopyranose residues. Molecular docking showed that acetyl group can be accommodated on the 2- or 3-OH position of the non-reducing end xylose, unlike the reducing-end xylose (subsite -1), where only 3-OH decoration can be accommodated. Such insight into the catalytic activity of TtXyn30A could contribute to a better understanding of its biological role and thus lead to a more sufficient biotechnological utilization.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
6
|
St John FJ, Crooks C, Kim Y, Tan K, Joachimiak A. The first crystal structure of a xylobiose-bound xylobiohydrolase with high functional specificity from the bacterial glycoside hydrolase 30 subfamily 10. FEBS Lett 2022; 596:2449-2464. [PMID: 35876256 DOI: 10.1002/1873-3468.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Xylobiose is a prebiotic sugar that has applications in functional foods. This report describes the first X-ray crystallographic structure models of apo and xylobiose bound forms of a xylobiohydrolase (XBH) from Acetivibrio clariflavus. This xylan active enzyme, a member of the recently described glycoside hydrolase family 30 (GH30) subfamily 10 phylogenetic clade has been shown to strictly release xylobiose as its primary hydrolysis product. Inspection of the apo-structure reveals a glycone region X2 binding slot. When X2 binds, the nonreducing xylose in the -2 subsite is highly coordinated with numerous hydrogen bond contacts while contacts in the -1 subsite mostly reflect interactions typical for GH30 and enzymes in clan A of the carbohydrate-active enzymes database (CAZy). This structure provides an explanation for the high functional specificity of this new bacterial GH30 XBH subfamily.
Collapse
Affiliation(s)
- Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Il, 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Zeng B, Zhao S, Zhou R, Zhou Y, Jin W, Yi Z, Zhang G. Engineering and screening of novel β-1,3-xylanases with desired hydrolysate type by optimized ancestor sequence reconstruction and data mining. Comput Struct Biotechnol J 2022; 20:3313-3321. [PMID: 35832630 PMCID: PMC9251504 DOI: 10.1016/j.csbj.2022.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
A novel integrative strategy for engineering β-1,3-xylanases with desired products. AncXyl10 is the first successful example of ASR to shift the hydrolysate types. The hydrolysates of AncXyl10 was only β-1,3-xylobiose and β-1,3-xylotriose. The underlying mechanism laid a new groundwork towards hydrolase engineering.
Engineering of hydrolases to shift their hydrolysate types has not been attempted so far, though computer-assisted enzyme design has been successful. A novel integrative strategy for engineering and screening the β-1,3-xylanase with desired hydrolysate types was proposed, with the purpose to solve problems that the separation and preparation of β-1,3-xylo-oligosaccharides was in high cost yet in low yield as monosaccharides existed in the hydrolysates. By classifying the hydrolysate types and coding them into numerical values, two robust mathematical models with five selected attributes from molecular docking were established based on LogitBoost and partial least squares regression with overall accuracy of 83.3% and 100%, respectively. Then, they were adopted for efficient screening the potential mutagenesis library of β-1,3-xylanases that only product oligosaccharides. The virtually designed AncXyl10 was selected and experimentally verified to produce only β-1,3-xylobiose (60.38%) and β-1,3-xylotriose (39.62%), which facilitated the preparation of oligosaccharides with high purity. The underlying mechanism of AncXyl10 may associated with the gap processing and ancestral amino acid substitution in the process of ancestral sequence reconstruction. Since many carbohydrate-active enzymes have highly conserved active sites, the strategy and their biomolecular basis will shield a new light for engineering carbohydrates hydrolase to produce specific oligosaccharides.
