1
|
Vinothini K, Nakkeeran S, Saranya N, Jothi P, Prabu G, Pavitra K, Afzal M. Metagenomic profiling of tomato rhizosphere delineates the diverse nature of uncultured microbes as influenced by Bacillus velezensis VB7 and Trichoderma koningiopsis TK towards the suppression of root-knot nematode under field conditions. 3 Biotech 2024; 14:2. [PMID: 38058363 PMCID: PMC10695903 DOI: 10.1007/s13205-023-03851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
The plant-parasitic Root Knot Nematodes (Meloidogyne spp.,) play a pivotal role to devastate vegetable crops across the globe. Considering the significance of plant-microbe interaction in the suppression of Root Knot Nematode, we investigated the diversity of microbiome associated with bioagents-treated and nematode-infected rhizosphere soil samples through metagenomics approach. The wide variety of organisms spread across different ecosystems showed the highest average abundance within each taxonomic level. In the rhizosphere, Proteobacteria, Firmicutes, and Actinobacteria were the dominant bacterial taxa, while Ascomycota, Basidiomycota, and Mucoromycota were prevalent among the fungal taxa. Regardless of the specific treatments, bacterial genera like Bacillus, Sphingomonas, and Pseudomonas were consistently found in high abundance. Shannon diversity index vividly ensured that, bacterial communities were maximum in B. velezensis VB7-treated soil (1.4-2.4), followed by Root Knot Nematode-associated soils (1.3-2.2), whereas richness was higher with Trichoderma konigiopsis TK drenched soils (1.3-2.0). The predominant occurrence of fungal genera such as Aspergillus Epicoccum, Choanephora, Alternaria and Thanatephorus habituate rhizosphere soils. Shannon index expressed the abundant richness of fungal species in treated samples (1.04-0.90). Further, refraction and species diversity curve also depicted a significant increase with maximum diversity of fungal species in B. velezensis VB7-treated soil than T. koningiopsis and nematode-infested soil. In field trial, bioagents-treated tomato plant (60% reduction of Meloidogyne incognita infection) had reduced gall index along with enhanced plant growth and increased fruit yield in comparison with the untreated plant. Hence, B. velezensis VB7 and T. koingiopsis can be well explored as an antinemic bioagents against RKN. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03851-1.
Collapse
Affiliation(s)
- K. Vinothini
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - S. Nakkeeran
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - N. Saranya
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - P. Jothi
- Department of Nematology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - G. Prabu
- Director, Syngenome (OPC) Private Limited, Coimbatore, Tamil Nadu 641 003 India
| | - K. Pavitra
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Faqir Y, Chai Y, Jakhar AM, Luo T, Liao S, Kalhoro MT, Tan C, Sajid S, Hu S, Luo J, Liu S, Umer N, Ma J. Chitosan microspheres-based controlled-release nitrogen fertilizers improve the biological characteristics of Brassica rapa ssp. pekinensis and the soil. Int J Biol Macromol 2023; 253:127124. [PMID: 37776931 DOI: 10.1016/j.ijbiomac.2023.127124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Present study investigates the impact of chitosan microspheres-based controlled-release nitrogen fertilizer (Cm-CRNFs) on biological characteristics of Brassica rapa ssp. pekinensis (Chinese cabbage) and soil. The study was carried out under various four treatments, urea (0.8033 g), blank chitosan microspheres (without urea), Cm-CRNFs (0.8033 g), and a control group (CK). The results indicated that Cm-CRNFs significantly prolonged the nitrogen release and enhanced the plant shoot length, shoot diameter, number of branches, pods, total amino acids, and vitamin C of Brassica rapa ssp. pekinensis as well as increased the soil nutrient availability. Chao index of bacterial diversity analysis showed a significant reduction of 15.89 % in Cm-CRNFs, but the Shannon index value in Cm-CRNFs was increased by 23.55 % compared to CK. Furthermore, Cm-CRNFs treatment significantly influenced genus richness level of Arthrobacter, Archangium, Bacillus, and Flavihumibacter. Moreover, relative abundance of bacteria significantly enhanced Cm-CRNFs, including Acidobacteriota, Acitinobacteriota, Cloroflexi, Cyanobacteria, and Patescibacteria. Soil enzyme activity such as: urease, acid phosphatase, and catalase enzymes in Cm-CRNFs and urea treatment significantly increased. Besides, other enzymes such as: cellulase and β-glucosidase activity decreased in the Cm-CRNFs treatment. It was concluded that Cm-CRNFs potentially prolonged discharge of micro/macronutrients and improved soil bacterial diversity, which ultimately enhanced the soil fertility and improved the soil enzyme activity.
Collapse
Affiliation(s)
- Yahya Faqir
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yunlong Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ali Murad Jakhar
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Plant Sciences, University of Sindh, Jamshoro 76060, Pakistan
| | - Tong Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiyu Liao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mohammad Talib Kalhoro
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Sumbal Sajid
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, PR China
| | - Shiqi Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiali Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shutong Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Niaz Umer
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiahua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
3
|
Messele YE, Werid GM, Petrovski K. Meta-Analysis on the Global Prevalence of Tetracycline Resistance in Escherichia coli Isolated from Beef Cattle. Vet Sci 2023; 10:479. [PMID: 37505883 PMCID: PMC10385540 DOI: 10.3390/vetsci10070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is an emerging global concern, with the widespread use of antimicrobials in One Health contributing significantly to this phenomenon. Among various antimicrobials, tetracyclines are extensively used in the beef cattle industry, potentially contributing to the development of resistance in bacterial populations. This meta-analysis aimed to examine the association between tetracycline use in beef cattle and the development of tetracycline resistance in Escherichia coli isolates. A comprehensive search was conducted using multiple databases to gather relevant observational studies evaluating tetracycline use and tetracycline resistance in Escherichia coli isolates from beef cattle. The rate of tetracycline resistance from each study served as the effect measure and was pooled using a random-effects model, considering possible disparities among studies. The meta-analysis of 14 prospective longitudinal studies resulted in a 0.31 prevalence of tetracycline resistance in Escherichia coli in non-intervention (no exposure), contrasting numerically elevated resistance rates in the intervention (exposed) groups of 0.53 and 0.39 in those receiving tetracyclines via feed or systemically, respectively. Despite the observed numerical differences, no statistically significant differences existed between intervention and non-intervention groups, challenging the conventional belief that antimicrobial use in livestock inherently leads to increased AMR. The findings of this study underscore the need for additional research to fully understand the complex relationship between antimicrobial use and AMR development. A considerable degree of heterogeneity across studies, potentially driven by variations in study design and diverse presentation of results, indicates the intricate and complex nature of AMR development. Further research with standardized methodologies might help elucidate the relationship between tetracycline use and resistance in Escherichia coli isolated from beef cattle.
