1
|
Yang Q, Luan M, Wang M, Zhang Y, Liu G, Niu G. Characterizing and Engineering Rhamnose-Inducible Regulatory Systems for Dynamic Control of Metabolic Pathways in Streptomyces. ACS Synth Biol 2024; 13:3461-3470. [PMID: 39377938 DOI: 10.1021/acssynbio.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Fine-tuning gene expression is of great interest for synthetic biotechnological applications. This is particularly true for the genus Streptomyces, which is well-known as a prolific producer of diverse natural products. Currently, there is an increasing demand to develop effective gene induction systems. In this study, bioinformatic analysis revealed a putative rhamnose catabolic pathway in multiple Streptomyces species, and the removal of the pathway in the model organism Streptomyces coelicolor impaired its growth on minimal media with rhamnose as the sole carbon source. To unravel the regulatory mechanism of RhaR, a LacI family transcriptional regulator of the catabolic pathway, electrophoretic mobility shift assays (EMSAs) were performed to identify potential target promoters. Multiple sequence alignments retrieved a consensus sequence of the RhaR operator (rhaO). A synthetic biology-based strategy was then deployed to build rhamnose-inducible regulatory systems, referred to as rhaRS1 and rhaRS2, by assembling the repressor/operator pair RhaR/rhaO with the well-defined constitutive kasO* promoter. Both rhaRS1 and rhaRS2 exhibited a high level of induced reporter activity, with no leaky expression. rhaRS2 has been proven successful for the programmable production of actinorhodin and violacein in Streptomyces. Our study expanded the toolkit of inducible regulatory systems that will be broadly applicable to many other Streptomyces species.
Collapse
Affiliation(s)
- Qian Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mengao Luan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Meiyan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yuxin Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoqiang Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoqing Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Ke J, Shen J, Wang H, Zhang X, Wang Y, Chen G, Feng G. Identification of an Endogenous Strong Promoter in Burkholderia sp. JP2-270. Microorganisms 2024; 12:1818. [PMID: 39338492 PMCID: PMC11434214 DOI: 10.3390/microorganisms12091818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Burkholderia is the second largest source of natural product bacteria after Actinomyces and can produce many secondary metabolites including pyrrolnitrin (PRN). Natural products of microbial origin are usually found in trace amounts, so in metabolic engineering, promoter engineering is often used to regulate gene expression to increase yield. In this study, an endogenous strong promoter was identified based on RNA-seq to overexpress biosynthetic genes to increase the production of PRN. By analyzing the transcriptomic data of the antagonistic bacterium Burkholderia sp. JP2-270 in three different development periods, we screened 50 endogenous promoters with high transcriptional activity, nine of which were verified by an obvious fluorescent signal via fluorescence observation. Then, combined with RT-qPCR analysis, Php, the promoter of a hypothetical protein, was found to be significantly expressed in all three periods. In order to increase the suitability of endogenous promoters, the promoter Php was shortened at different lengths, and the results show that a sequence length of 173 bp was necessary for its activity. Moreover, this promoter was used to overexpress the PRN biosynthesis genes (prnA, prnB, prnC and prnD) in JP2-270, resulting in a successful increase in gene expression levels by 40-80 times. Only the overexpression of the prnB gene successfully increased PRN production to 1.46 times that of the wild type. Overall, the endogenous strong promoters screened in this study can improve gene expression and increase the production of secondary metabolites in JP2-270 and other strains.
Collapse
Affiliation(s)
- Jing Ke
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiamin Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Haoran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Xinxin Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yucong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
3
|
Yap ZL, Rahman ASMZ, Hogan AM, Levin DB, Cardona ST. A CRISPR-Cas-associated transposon system for genome editing in Burkholderia cepacia complex species. Appl Environ Microbiol 2024; 90:e0069924. [PMID: 38869300 PMCID: PMC11267881 DOI: 10.1128/aem.00699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Genome editing in non-model bacteria is important to understand gene-to-function links that may differ from those of model microorganisms. Although species of the Burkholderia cepacia complex (Bcc) have great biotechnological capacities, the limited genetic tools available to understand and mitigate their pathogenic potential hamper their utilization in industrial applications. To broaden the genetic tools available for Bcc species, we developed RhaCAST, a targeted DNA insertion platform based on a CRISPR-associated transposase driven by a rhamnose-inducible promoter. We demonstrated the utility of the system for targeted insertional mutagenesis in the Bcc strains B. cenocepacia K56-2 and Burkholderia multivorans ATCC17616. We showed that the RhaCAST system can be used for loss- and gain-of-function applications. Importantly, the selection marker could be excised and reused to allow iterative genetic manipulation. The RhaCAST system is faster, easier, and more adaptable than previous insertional mutagenesis tools available for Bcc species and may be used to disrupt pathogenicity elements and insert relevant genetic modules, enabling Bcc biotechnological applications. IMPORTANCE Species of the Burkholderia cepacia complex (Bcc) have great biotechnological potential but are also opportunistic pathogens. Genetic manipulation of Bcc species is necessary to understand gene-to-function links. However, limited genetic tools are available to manipulate Bcc, hindering our understanding of their pathogenic traits and their potential in biotechnological applications. We developed a genetic tool based on CRISPR-associated transposase to increase the genetic tools available for Bcc species. The genetic tool we developed in this study can be used for loss and gain of function in Bcc species. The significance of our work is in expanding currently available tools to manipulate Bcc.