Collapse
|
8
|
Yeast GH30 Xylanase from Sugiyamaella lignohabitans Is a Glucuronoxylanase with Auxiliary Xylobiohydrolase Activity. Molecules 2022; 27:molecules27030751. [PMID: 35164030 PMCID: PMC8840591 DOI: 10.3390/molecules27030751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Xylanases are the enzymes that catalyze the breakdown of the main hemicellulose present in plant cell walls. They have attracted attention due to their biotechnological potential for the preparation of industrially interesting products from lignocellulose. While many xylanases have been characterized from bacteria and filamentous fungi, information on yeast xylanases is scarce and no yeast xylanase belonging to glycoside hydrolase (GH) family 30 has been described so far. Here, we cloned, expressed and characterized GH30 xylanase SlXyn30A from the yeast Sugiyamaella lignohabitans. The enzyme is active on glucuronoxylan (8.4 U/mg) and rhodymenan (linear β-1,4-1,3-xylan) (3.1 U/mg) while its activity on arabinoxylan is very low (0.03 U/mg). From glucuronoxylan SlXyn30A releases a series of acidic xylooligosaccharides of general formula MeGlcA2Xyln. These products, which are typical for GH30-specific glucuronoxylanases, are subsequently shortened at the non-reducing end, from which xylobiose moieties are liberated. Xylobiohydrolase activity was also observed during the hydrolysis of various xylooligosaccharides. SlXyn30A thus expands the group of glucuronoxylanases/xylobiohydrolases which has been hitherto represented only by several fungal GH30-7 members.
Collapse
|
9
|
Tanno H, Fujii T, Hirano K, Maeno S, Tonozuka T, Sakamoto M, Ohkuma M, Tochio T, Endo A. Characterization of fructooligosaccharide metabolism and fructooligosaccharide-degrading enzymes in human commensal butyrate producers. Gut Microbes 2022; 13:1-20. [PMID: 33439065 PMCID: PMC7833758 DOI: 10.1080/19490976.2020.1869503] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Butyrate produced by gut microbiota has multiple beneficial effects on host health, and oligosaccharides derived from host diets and glycans originating from host mucus are major sources of its production. A significant reduction of butyrate-producing bacteria has been reported in patients with inflammatory bowel diseases and colorectal cancers. Although gut butyrate levels are important for host health, oligosaccharide metabolic properties in butyrate producers are poorly characterized. We studied the metabolic properties of fructooligosaccharides (FOSs) and other prebiotic oligosaccharides (i.e. raffinose and xylooligosaccharides; XOSs) in gut butyrate producers. 1-Kestose (kestose) and nystose, FOSs with degrees of polymerization of 3 and 4, respectively, were also included. Fourteen species of butyrate producers were divided into four groups based on their oligosaccharide metabolic properties, which are group A (two species) metabolizing all oligosaccharides tested, group F (four species) metabolizing FOSs but not raffinose and XOSs, group XR (four species) metabolizing XOSs and/or raffinose but not FOSs, and group N (four species) metabolizing none of the oligosaccharides tested. Species assigned to groups A and XR are rich glycoside hydrolase (GH) holders, whereas those in groups F and N are the opposite. In total, 17 enzymes assigned to GH32 were observed in nine of the 14 butyrate producers tested, and species that metabolized FOSs had at least one active GH32 enzyme. The GH32 enzymes were divided into four clusters by phylogenetic analysis. Heterologous gene expression analysis revealed that the GH32 enzymes in each cluster had similar FOS degradation properties within clusters, which may be linked to the conservation/substitution of amino acids to bind with substrates in GH32 enzymes. This study provides important knowledge to understand the impact of FOS supplementation on the activation of gut butyrate producers. Abbreviations: SCFA, short chain fatty acid; FOS, fructooligosaccharide; XOS, xylooligosaccharide; CAZy, Carbohydrate Active Enzymes; CBM, carbohydrate-binding module; PUL, polysaccharide utilization locus; S6PH sucrose-6-phosphate hydrolase.