Collapse
Affiliation(s)
- Yohannes E Messele
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Kiro Petrovski
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| |
Collapse
|
4
|
Oyaba Yinda LED, Onanga R, Mbehang Nguema PP, Akomo-Okoue EF, Nsi Akoue G, Longo Pendy NM, Otsaghe Ekore D, Lendamba RW, Mabika-Mabika A, Mbeang JCO, Poungou N, Ibrahim, Mavoungou JF, Godreuil S. Phylogenetic Groups, Pathotypes and Antimicrobial Resistance of Escherichia coli Isolated from Western Lowland Gorilla Faeces ( Gorilla gorilla gorilla) of Moukalaba-Doudou National Park (MDNP). Pathogens 2022; 11:1082. [PMID: 36297139 PMCID: PMC9607589 DOI: 10.3390/pathogens11101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: Terrestrial mammals in protected areas have been identified as a potential source of antimicrobial-resistant bacteria. Studies on antimicrobial resistance in gorillas have already been conducted. Thus, this study aimed to describe the phylogroups, pathotypes and prevalence of antimicrobial resistance of Escherichia coli isolated from western lowland gorilla's faeces living in MDNP. (2) Materials and Methods: Ninety-six faecal samples were collected from western lowland gorillas (Gorilla gorilla gorilla) during daily monitoring in the MDNP. Sixty-four E. coli isolates were obtained and screened for phylogenetic and pathotype group genes by polymerase chain reaction (PCR) after DNA extraction. In addition, antimicrobial susceptibility was determined by the disk diffusion method on Mueller Hinton agar. (3) Results: Sixty-four (64%) isolates of E. coli were obtained from samples. A high level of resistance to the beta-lactam family, a moderate rate for fluoroquinolone and a low rate for aminoglycoside was obtained. All E. coli isolates were positive in phylogroup PCR with a predominance of A (69% ± 11.36%), followed by B2 (20% ± 19.89%) and B1 (10% ± 8.90%) and low prevalence for D (1% ± 3.04%). In addition, twenty E. coli isolates (31%) were positive for pathotype PCR, such as EPEC (85% ± 10.82%) and EPEC/EHEC (15% ± 5.18%) that were obtained in this study. The majority of these MDR E. coli (DECs) belonged to phylogenetic group A, followed by MDR E. coli (DECs) belonging to group B2. (4) Conclusion: This study is the first description of MDR E. coli (DECs) assigned to phylogroup A in western lowland gorillas from the MDNP in Gabon. Thus, wild gorillas in MDNP could be considered as asymptomatic carriers of potential pathogenic MDR E. coli (DECs) that may present a potential risk to human health.
Collapse
Affiliation(s)
| | - Richard Onanga
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | | | | | | | - Neil Michel Longo Pendy
- Laboratory of Vector Ecology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Desire Otsaghe Ekore
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Roméo Wenceslas Lendamba
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Arsène Mabika-Mabika
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | | | - Natacha Poungou
- Microbiology Laboratory, Research Institute for Tropical Ecology, Libreville P.O. Box 13354, Gabon
| | - Ibrahim
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville P.O. Box 913, Gabon
| | | | - Sylvain Godreuil
- Laboratoire de Bactériologie, CHU de Montpellier, UMR MIVEGEC (IRD, CNRS, Université de Montpellier), 34295 Montpellier, France
| |
Collapse
|
5
|
Behera S, Priyadarshanee M, Das S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. CHEMOSPHERE 2022; 294:133723. [PMID: 35085614 DOI: 10.1016/j.chemosphere.2022.133723] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The rising plastic pollution deteriorates the environment significantly as these petroleum-based plastics are not biodegradable, and their production requires natural fuels (energy source) and other resources. Polyhydroxyalkanoates (PHAs) are bioplastic and a sustainable and eco-friendly alternative to synthetic plastics. PHAs can be entirely synthesized using various microorganisms such as bacteria, algae, and fungi. These value-added biopolymers show promising properties such as enhanced biodegradability, biocompatibility, and other chemo-mechanical properties. Further, it has been established that the properties of PHA polymers depend on the substrates and chemical composition (monomer unit) of these polymers. PHAs hold great potential as an alternative to petroleum-based polymers, and further research for economic production and utilization of these biopolymers is required. The review describes the synthesis mechanism and different properties of microbially synthesized PHAs for various applications. The classification of PHAs and the multiple techniques necessary for their detection and evaluation have been discussed. In addition, the synthesis mechanism involving the genetic regulation of these biopolymers in various microbial groups has been described. This review provides information on various commercially available PHAs and their application in multiple sectors. The industrial production of these microbially synthesized polymers and the different extraction methods have been reviewed in detail. Furthermore, the review provides an insight into the potential applications of this biopolymer in environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
6
|
Zhang Y, Schmidt JW, Arthur TM, Wheeler TL, Zhang Q, Wang B. A Farm-to-Fork Quantitative Microbial Exposure Assessment of β-Lactam-Resistant Escherichia coli among U.S. Beef Consumers. Microorganisms 2022; 10:661. [PMID: 35336235 PMCID: PMC8952336 DOI: 10.3390/microorganisms10030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Integrated quantitative descriptions of the transmission of β-lactam-resistant Escherichia coli (BR-EC) from commercial beef products to consumers are not available. Here, a quantitative microbial exposure assessment model was established to simulate the fate of BR-EC in a farm-to-fork continuum and provide an estimate of BR-EC exposure among beef consumers in the U.S. The model compared the per-serving exposures from the consumption of intact beef cuts, non-intact beef cuts, and ground beef. Additionally, scenario analysis was performed to evaluate the relative contribution of antibiotic use during beef cattle production to the level of human exposure to BR-EC. The model predicted mean numbers of BR-EC of 1.7 × 10-4, 8.7 × 10-4, and 6.9 × 10-1 CFU/serving for intact beef cuts, non-intact beef cuts, and ground beef, respectively, at the time of consumption. Sensitivity analyses using the baseline model suggested that factors related to sectors along the supply chain, i.e., feedlots, processing plants, retailers, and consumers, were all important for controlling human exposure to BR-EC. Interventions at the processing and post-processing stages are expected to be most effective. Simulation results showed that a decrease in antibiotic use among beef cattle might be associated with a reduction in exposure to BR-EC from beef consumption. However, the absolute reduction was moderate, indicating that the effectiveness of restricting antibiotic use as a standalone strategy for mitigating human exposure to BR-EC through beef consumption is still uncertain. Good cooking and hygiene practices at home and advanced safety management practices in the beef processing and post-processing continuum are more powerful approaches for reducing human exposure to antibiotic-resistant bacteria in beef products.