Collapse
Affiliation(s)
- Zhong Ling Yap
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Li R, Lichstrahl MS, Zandi TA, Kahlert L, Townsend CA. The dabABC operon is a marker of C4-alkylated monobactam biosynthesis and responsible for ( 2S, 3R)-diaminobutyrate production. iScience 2024; 27:109202. [PMID: 38433893 PMCID: PMC10906522 DOI: 10.1016/j.isci.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) assemble metabolites of medicinal and commercial value. Both serine and threonine figure prominently in these processes and separately can be converted to the additional NRPS building blocks 2,3-diaminopropionate (Dap) and 2,3-diaminobutyrate (Dab). Here we bring extensive bioinformatics, in vivo and in vitro experimentation to compose a unified view of the biosynthesis of these widely distributed non-canonical amino acids that both derive by pyridoxal-mediated β-elimination of the activated O-phosphorylated substrates followed by β-addition of an amine donor. By examining monobactam biosynthesis in Pseudomonas and in Burkholderia species where it is silent, we show that (2S,3R)-Dab synthesis depends on an l-threonine kinase (DabA), a β-replacement reaction with l-aspartate (DabB) and an argininosuccinate lyase-like protein (DabC). The growing clinical importance of monobactams to both withstand Ambler Class B metallo-β-lactamases and retain their antibiotic activity make reprogrammed precursor and NRPS synthesis of modified monobactams a feasible and attractive goal.
Collapse
Affiliation(s)
- Rongfeng Li
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Michael S. Lichstrahl
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Trevor A. Zandi
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, MD, USA
| | - Lukas Kahlert
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| |
Collapse
|
5
|
Yuan S, Zheng Y, Du Y, Song M, Sun CC, Cheng F, Yu H. Fine-tuning the cell morphology of Corynebacterium glutamicum via dual-valve regulation for enhanced hyaluronic acid production. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:135-145. [PMID: 39416921 PMCID: PMC11446395 DOI: 10.1016/j.biotno.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/09/2023] [Indexed: 10/19/2024]
Abstract
Enhanced synthesis of hyaluronic acid (HA) with recombinant Corynebacterium glutamicum as production host was achieved in this work. Hyaluronan synthase (HAS), which is a membrane protein acting as a key enzyme in HA biosynthesis, impacts both HA yield and its molecular weight. Cell morphology, which includes size, shape, and surface area, has a large impact on the expression and activity of HAS. Therefore, deliberate regulation of cell morphology holds the potential to enhance HA production. Here, we constructed three modules, namely the transporter module, the morphology tuning module and the HA synthesis module. The transporter module contains a strong constitutive promoter Ptuf and arabinose transport protein was used to control the maximum amount of inducer entering the cell, thus reducing excessive cell deformation. The morphology tuning module contains an arabinose-inducible weak promoter PBAD and a cell-division-relevant gene was used to sense intracellular inducer concentrations and achieve different degrees of change in cell size. These two modules worked together, described as a dual-valve regulation, to achieve fine-tuning of cell morphology, resulting in a 1.87-fold increase in cell length and a 2.08-fold increase in cell membrane. When combined with the HA synthesis module, the HA titer reached 16.0 g/L, which was 1.6 times the yield reported in the previous morphology-engineered strain. Hence, for the first time, a morphologically engineered strain resulting in both high cell density and HA titer was constructed.
Collapse
Affiliation(s)
- Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Yukun Zheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Mingye Song
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Claudia Chen Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Fangyu Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
6
|
Chlebek JL, Leonard SP, Kang-Yun C, Yung MC, Ricci DP, Jiao Y, Park DM. Prolonging genetic circuit stability through adaptive evolution of overlapping genes. Nucleic Acids Res 2023; 51:7094-7108. [PMID: 37260076 PMCID: PMC10359631 DOI: 10.1093/nar/gkad484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
The development of synthetic biological circuits that maintain functionality over application-relevant time scales remains a significant challenge. Here, we employed synthetic overlapping sequences in which one gene is encoded or 'entangled' entirely within an alternative reading frame of another gene. In this design, the toxin-encoding relE was entangled within ilvA, which encodes threonine deaminase, an enzyme essential for isoleucine biosynthesis. A functional entanglement construct was obtained upon modification of the ribosome-binding site of the internal relE gene. Using this optimized design, we found that the selection pressure to maintain functional IlvA stabilized the production of burdensome RelE for >130 generations, which compares favorably with the most stable kill-switch circuits developed to date. This stabilizing effect was achieved through a complete alteration of the allowable landscape of mutations such that mutations inactivating the entangled genes were disfavored. Instead, the majority of lineages accumulated mutations within the regulatory region of ilvA. By reducing baseline relE expression, these more 'benign' mutations lowered circuit burden, which suppressed the accumulation of relE-inactivating mutations, thereby prolonging kill-switch function. Overall, this work demonstrates the utility of sequence entanglement paired with an adaptive laboratory evolution campaign to increase the evolutionary stability of burdensome synthetic circuits.