Collapse
Affiliation(s)
- Hiroki Tanno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | | | | | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mitsuo Sakamoto
- PRIME, Japan Agency for Medical Research and Development (AMED), Ibaraki, Japan,Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | | | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan,CONTACT Akihito Endo Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido099-2493, Japan
| |
Collapse
|
10
|
Guo H, He T, Lee DJ. Contemporary proteomic research on lignocellulosic enzymes and enzymolysis: A review. BIORESOURCE TECHNOLOGY 2022; 344:126263. [PMID: 34728359 DOI: 10.1016/j.biortech.2021.126263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This review overviewed the current researches on the isolation of novel strains, the development of novel identification protocols, the key enzymes and their synergistic interactions with other functional enzyme systems, and the strategies for enhancing enzymolysis efficiencies. The main obstacle for realizing biorefinery of lignocellulosic biomass to biofuels or biochemicals is the high cost of enzymolysis stage. Therefore, research prospects to reduce the costs for lignocellulose hydrolysis were outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Tongyuan He
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong.
| |
Collapse
|
11
|
Nikolaivits E, Pentari C, Kosinas C, Feiler CG, Spiliopoulou M, Weiss MS, Dimarogona M, Topakas E. Unique features of the bifunctional GH30 from Thermothelomyces thermophila revealed by structural and mutational studies. Carbohydr Polym 2021; 273:118553. [PMID: 34560965 DOI: 10.1016/j.carbpol.2021.118553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022]
Abstract
Fungal xylanases belonging to family GH30_7, initially categorized as endo-glucuronoxylanases, are now known to differ both in terms of substrate specificity, as well as mode of action. Recently, TtXyn30A, a GH30_7 xylanase from Thermothelomyces thermophila, was shown to possess dual activity, acting on the xylan backbone in both an endo- and an exo- manner. Here, in an effort to identify the structural characteristics that append these functional properties to the enzyme, we present the biochemical characterization of various TtXyn30A mutants as well as its crystal structure, alone, and in complex with the reaction product. An auxiliary catalytic amino acid has been identified, while it is also shown that glucuronic acid recognition is not mediated by a conserved arginine residue, as shown by previously determined GH30 structures.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christos Kosinas
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Christian G Feiler
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography (HZB-MX), Berlin, Germany
| | | | - Manfred S Weiss
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography (HZB-MX), Berlin, Germany
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
12
|
Crooks C, Bechle NJ, St John FJ. A New Subfamily of Glycoside Hydrolase Family 30 with Strict Xylobiohydrolase Function. Front Mol Biosci 2021; 8:714238. [PMID: 34557520 PMCID: PMC8453022 DOI: 10.3389/fmolb.2021.714238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The Acetivibrio clariflavus (basonym: Clostridium clariflavum) glycoside hydrolase family 30 cellulosomal protein encoded by the Clocl_1795 gene was highly represented during growth on cellulosic substrates. In this report, the recombinantly expressed protein has been characterized and shown to be a non-reducing terminal (NRT)-specific xylobiohydrolase (AcXbh30A). Biochemical function, optimal biophysical parameters, and phylogeny were investigated. The findings indicate that AcXbh30A strictly cleaves xylobiose from the NRT up until an α-1,2-linked glucuronic acid (GA)-decorated xylose if the number of xyloses is even or otherwise a single xylose will remain resulting in a penultimate GA-substituted xylose. Unlike recently reported xylobiohydrolases, AcXbh30A has no other detectable hydrolysis products under our optimized reaction conditions. Sequence analysis indicates that AcXbh30A represents a new GH30 subfamily. This new xylobiohydrolase may be useful for commercial production of industrial quantities of xylobiose.