Collapse
Affiliation(s)
- Yangjunna Zhang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou 310013, China;
| | - John W. Schmidt
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Terrance M. Arthur
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Tommy L. Wheeler
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Qi Zhang
- Department of Mathematics and Statistics, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Bing Wang
- Department of Food Science and Technology, College of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
7
|
Sheedy DB, Okello E, Williams DR, Precht K, Cella E, Lehenbauer TW, Aly SS. Effect of Antimicrobial Treatment on the Dynamics of Ceftiofur Resistance in Enterobacteriaceae from Adult California Dairy Cows. Microorganisms 2021; 9:828. [PMID: 33919743 PMCID: PMC8070714 DOI: 10.3390/microorganisms9040828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Dairy farm use of antimicrobial drugs (AMD) is a risk for the selection of antimicrobial resistance (AMR); however, these resistance dynamics are not fully understood. A cohort study on two dairy farms enrolled 96 cows with their fecal samples collected three times weekly, for the first 60 days in milk. Enterobacteriaceae were enumerated by spiral plating samples onto MacConkey agar impregnated with 0, 1, 8, 16 and 30 µg/mL ceftiofur. Negative binomial regression analyzed AMR over time. The continuum of ceftiofur concentrations permitted estimation of the minimum inhibitory concentration (MIC) and analysis using interval regression. The most common systemic AMD was ceftiofur, administered in 94% of treatments (15/16 cows). Enterobacteriaceae did not grow in 88% of samples collected from non-AMD treated cows at 8 µg/mL ceftiofur. Samples from AMD treated cows had peak counts of resistant Enterobacteriaceae during AMD treatment and returned to baseline counts by 3-4 days post-treatment at 8 µg/mL. Sensitive Enterobacteriaceae (0-1 µg/mL ceftiofur) were reduced below pre-treated levels for 29-35 days post-AMD treatment. Population MIC peaked during AMD treatment and returned to baseline levels by 7-8 days. We conclude that the effect of systemic ceftiofur on the resistance of Enterobacteriaceae in early lactation dairy cows was limited in duration.
Collapse
Affiliation(s)
- David B. Sheedy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA; (D.B.S.); (E.O.); (D.R.W.); (K.P.); (E.C.); (T.W.L.)
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA; (D.B.S.); (E.O.); (D.R.W.); (K.P.); (E.C.); (T.W.L.)
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, Tulare, CA 95616, USA
| | - Deniece R. Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA; (D.B.S.); (E.O.); (D.R.W.); (K.P.); (E.C.); (T.W.L.)
| | - Katie Precht
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA; (D.B.S.); (E.O.); (D.R.W.); (K.P.); (E.C.); (T.W.L.)
| | - Elisa Cella
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA; (D.B.S.); (E.O.); (D.R.W.); (K.P.); (E.C.); (T.W.L.)
| | - Terry W. Lehenbauer
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA; (D.B.S.); (E.O.); (D.R.W.); (K.P.); (E.C.); (T.W.L.)
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, Tulare, CA 95616, USA
| | - Sharif S. Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA; (D.B.S.); (E.O.); (D.R.W.); (K.P.); (E.C.); (T.W.L.)
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, Tulare, CA 95616, USA
| |
Collapse
|
8
|
Garcês A, Correia S, Silva V, Pereira JE, Amorim F, Igrejas G, Poeta P. Detection of Antimicrobial Resistance in Faecal Escherichia coli from European Free-Tailed Bats (Tadarida teniotis) in Portugal. ACTA CHIROPTEROLOGICA 2020. [DOI: 10.3161/15081109acc2019.21.2.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andreia Garcês
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Susana Correia
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Francisco Amorim
- CIBIO-InBIO – Research Center in Biodiversity and Genetic Resources, University of Porto, Agrarian Campus of Vairão, Portugal
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
9
|
Markland S, Weppelmann TA, Ma Z, Lee S, Mir RA, Teng L, Ginn A, Lee C, Ukhanova M, Galindo S, Carr C, DiLorenzo N, Ahn S, Mah JH, Kim HY, Mai V, Mobley R, Morris JG, Jeong KC. High Prevalence of Cefotaxime Resistant Bacteria in Grazing Beef Cattle: A Cross Sectional Study. Front Microbiol 2019; 10:176. [PMID: 30792707 PMCID: PMC6374349 DOI: 10.3389/fmicb.2019.00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/22/2019] [Indexed: 02/01/2023] Open
Abstract
Although the over-use of antibiotics during food animal production is a potential driver of antimicrobial resistant microorganisms (ARMs), a high prevalence of cefotaxime resistant bacteria (CRB) has been observed in grazing animals raised without antibiotic supplementation. In this cross-sectional study, the prevalence and concentration of CRB in beef cattle on grazing farms were investigated. Fecal samples from the recto-anal junction of cattle (n = 840) and environmental samples (n = 258) were collected from 17 farms in North and Central Florida in the United States, and a survey of farm characteristics, animal husbandry practices, and antibiotic usage was conducted. CRB were detected in fecal samples from 47.4% of all cattle, with the prevalence ranging from 21.1 to 87.5% on farms, and significantly higher (P < 0.001) in calves compared to adult cows (54.1 vs. 41.8%). Environmental samples had a higher prevalence than fecal samples (P < 0.001), with CRB detected in 88.6% of water, 98.7% of soil, and 95.7% of forage samples. Compared to the concentration (log CFU/g) of CRB in fecal samples (2.95, 95% CI: 2.89, 3.02), the concentration of CRB was higher (P < 0.001) in soil and forage samples (5.37, 95% CI: 5.16, 5.57) and lower (P < 0.001) in water samples (1.08, 95% CI: 0.82, 1.36). Soil microbiota from farms with high prevalence of CRB clustered closer together and the proportion of Phylum Proteobacteria was higher on farms with high prevalence of CRB resistance. Large farming operations were associated with a 58% higher likelihood of CRB detection in fecal samples. Regular cleaning of drinking troughs and the addition of ionophores to feed were associated with CRB reduction in fecal samples. Taken together, the widespread of CRB into both cattle seldom treated with cephalosporin antibiotics and the surrounding environment suggests the environment is a natural source of antimicrobial resistance in beef cattle.