Collapse
Affiliation(s)
- Jennifer L Chlebek
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sean P Leonard
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Christina Kang-Yun
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Mimi C Yung
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Dante P Ricci
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yongqin Jiao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Dan M Park
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
7
|
Lewis J, Scott NE. CRISPRi-Mediated Silencing of Burkholderia O-Linked Glycosylation Systems Enables the Depletion of Glycosylation Yet Results in Modest Proteome Impacts. J Proteome Res 2023; 22:1762-1778. [PMID: 36995114 PMCID: PMC10243306 DOI: 10.1021/acs.jproteome.2c00790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Indexed: 03/31/2023]
Abstract
The process of O-linked protein glycosylation is highly conserved across the Burkholderia genus and mediated by the oligosaccharyltransferase PglL. While our understanding of Burkholderia glycoproteomes has increased in recent years, little is known about how Burkholderia species respond to modulations in glycosylation. Utilizing CRISPR interference (CRISPRi), we explored the impact of silencing of O-linked glycosylation across four species of Burkholderia; Burkholderia cenocepacia K56-2, Burkholderia diffusa MSMB375, Burkholderia multivorans ATCC17616, and Burkholderia thailandensis E264. Proteomic and glycoproteomic analyses revealed that while CRISPRi enabled inducible silencing of PglL, this did not abolish glycosylation, nor recapitulate phenotypes such as proteome changes or alterations in motility that are associated with glycosylation null strains, despite inhibition of glycosylation by nearly 90%. Importantly, this work also demonstrated that CRISPRi induction with high levels of rhamnose leads to extensive impacts on the Burkholderia proteomes, which without appropriate controls mask the impacts specifically driven by CRISPRi guides. Combined, this work revealed that while CRISPRi allows the modulation of O-linked glycosylation with reductions up to 90% at a phenotypic and proteome levels, Burkholderia appears to demonstrate a robust tolerance to fluctuations in glycosylation capacity.
Collapse
Affiliation(s)
- Jessica
M. Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute
for Infection and Immunity, Melbourne 3000, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute
for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
8
|
Do T, Thokkadam A, Leach R, Link AJ. Phenotype-Guided Comparative Genomics Identifies the Complete Transport Pathway of the Antimicrobial Lasso Peptide Ubonodin in Burkholderia. ACS Chem Biol 2022; 17:2332-2343. [PMID: 35802499 PMCID: PMC9454059 DOI: 10.1021/acschembio.2c00420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New antibiotics are needed as bacterial infections continue to be a leading cause of death, but efforts to develop compounds with promising antibacterial activity are hindered by a poor understanding of─and limited strategies for elucidating─their modes of action. We recently discovered a novel lasso peptide, ubonodin, that is active against opportunistic human lung pathogens from the Burkholderia cepacia complex (Bcc). Ubonodin inhibits RNA polymerase, but only select strains were susceptible, indicating that having a conserved cellular target does not guarantee activity. Given the cytoplasmic target, we hypothesized that cellular uptake of ubonodin determines susceptibility. Although Bcc strains harbor numerous nutrient uptake systems, these organisms lack close homologues of the single known lasso peptide membrane receptor, FhuA. Thus, a straightforward homology-driven approach failed to uncover the identity of the ubonodin transporter(s). Here, we used phenotype-guided comparative genomics to identify genes uniquely associated with ubonodin-susceptible Bcc strains, leading to the identification of PupB as the ubonodin outer membrane (OM) receptor in Burkholderia. The loss of PupB renders B. cepacia resistant to ubonodin, whereas expressing PupB sensitizes a resistant strain. We also examine how a conserved iron-regulated transcriptional pathway controls PupB to further tune ubonodin susceptibility. PupB is only the second lasso peptide OM receptor to be uncovered and the first outside of enterobacteria. Finally, we elucidate the full transport pathway for ubonodin by identifying its inner membrane receptor YddA in Burkholderia. Our work provides a complete picture of the mode of action of ubonodin and establishes a general framework for deciphering the transport pathways of other natural products with cytoplasmic targets.
Collapse
Affiliation(s)
- Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Alina Thokkadam
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Robert Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|