Collapse
Affiliation(s)
- Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| | - Nathan J Bechle
- Engineering Mechanics and Remote Sensing Laboratory, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, United States
| |
Collapse
|
13
|
Koh S, Mizuno M, Izuoka Y, Fujino N, Hamada-Sato N, Amano Y. Xylanase from Marine Filamentous Fungus Pestalotiopsis sp. AN-7 Was Activated with Diluted Salt Solution Like Brackish Water. J Appl Glycosci (1999) 2021; 68:11-18. [PMID: 34354541 PMCID: PMC8116177 DOI: 10.5458/jag.jag.jag-2020_0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
The genus Pestalotiopsis are endophytic fungi that have recently been identified as cellulolytic system producers. We herein cloned a gene coding for a xylanase belonging to glycoside hydrolase (GH) family 10 (PesXyn10A) from Pestalotiopsis sp. AN-7, which was isolated from the soil of a mangrove forest. This protein was heterologously expressed by Pichia pastoris as a host, and its enzymatic properties were characterized. PesXyn10A was produced as a glycosylated protein and coincident to theoretical molecular weight (35.3 kDa) after deglycosylation by peptide-NfF-glycosidase F. Purified recombinant PesXyn10A exhibited maximal activity at pH 6.0 and 50 °C, and activity was maintained at 90 % at pH 5.0 and temperatures lower than 30 °C for 24 h. The substrate specificity of PesXyn10A was limited and it hydrolyzed glucuronoxylan and arabinoxylan, but not β-glucan. The final hydrolysis products from birchwood xylan were xylose, xylobiose, and 1,23-α-D-(4-O-methyl-glucuronyl)-1,4-β-D-xylotriose. The addition of metallic salts (NaCl, KCl, MgCl2, and CaCl2) activated PesXyn10A for xylan degradation, and maximal activation by these divalent cations was approximately 160 % at a concentration of 5 mM. The thermostability of PesXyn10A significantly increased in the presence of 50 mM NaCl or 5 mM MgCl2. The present results suggest that the presence of metallic salts at a low concentration, similar to brackish water, exerts positive effects on the enzyme activity and thermal stability of PesXyn10A.
Collapse
Affiliation(s)
- Sangho Koh
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University
| | - Masahiro Mizuno
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University.,2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| | - Yuto Izuoka
- 2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| | - Naoto Fujino
- 2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University.,4 Present address: Biomaterial in Tokyo Co., Ltd
| | - Naoko Hamada-Sato
- 3 Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| | - Yoshihiko Amano
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University.,2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| |
Collapse
|
14
|
Šuchová K, Puchart V, Spodsberg N, Mørkeberg Krogh KBR, Biely P. Catalytic Diversity of GH30 Xylanases. Molecules 2021; 26:molecules26154528. [PMID: 34361682 PMCID: PMC8347883 DOI: 10.3390/molecules26154528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Catalytic properties of GH30 xylanases belonging to subfamilies 7 and 8 were compared on glucuronoxylan, modified glucuronoxylans, arabinoxylan, rhodymenan, and xylotetraose. Most of the tested bacterial GH30-8 enzymes are specific glucuronoxylanases (EC 3.2.1.136) requiring for action the presence of free carboxyl group of MeGlcA side residues. These enzymes were not active on arabinoxylan, rhodymenan and xylotetraose, and conversion of MeGlcA to its methyl ester or its reduction to MeGlc led to a remarkable drop in their specific activity. However, some GH30-8 members are nonspecific xylanases effectively hydrolyzing all tested substrates. In terms of catalytic activities, the GH30-7 subfamily is much more diverse. In addition to specific glucuronoxylanases, the GH30-7 subfamily contains nonspecific endoxylanases and predominantly exo-acting enzymes. The activity of GH30-7 specific glucuronoxylanases also depend on the presence of the MeGlcA carboxyl, but not so strictly as in bacterial enzymes. The modification of the carboxyl group of glucuronoxylan had only weak effect on the action of predominantly exo-acting enzymes, as well as nonspecific xylanases. Rhodymenan and xylotetraose were the best substrates for exo-acting enzymes, while arabinoxylan represented hardly degradable substrate for almost all tested GH30-7 enzymes. The results expand current knowledge on the catalytic properties of this relatively novel group of xylanases.
Collapse
Affiliation(s)
- Katarína Šuchová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (V.P.); (P.B.)