Collapse
Affiliation(s)
- Sarah Markland
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Thomas A Weppelmann
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Zhengxin Ma
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Shinyoung Lee
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Raies A Mir
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Lin Teng
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Amber Ginn
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Choonghee Lee
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Maria Ukhanova
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Sebastian Galindo
- Department of Agricultural Education and Communication, University of Florida, Gainesville, FL, United States
| | - Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Nicolas DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL, United States
| | - Soohyoun Ahn
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Jae-Hyung Mah
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Department of Food and Biotechnology, Korea University, Sejong, South Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Volker Mai
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Ray Mobley
- Department of Animal Science, Florida Agricultural and Mechanical University, Tallahassee, FL, United States
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - KwangCheol Casey Jeong
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
10
|
Basulira Y, Olet SA, Alele PE. Inappropriate usage of selected antimicrobials: Comparative residue proportions in rural and urban beef in Uganda. PLoS One 2019; 14:e0209006. [PMID: 30629586 PMCID: PMC6328120 DOI: 10.1371/journal.pone.0209006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/28/2018] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION In most developing countries like Uganda, antimicrobials including β-lactams and tetracyclines are used indiscriminately in livestock. When livestock get sick and treatment is necessary, some producers and veterinarians use these drugs with minimal controls to prevent residues from occurring in the beef sent to markets. This study was done to determine the presence of drug residues above acceptable limits of two commonly used antimicrobials in Uganda's rural and urban beef. METHODS A cross-sectional study was conducted of 134 cattle carcasses from eight different slaughter slabs over twelve weeks. This study entailed 81 samples of rural and 53 samples of urban origin. To enable detailed analysis these samples were categorized according to age (maturity), breed, and sex. For each of the 134 carcasses, three samples of liver, kidney and muscle were taken and homogeneously mixed into one sample, which was tested for β-lactam and tetracycline drug residues. RESULTS The results were statistically significant for β-lactam levels (χ2 = 22.10, df = 10, p = 0.0146) with average concentration (μg/kg) of 2.93:29.3 (rural: urban), though not for tetracycline levels (χ2 = 3.594, df = 10, P = 0.9638) with average concentration (μg/kg) of 5.028:12.83 (rural: urban). Age (maturity) had significant effect at all values of antibiotic level (F(1, 68) = 5.06, p = 0.0278). Age effect was extremely significant (F(1, 68) = 15.51, p = 0.0002). CONCLUSION A significant difference existed in drug residue proportions of β-lactam and tetracycline antimicrobials among Uganda's rural and urban beef. A significant difference also occured in drug residue proportions of these two commonly used antimicrobials related to age (maturity), but neither breed, nor sex, of Uganda's rural and urban beef.
Collapse
Affiliation(s)
- Yake Basulira
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Susan A. Olet
- Department of Biostatistics, Aurora Research Institute, Milwaukee, Wisconsin, United States of America
| | - Paul Erasmus Alele
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
11
|
Salaheen S, Kim SW, Cao H, Wolfgang DR, Hovingh E, Karns JS, Haley BJ, Van Kessel JAS. Antimicrobial Resistance Among Escherichia coli Isolated from Veal Calf Operations in Pennsylvania. Foodborne Pathog Dis 2019; 16:74-80. [DOI: 10.1089/fpd.2018.2530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - Huilin Cao
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - David R. Wolfgang
- Bureau of Animal Health and Diagnostic Services, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Jeffrey S. Karns
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| |
Collapse
|
12
|
Muaz K, Riaz M, Akhtar S, Park S, Ismail A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J Food Prot 2018; 81:619-627. [PMID: 29537307 DOI: 10.4315/0362-028x.jfp-17-086] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Poultry production is among the most rapidly growing industries around the globe, and poultry is one of the major sources of meat. Poultry farmers use disease preventive and growth promoter antibiotics for faster growth of chickens in the shortest possible time to increase the rate of feed assimilation and to lower the incidence of mortality caused by a pathogen attack. Antibiotics may result in dysfunctionality of beneficial gut microbiota and increase resistance among microbial pathogens in poultry. Residues of these antibiotics in poultry meat have been determined in many of the studies globally and are considered one of the possible causes of antibacterial resistance in human pathogens. The presence of residues of antibiotics in poultry meat and meat products beyond maximum permissible limits is a matter of serious concern. Heat treatments can reduce the risk of some sulfonamides, tetracyclines, and fluoroquinolones but do not guarantee the complete elimination or degradation of these antibiotic residues present in broiler meat. Some of the developed countries, including Sweden, Norway, Denmark, and the European Union have already prohibited the application of antibiotics for preventive, as well as growth-promoting purposes. Training farmers to monitor withdrawal periods, banning the use of antibiotics as growth promoters, and adopting the veterinary feed directive of the U.S. Food and Drug Administration are important parameters to mitigate the emergence of antibiotic resistance in bacteria related to poultry production.
Collapse
Affiliation(s)
- Khurram Muaz
- 1 Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; and
| | - Muhammad Riaz
- 1 Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; and
| | - Saeed Akhtar
- 1 Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; and
| | - Sungkwon Park
- 2 Department of Food Science and Biotechnology, Sejong University, 209-Gunja Dong, Seoul, Republic of South Korea
| | - Amir Ismail
- 1 Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; and
| |
Collapse
|
13
|
Cazer CL, Ducrot L, Volkova VV, Gröhn YT. Monte Carlo Simulations Suggest Current Chlortetracycline Drug-Residue Based Withdrawal Periods Would Not Control Antimicrobial Resistance Dissemination from Feedlot to Slaughterhouse. Front Microbiol 2017; 8:1753. [PMID: 29033901 PMCID: PMC5627025 DOI: 10.3389/fmicb.2017.01753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial use in beef cattle can increase antimicrobial resistance prevalence in their enteric bacteria, including potential pathogens such as Escherichia coli. These bacteria can contaminate animal products at slaughterhouses and cause food-borne illness, which can be difficult to treat if it is due to antimicrobial resistant bacteria. One potential intervention to reduce the dissemination of resistant bacteria from feedlot to consumer is to impose a withdrawal period after antimicrobial use, similar to the current withdrawal period designed to prevent drug residues in edible animal meat. We investigated tetracycline resistance in generic E. coli in the bovine large intestine during and after antimicrobial treatment by building a mathematical model of oral chlortetracycline pharmacokinetics-pharmacodynamics and E. coli population dynamics. We tracked three E. coli subpopulations (susceptible, intermediate, and resistant) during and after treatment with each of three United States chlortetracycline indications (liver abscess reduction, disease control, disease treatment). We compared the proportion of resistant E. coli before antimicrobial use to that at several time points after treatment and found a greater proportion of resistant enteric E. coli after the current withdrawal periods than prior to treatment. In order for the proportion of resistant E. coli in the median beef steer to return to the pre-treatment level, withdrawal periods of 15 days after liver abscess reduction dosing (70 mg daily), 31 days after disease control dosing (350 mg daily), and 36 days after disease treatment dosing (22 mg/kg bodyweight for 5 days) are required in this model. These antimicrobial resistance withdrawal periods would be substantially longer than the current U.S. withdrawals of 0–2 days or Canadian withdrawals of 5–10 days. One published field study found similar time periods necessary to reduce the proportion of resistant E. coli following chlortetracycline disease treatment to those suggested by this model, but additional carefully designed field studies are necessary to confirm the model results. This model is limited to biological processes within the cattle and does not include resistance selection in the feedlot environment or co-selection of chlortetracycline resistance following other antimicrobial use.
Collapse
Affiliation(s)
- Casey L Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, United States
| | - Lucas Ducrot
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, United States
| | - Victoriya V Volkova
- Department of Diagnostic Medicine/Pathobiology, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State UniversityManhattan, KS, United States
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, United States
| |
Collapse
|
14
|
Ibekwe AM, Murinda SE, DebRoy C, Reddy GB. Potential pathogens, antimicrobial patterns and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater. FEMS Microbiol Ecol 2016; 92:fiw006. [PMID: 26839381 DOI: 10.1093/femsec/fiw006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli populations originating from swine houses through constructed wetlands were analyzed for potential pathogens, antimicrobial susceptibility patterns, and genotypic diversity. Escherichia coli isolates (n = 493) were screened for the presence of the following virulence genes: stx1, stx2 and eae (Shiga toxin-producing E. coli [STEC]), heat-labile enterotoxin (LT) genes and heat stable toxin STa and STb (enterotoxigenic E. coli (ETEC), cytotoxin necrotizing factors 1 and 2 (cnf1 and cnf2 [necrotoxigenic E. coli- NTEC]), as well as O and H antigens, and the presence of the antibiotic resistance genes blaTEM, blaSHV, blaCMY-2, tet A, tet B, tet C, mph(A), aadA, StrA/B, sul1, sul2 and sul3. The commensal strains were further screened for 16 antimicrobials and characterized by BOX AIR-1 PCR for unique genotypes. The highest antibiotic resistance prevalence was for tetracycline, followed by erythromycin, ampicillin, streptomycin, sulfisoxazole and kanamycin. Our data showed that most of the isolates had high distribution of single or multidrug-resistant (MDR) genotypes. Therefore, the occurrence of MDR E. coli in the wetland is a matter of great concern due to possible transfer of resistance genes from nonpathogenic to pathogenic strains or vice versa in the environment.
Collapse
Affiliation(s)
- A M Ibekwe
- USDA-ARS, U. S. Salinity Laboratory, 450 W. Big Springs Rd, Riverside, CA 92507, USA
| | - Shelton E Murinda
- Department of Animal and Veterinary Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Chitrita DebRoy
- E. coli Reference Center, Pennsylvania State University, State College, PA 16802, USA
| | - Gudigopura B Reddy
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
15
|
Titilawo Y, Obi L, Okoh A. Antimicrobial resistance determinants of Escherichia coli isolates recovered from some rivers in Osun State, South-Western Nigeria: Implications for public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 523:82-94. [PMID: 25862994 DOI: 10.1016/j.scitotenv.2015.03.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
The inevitable development of resistance has sunk the great success achieved in the discovery of antimicrobial agents and dashed the hope of man in the recovery from infections and illnesses, as diseases and disease agents that were once thought to be controlled by antimicrobials are now re-emerging in new leagues resistance to therapy. A total of 300 PCR confirmed Escherichia coli isolates recovered from different river sources in Osun State, Nigeria were evaluated for their antibiogram profiling by the disc diffusion method and the resistant isolates were further profiled for their genotypic antimicrobial resistance determinants by polymerase chain reaction assays. Among the 20 antimicrobials selected from 10 families, resistance among sulfonamides, β-lactams and tetracyclines were found to be most frequent than phenicols and aminoglycosides with a noticeable increase in the number of multi-drug resistance ranging from three to nine antimicrobials. A total of 19 resistance determinants were assessed with their prevalence and distributions obtained as follows; [sulfonamides sulI (8%), sulII (41%)], [β-lactams; ampC 22%; blaTEM, (21%), and blaZ (18%),], [tetracyclines tetA (24%), tetB (23%), tetC (18%), tetD (78%), tetK (15%), and tetM, (10%)], [phenicols; catI (37%), catII (28%), and cmIA1 (19%)] and [aminoglycosides; aacC2 (8%), aphA1 (80%), aphA2 (80%), aadA (79%) and strA (38%)]. The Pearson chi-square exact test revealed many strong significant associations among ampC, blaTEM, blaZ and tetA genes with some determinants screened. The findings signify high increase in the prevalence of multidrug resistant E. coli isolates and resistance determinants indicating increased public health risks associated with the ingestion of waters from untreated sources. Hence, a necessity for safe water supply, provision of proper sanitation facilities and good surveillance programmes to monitor antimicrobial resistance patterns in water bodies.