- Correspondence: ; Tel.: +421-25-941-0229
| | - Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (V.P.); (P.B.)
| | - Nikolaj Spodsberg
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark; (N.S.); (K.B.R.M.K.)
| | | | - Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia; (V.P.); (P.B.)
| |
Collapse
|
15
|
Nakamichi Y, Fujii T, Watanabe M, Matsushika A, Inoue H. Crystal structure of GH30-7 endoxylanase C from the filamentous fungus Talaromyces cellulolyticus. Acta Crystallogr F Struct Biol Commun 2020; 76:341-349. [PMID: 32744245 PMCID: PMC7397468 DOI: 10.1107/s2053230x20009024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/02/2020] [Indexed: 11/11/2022] Open
Abstract
GH30-7 endoxylanase C from the cellulolytic fungus Talaromyces cellulolyticus (TcXyn30C) belongs to glycoside hydrolase family 30 subfamily 7, and specifically releases 22-(4-O-methyl-α-D-glucuronosyl)-xylobiose from glucuronoxylan, as well as various arabino-xylooligosaccharides from arabinoxylan. TcXyn30C has a modular structure consisting of a catalytic domain and a C-terminal cellulose-binding module 1 (CBM1). In this study, the crystal structure of a TcXyn30C mutant which lacks the CBM1 domain was determined at 1.65 Å resolution. The structure of the active site of TcXyn30C was compared with that of the bifunctional GH30-7 xylanase B from T. cellulolyticus (TcXyn30B), which exhibits glucuronoxylanase and xylobiohydrolase activities. The results revealed that TcXyn30C has a conserved structural feature for recognizing the 4-O-methyl-α-D-glucuronic acid (MeGlcA) substituent in subsite -2b. Additionally, the results demonstrated that Phe47 contributes significantly to catalysis by TcXyn30C. Phe47 is located in subsite -2b and also near the C-3 hydroxyl group of a xylose residue in subsite -2a. Substitution of Phe47 with an arginine residue caused a remarkable decrease in the catalytic efficiency towards arabinoxylan, suggesting the importance of Phe47 in arabinoxylan hydrolysis. These findings indicate that subsite -2b of TcXyn30C has unique structural features that interact with arabinofuranose and MeGlcA substituents.
Collapse
Affiliation(s)
- Yusuke Nakamichi
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Tatsuya Fujii
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Masahiro Watanabe
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Akinori Matsushika
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Hiroyuki Inoue
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
16
|
Nakamichi Y, Watanabe M, Matsushika A, Inoue H. Substrate recognition by a bifunctional GH30-7 xylanase B from Talaromyces cellulolyticus. FEBS Open Bio 2020; 10:1180-1189. [PMID: 32359208 PMCID: PMC7262913 DOI: 10.1002/2211-5463.12873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022] Open
Abstract
Xylanase B, a member of subfamily 7 of the GH30 (glycoside hydrolase family 30) from Talaromyces cellulolyticus (TcXyn30B), is a bifunctional enzyme with glucuronoxylanase and xylobiohydrolase activities. In the present study, crystal structures of the native enzyme and the enzyme–product complex of TcXyn30B expressed in Pichia pastoris were determined at resolutions of 1.60 and 1.65 Å, respectively. The enzyme complexed with 22‐(4‐O‐methyl‐α‐d‐glucuronyl)‐xylobiose (U4m2X) revealed that TcXyn30B strictly recognizes both the C‐6 carboxyl group and the 4‐O‐methyl group of the 4‐O‐methyl‐α‐d‐glucuronyl side chain by the conserved residues in GH30‐7 endoxylanases. The crystal structure and site‐directed mutagenesis indicated that Asn‐93 on the β2‐α2‐loop interacts with the non‐reducing end of the xylose residue at subsite‐2 and is likely to be involved in xylobiohydrolase activity. These findings provide structural insight into the mechanisms of substrate recognition of GH30‐7 glucuronoxylanase and xylobiohydrolase.