Collapse
Affiliation(s)
- Yinka Titilawo
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | - Larry Obi
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
16
|
Impact of medicated feed along with clay mineral supplementation on Escherichia coli resistance to antimicrobial agents in pigs after weaning in field conditions. Res Vet Sci 2015; 102:72-9. [PMID: 26412523 DOI: 10.1016/j.rvsc.2015.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/04/2015] [Accepted: 07/19/2015] [Indexed: 01/31/2023]
Abstract
The aim of this study was to examine changes in antimicrobial resistance (AMR) phenotype and virulence and AMR gene profiles in Escherichia coli from pigs receiving in-feed antimicrobial medication following weaning and the effect of feed supplementation with a clay mineral, clinoptilolite, on this dynamic. Eighty E. coli strains isolated from fecal samples of pigs receiving a diet containing chlortetracycline and penicillin, with or without 2% clinoptilolite, were examined for antimicrobial resistance to 15 antimicrobial agents. Overall, an increased resistance to 10 antimicrobials was observed with time. Supplementation with clinoptilolite was associated with an early increase but later decrease in blaCMY-2, in isolates, as shown by DNA probe. Concurrently, a later increase in the frequency of blaCMY-2 and the virulence genes iucD and tsh was observed in the control pig isolates, being significantly greater than in the supplemented pigs at day 28. Our results suggest that, in the long term, supplementation with clinoptilolite could decrease the prevalence of E. coli carrying certain antimicrobial resistance and virulence genes.
Collapse
|
17
|
Prevalence of Antimicrobial Resistance and Transfer of Tetracycline Resistance Genes in Escherichia coli Isolates from Beef Cattle. Appl Environ Microbiol 2015; 81:5560-6. [PMID: 26048929 DOI: 10.1128/aem.01511-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/02/2015] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistant Escherichia coli isolates recovered from beef cattle in South Korea. A total of 155 E. coli isolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance gene tet(A) (46.5%) was the most prevalent, followed by tet(B) (45.1%) and tet(C) (5.8%). Strains carrying tet(A) plus tet(B) and tet(B) plus tet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carrying tet(B) had higher MIC values than isolates carrying tet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistant E. coli isolates in beef cattle is due to the transferability of tetracycline resistance genes between E. coli populations which have survived the selective pressure caused by the use of antimicrobial agents.
Collapse
|
18
|
Beukers AG, Zaheer R, Cook SR, Stanford K, Chaves AV, Ward MP, McAllister TA. Effect of in-feed administration and withdrawal of tylosin phosphate on antibiotic resistance in enterococci isolated from feedlot steers. Front Microbiol 2015; 6:483. [PMID: 26074889 PMCID: PMC4444845 DOI: 10.3389/fmicb.2015.00483] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/02/2015] [Indexed: 12/24/2022] Open
Abstract
Tylosin phosphate is a macrolide commonly administered to cattle in North America for the control of liver abscesses. This study investigated the effect of in-feed administration of tylosin phosphate to cattle at subtherapeutic levels and its subsequent withdrawal on macrolide resistance using enterococci as an indicator bacterium. Fecal samples were collected from steers that received no antibiotics and steers administered tylosin phosphate (11 ppm) in-feed for 197 days and withdrawn 28 days before slaughter. Enterococcus species isolated from fecal samples were identified through sequencing the groES-EL intergenic spacer region and subject to antimicrobial susceptibility testing, identification of resistance determinants and pulsed-field gel electrophoresis profiling. Tylosin increased (P < 0.05) the proportion of eryR and tylR enterococci within the population. Just prior to its removal, the proportion of eryR and tylR resistant enterococci began decreasing and continued to decrease after tylosin was withdrawn from the diet until there was no difference (P > 0.05) between treatments on d 225. This suggests that antibiotic withdrawal prior to slaughter contributes to a reduction in the proportion of macrolide resistant enterococci entering the food chain. Among the 504 enterococci isolates characterized, Enterococcus hirae was found to predominate (n = 431), followed by Enterococcus villorum (n = 32), Enterococcus faecium (n = 21), Enterococcus durans (n = 7), Enterococcus casseliflavus (n = 4), Enterococcus mundtii (n = 4), Enterococcus gallinarum (n = 3), Enterococcus faecalis (n = 1), and Enterococcus thailandicus (n = 1). The diversity of enterococci was greater in steers at arrival than at exit from the feedlot. Erythromycin resistant isolates harbored the erm(B) and/or msrC gene. Similar PFGE profiles of eryRE. hirae pre- and post-antibiotic treatment suggest that increased abundance of eryR enterococci after administration of tylosin phosphate reflects selection for strains that were already present within the gastrointestinal tract of cattle at arrival.
Collapse
Affiliation(s)
- Alicia G Beukers
- Faculty of Veterinary Science, The University of Sydney Sydney, NSW, Australia ; Lethbridge Research Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| | - Shaun R Cook
- Lethbridge Research Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| | - Kim Stanford
- Alberta Agriculture and Rural Development, Lethbridge Research Centre Lethbridge, AB, Canada
| | - Alexandre V Chaves
- Faculty of Veterinary Science, The University of Sydney Sydney, NSW, Australia
| | - Michael P Ward
- Faculty of Veterinary Science, The University of Sydney Sydney, NSW, Australia
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| |
Collapse
|
19
|
Cantas L, Suer K. Review: the important bacterial zoonoses in "one health" concept. Front Public Health 2014; 2:144. [PMID: 25353010 PMCID: PMC4196475 DOI: 10.3389/fpubh.2014.00144] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/01/2014] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED An infectious disease that is transmitted from animals to humans, sometimes by a vector, is called zoonosis. The focus of this review article is on the most common emerging and re-emerging bacterial zoonotic diseases. The role of "One Health" approach, public health education, and some measures that can be taken to prevent zoonotic bacterial infections are discussed. KEY POINTS A zoonotic bacterial disease is a disease that can be very commonly transmitted between animals and humans. Global climate changes, overuse of antimicrobials in medicine, more intensified farm settings, and closer interactions with animals facilitate emergence or re-emergence of bacterial zoonotic infections.The global "One Health" approach, which requires interdisciplinary collaborations and communications in all aspects of health care for humans, animals, and the environment, will support public health in general.New strategies for continuous dissemination of multidisciplinary research findings related to zoonotic bacterial diseases are hence needed.