Collapse
Affiliation(s)
- Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| | - Masahiro Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| | - Akinori Matsushika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| |
Collapse
|
17
|
Zerva A, Pentari C, Grisel S, Berrin JG, Topakas E. A new synergistic relationship between xylan-active LPMO and xylobiohydrolase to tackle recalcitrant xylan. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:142. [PMID: 32793303 PMCID: PMC7419196 DOI: 10.1186/s13068-020-01777-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Hemicellulose accounts for a significant part of plant biomass, and still poses a barrier to the efficient saccharification of lignocellulose. The recalcitrant part of hemicellulose is a serious impediment to the action of cellulases, despite the use of xylanases in the cellulolytic cocktail mixtures. However, the complexity and variety of hemicelluloses in different plant materials require the use of highly specific enzymes for a complete breakdown. Over the last few years, new fungal enzymes with novel activities on hemicelluloses have emerged. In the present study, we explored the synergistic relationships of the xylan-active AA14 lytic polysaccharide monooxygenase (LPMO), PcAA14B, with the recently discovered glucuronoxylan-specific xylanase TtXyn30A, of the (sub)family GH30_7, displaying xylobiohydrolase activity, and with commercial cellobiohydrolases, on pretreated natural lignocellulosic substrates. RESULTS PcAA14B and TtXyn30A showed a strong synergistic interaction on the degradation of the recalcitrant part of xylan. PcAA14B was able to increase the release of xylobiose from TtXyn30A, showing a degree of synergism (DS) of 3.8 on birchwood cellulosic fibers, and up to 5.7 on pretreated beechwood substrates. The increase in activity was dose- and time- dependent. A screening study on beechwood materials pretreated with different methods showed that the effect of the PcAA14B-TtXyn30A synergism was more prominent on substrates with low hemicellulose content, indicating that PcAA14B is mainly active on the recalcitrant part of xylan, which is in close proximity to the underlying cellulose fibers. Simultaneous addition of both enzymes resulted in higher DS than sequential addition. Moreover, PcAA14B was found to enhance cellobiose release from cellobiohydrolases during hydrolysis of pretreated lignocellulosic substrates, as well as microcrystalline cellulose. CONCLUSIONS The results of the present study revealed a new synergistic relationship not only among two recently discovered xylan-active enzymes, the LPMO PcAA14B, and the GH30_7 glucuronoxylan-active xylobiohydrolase TtXyn30A, but also among PcAA14B and cellobiohydrolases. We hypothesize that PcAA14B creates free ends in the xylan polymer, which can be used as targets for the action of TtXyn30A. The results are of special importance for the design of next-generation enzymatic cocktails, able to efficiently remove hemicelluloses, allowing complete saccharification of cellulose in plant biomass.
Collapse
Affiliation(s)
- Anastasia Zerva
- Industrial Biotechnology and Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
- INRAE, Aix Marseille University, Biodiversité Et Biotechnologie Fongiques (BBF), UMR1163, 13009 Marseille, France
| | - Christina Pentari
- Industrial Biotechnology and Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Sacha Grisel
- INRAE, Aix Marseille University, Biodiversité Et Biotechnologie Fongiques (BBF), UMR1163, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille University, Biodiversité Et Biotechnologie Fongiques (BBF), UMR1163, 13009 Marseille, France
| | - Evangelos Topakas
- Industrial Biotechnology and Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
18
|
Fu LH, Jiang N, Li CX, Luo XM, Zhao S, Feng JX. Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis. World J Microbiol Biotechnol 2019; 35:171. [PMID: 31673786 DOI: 10.1007/s11274-019-2747-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022]
Abstract
Fungal endo-β-1,4-xylanases (endo-xylanases) can hydrolyze xylan into xylooligosaccharides (XOS), and have potential biotechnological applications for the exploitation of natural renewable polysaccharides. In the current study, we aimed to screen and characterize an efficient fungal endo-xylanase from 100 natural humus-rich soil samples collected in Guizhou Province, China, using extracted sugarcane bagasse xylan (SBX) as the sole carbon source. Initially, 182 fungal isolates producing xylanases were selected, among which Trichoderma sp. strain TP3-36 was identified as showing the highest xylanase activity of 295 U/mL with xylobiose (X2) as the main product when beechwood xylan was used as substrate. Subsequently, a glycoside hydrolase family 11 endo-xylanase, TXyn11A, was purified from strain TP3-36, and its optimal pH and temperature for activity against beechwood xylan were identified to be 5.0 and 55 °C, respectively. TXyn11A was stable across a broad pH range (3.0-10.0), and exhibited strict substrate specificity, including xylan from beechwood, wheat, rye, and sugarcane bagasse, with Km and Vmax values of 5 mg/mL and 1250 μmol/mg min, respectively, toward beechwood xylan. Intriguingly, the main product obtained from hydrolysis of beechwood xylan by TXyn11A was xylobiose, whereas SBX hydrolysis resulted in both X2 and xylotriose. Overall, these characteristics of the endo-xylanase TXyn11A indicate several potential industrial applications.