Collapse
Affiliation(s)
- Leon Cantas
- Norwegian Private Veterinary Services, MicroLab, Hammerfest, Norway
- Department of Medical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Kaya Suer
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
20
|
Yamamoto S, Nakano M, Kitagawa W, Tanaka M, Sone T, Hirai K, Asano K. Characterization of multi-antibiotic-resistant Escherichia coli Isolated from beef cattle in Japan. Microbes Environ 2014; 29:136-44. [PMID: 24789986 PMCID: PMC4103519 DOI: 10.1264/jsme2.me13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emergence of multiple-antibiotic-resistance bacteria is increasing, which is a particular concern on livestock farms. We previously isolated 1,347 antimicrobial-resistant (AMR) Escherichia coli strains from the feces of beef cattle on 14 Japanese farms. In the present study, the genetic backgrounds and phylogenetic relationships of 45 AMR isolates were characterized by the chromosome phylotype, AMR phenotype, AMR genotype, and plasmid type. These isolates were classified into five chromosome phylotypes, which were closely linked to the farms from which they were isolated, suggesting that each farm had its own E. coli phylotype. AMR phenotype and plasmid type analyses yielded 8 and 14 types, all of which were associated with the chromosomal phylotype and, thus, to the original farms. AMR genotype analysis revealed more variety, with 16 types, indicating both inter- and intra-farm diversity. Different phylotype isolates from the same farm shared highly similar plasmid types, which indicated that plasmids with AMR genes could be transferred between phylotypes, thereby generating multi-antibiotic-resistant microorganisms. This ecological study demonstrated that the chromosome phylotype was strongly correlated with the farm from which they were isolated, while the AMR phenotype, genotype, and plasmid type were generally correlated with the chromosome phylotype and farm source.
Collapse
Affiliation(s)
- Shiori Yamamoto
- Applied Microbiology, Graduate School of Agriculture, Hokkaido University
| | | | | | | | | | | | | |
Collapse
|
21
|
Cazer CL, Volkova VV, Gröhn YT. Use of pharmacokinetic modeling to assess antimicrobial pressure on enteric bacteria of beef cattle fed chlortetracycline for growth promotion, disease control, or treatment. Foodborne Pathog Dis 2014; 11:403-11. [PMID: 24588058 DOI: 10.1089/fpd.2013.1677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial use in food animals may increase antimicrobial resistance in their enteric bacteria that can be transferred to human microbiome. Over 70% of U.S. beef feedlots use non-ionophore in-feed antimicrobials for animal disease control, treatment, or growth promotion. The fraction of feedlots feeding chlortetracycline (CTC), mostly for disease control but also for treatment, has increased since the mid-1990s to present. Quantitative information on the antimicrobial selective pressure on the enteric bacteria of cattle fed CTC is lacking. Hence, the purpose of this study was to develop a deterministic mathematical model of the pharmacokinetics of ingested CTC in a beef steer and estimate the concentration of antimicrobially active (undegraded) CTC in the animal's large intestine. To evaluate the fit of the model to existing data, we also estimated the CTC concentrations in the central circulation, and fresh and aging manure from the steer. The model accounted for CTC abiotic degradation while in the gastrointestinal tract, absorption into the central circulation and tissues, biliary and renal excretion, and removal from the intestine by defecation. The model included an increase in the large intestine volume as the steer grew. We estimated that during CTC feeding to a 300-kg steer for growth promotion, the maximal drug concentration in the large intestine was 0.3 μg/mL; during disease control it was 1.7 μg/mL; and during treatment it was 31.5 μg/mL. The estimated CTC concentrations in the central circulation and the steer's manure agreed reasonably well with published data.
Collapse
Affiliation(s)
- Casey L Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | | | | |
Collapse
|
22
|
Burow E, Simoneit C, Tenhagen BA, Käsbohrer A. Oral antimicrobials increase antimicrobial resistance in porcine E. coli – A systematic review. Prev Vet Med 2014; 113:364-75. [DOI: 10.1016/j.prevetmed.2013.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022]
|
23
|
Zhang Y, Zhang C, Parker DB, Snow DD, Zhou Z, Li X. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:631-8. [PMID: 23838056 DOI: 10.1016/j.scitotenv.2013.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 05/07/2023]
Abstract
Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3×10(-1) copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | | | | | | | | |
Collapse
|
24
|
Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Bürgmann H, Sørum H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 2013; 4:96. [PMID: 23675371 PMCID: PMC3653125 DOI: 10.3389/fmicb.2013.00096] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/04/2013] [Indexed: 01/14/2023] Open
Abstract
The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs.
Collapse
Affiliation(s)
- L Cantas
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health? Drug Resist Updat 2013; 16:22-45. [PMID: 23395305 DOI: 10.1016/j.drup.2012.12.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/22/2012] [Indexed: 12/18/2022]
Abstract
Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.
Collapse
|
26
|
Ramos S, Silva N, Caniça M, Capelo-Martinez JL, Brito F, Igrejas G, Poeta P. High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:517-526. [PMID: 22836880 DOI: 10.1002/jsfa.5814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/18/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain.