Collapse
Affiliation(s)
- Li-Hao Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Nan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
19
|
GH30-7 Endoxylanase C from the Filamentous Fungus Talaromyces cellulolyticus. Appl Environ Microbiol 2019; 85:AEM.01442-19. [PMID: 31492671 DOI: 10.1128/aem.01442-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Glycoside hydrolase family 30 subfamily 7 (GH30-7) enzymes include various types of xylanases, such as glucuronoxylanase, endoxylanase, xylobiohydrolase, and reducing-end xylose-releasing exoxylanase. Here, we characterized the mode of action and gene expression of the GH30-7 endoxylanase from the cellulolytic fungus Talaromyces cellulolyticus (TcXyn30C). TcXyn30C has a modular structure consisting of a GH30-7 catalytic domain and a C-terminal cellulose binding module 1, whose cellulose-binding ability has been confirmed. Sequence alignment of GH30-7 xylanases exhibited that TcXyn30C has a conserved Phe residue at the position corresponding to a conserved Arg residue in GH30-7 glucuronoxylanases, which is required for the recognition of the 4-O-methyl-α-d-glucuronic acid (MeGlcA) substituent. TcXyn30C degraded both glucuronoxylan and arabinoxylan with similar kinetic constants and mainly produced linear xylooligosaccharides (XOSs) with 2 to 3 degrees of polymerization, in an endo manner. Notably, the hydrolysis of glucuronoxylan caused an accumulation of 22-(MeGlcA)-xylobiose (U4m2X). The production of this acidic XOS is likely to proceed via multistep reactions by putative glucuronoxylanase activity that produces 22-(MeGlcA)-XOSs (X n U4m2X, n ≥ 0) in the initial stages of the hydrolysis and by specific release of U4m2X from a mixture containing X n U4m2X. Our results suggest that the unique endoxylanase activity of TcXyn30C may be applicable to the production of linear and acidic XOSs. The gene xyn30C was located adjacent to the putative GH62 arabinofuranosidase gene (abf62C) in the T. cellulolyticus genome. The expression of both genes was induced by cellulose. The results suggest that TcXyn30C may be involved in xylan removal in the hydrolysis of lignocellulose by the T. cellulolyticus cellulolytic system.IMPORTANCE Xylooligosaccharides (XOSs), which are composed of xylose units with a β-1,4 linkage, have recently gained interest as prebiotics in the food and feed industry. Apart from linear XOSs, branched XOSs decorated with a substituent such as methyl glucuronic acid and arabinose also have potential applications. Endoxylanase is a promising tool in producing XOSs from xylan. The structural variety of XOSs generated depends on the substrate specificity of the enzyme as well as the distribution of the substituents in xylan. Thus, the exploration of endoxylanases with novel specificities is expected to be useful in the provision of a series of XOSs. In this study, the endoxylanase TcXyn30C from Talaromyces cellulolyticus was characterized as a unique glycoside hydrolase belonging to the family GH30-7, which specifically releases 22-(4-O-methyl-α-d-glucuronosyl)-xylobiose from hardwood xylan. This study provides new insights into the production of linear and branched XOSs by GH30-7 endoxylanase.
Collapse
|