Collapse
Affiliation(s)
- Sónia Ramos
- Centre of Studies of Animal and Veterinary Sciences, Vila Real, Portugal
| | | | | | | | | | | | | |
Collapse
|
27
|
Evaluating targets for control of plasmid-mediated antimicrobial resistance in enteric commensals of beef cattle: a modelling approach. Epidemiol Infect 2013; 141:2294-312. [DOI: 10.1017/s0950268812002993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYEnteric commensal bacteria of food animals may serve as a reservoir of genes encoding antimicrobial resistance (AMR). The genes are often plasmidic. Different aspects of bacterial ecology can be targeted by interventions to control plasmid-mediated AMR. The field efficacy of interventions remains unclear. We developed a deterministic mathematical model of commensalEscherichia coliin its animate and non-animate habitats within a beef feedlot's pen, with someE. colihaving plasmid-mediated resistance to the cephalosporin ceftiofur. We evaluated relative potential efficacy of within- or outside-host biological interventions delivered throughout rearing depending on the targeted parameter of bacterial ecology. Most instrumental in reducing the fraction of resistant entericE. coliat steer slaughter age were interventions acting on the entericE. coliand capable of either ‘plasmid curing’E. coli, or lowering maximumE. colinumbers or the rate of plasmid transfer in this habitat. Also efficient was to increase the regular replacement of entericE. coli. Lowering replication rate of resistantE. colialone was not an efficient intervention target.
Collapse
|
28
|
Mather AE, Matthews L, Mellor DJ, Reeve R, Denwood MJ, Boerlin P, Reid-Smith RJ, Brown DJ, Coia JE, Browning LM, Haydon DT, Reid SWJ. The diversity of antimicrobial resistance is different in
Salmonella
Typhimurium DT104 from co-located animals and humans. Proc Biol Sci 2012. [DOI: 10.1098/rspb.2012.0614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alison E. Mather
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Louise Matthews
- Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dominic J. Mellor
- Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthew J. Denwood
- Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Derek J. Brown
- Scottish Salmonella Shigella and Clostridium difficile Reference Laboratory, Stobhill Hospital, Glasgow, UK
| | - John E. Coia
- Scottish Salmonella Shigella and Clostridium difficile Reference Laboratory, Stobhill Hospital, Glasgow, UK
| | | | - Daniel T. Haydon
- Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
29
|
Ibekwe AM, Murinda SE, Graves AK. Microbiological evaluation of water quality from urban watersheds for domestic water supply improvement. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:4460-76. [PMID: 22408583 PMCID: PMC3290987 DOI: 10.3390/ijerph8124460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 11/19/2011] [Accepted: 11/25/2011] [Indexed: 11/16/2022]
Abstract
Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC), but as others, such as enterotoxigenic E. coli (ETEC). Pulsed field gel electrophoresis (PFGE) was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern due to possible transfer of resistant genes from nonpathogenic to pathogenic strains that may result in increased duration and severity of morbidity.
Collapse
Affiliation(s)
- A. Mark Ibekwe
- U.S. Salinity Laboratory, USDA-ARS, 450 West Big Springs Road, Riverside, CA 92507, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-951-369-4828; Fax: +1-951-342-4964
| | - Shelton E. Murinda
- Department of Animal and Veterinary Sciences, California State Polytechnic University Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA;
| | - Alexandria K. Graves
- Department of Soil Sciences, North Carolina State University, Williams Hall 3411E, P.O. Box 7619, Raleigh, NC 27695, USA;
| |
Collapse
|
30
|
Abstract
Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes.
Collapse
Affiliation(s)
- Bonnie M. Marshall
- Alliance for the Prudent Use of Antibiotics, Boston, Massachusetts
- Department of Molecular Biology and Microbiology
| | - Stuart B. Levy
- Alliance for the Prudent Use of Antibiotics, Boston, Massachusetts
- Department of Molecular Biology and Microbiology
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
31
|
Abstract
Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes.
Collapse
|
32
|
Su R, Munns K, Beauchemin KA, Schwartzkopf-Genswein K, Jin-Quan L, Topp E, Sharma R. Effect of backgrounding and transition diets on fecal concentration and strain types of commensalEscherichia coliin beef cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas2010-034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Su, R., Munns, K., Beauchemin, K. A., Schwartzkopf-Genswein, K., Jin-Quan, L., Topp, E. and Sharma, R. 2011. Effect of backgrounding and transition diets on fecal concentration and strain types of commensal Escherichia coli in beef cattle. Can. J. Anim. Sci. 91: 449–458. The aim of the study was to assess the effect of four different backgrounding diets [55% corn silage in combination with 40% of either temper rolled barley-grain, wheat dried distillers' grain, corn dried distillers' grain or millrun (dry matter basis)] and a transition diet containing increasing amount of concentrate (60 to 90%) on fecal Escherichia coli in feedlot heifers. Heifers were fed backgrounding forage based diets for 91 d and then were shifted to a transition diet for an additional 18 d. Strain characterization of E. coli (n=224) was carried out at time time points over 109 d and indicated that heifers fed the barley–grain diet shed higher (P<0.001) total and tetracycline-resistant (Tetr) E. coli in the backgrounding phase. Of the total E. coli examined (n=224), 70.3% showed resistance to one or more of the 14 antimicrobials examined, which increased to 82.3% by day 109. Among the recovered E. coli, 23 phenotypes and 154 pulsed field gel electrophoresis patterns grouped into 38 clusters indicative of extensive E. coli diversity in heifers. Although supplementation of 40% barley-grain was correlated to higher total E. coli shedding in the backgrounding phase, the backgrounding diets did not influence strain clustering. Strains collected during the transition phase clustered more closely than those collected during the backgrounding phase. This increased strain clustering with high concentrate inclusion in the transition diet was observed within 18 d of the transition phase. Our study indicated variations in E. coli shedding rates and strain clustering in relation to time and diet.
Collapse
Affiliation(s)
- R. Su
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
- 1391 Standford St, London, ON, Canada N5V 4T3
| | - K. Munns
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
| | - K. A. Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
| | - K. Schwartzkopf-Genswein
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
| | - L. Jin-Quan
- 1391 Standford St, London, ON, Canada N5V 4T3
| | - E. Topp
- Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 10018, China
| | - R. Sharma
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
33
|
Wu R, Alexander T, Li J, Munns K, Sharma R, McAllister T. Prevalence and diversity of class 1 integrons and resistance genes in antimicrobial-resistant Escherichia coli originating from beef cattle administered subtherapeutic antimicrobials. J Appl Microbiol 2011; 111:511-23. [DOI: 10.1111/j.1365-2672.2011.05066.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS One 2011; 6:e20819. [PMID: 21687635 PMCID: PMC3110821 DOI: 10.1371/journal.pone.0020819] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/12/2011] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05) between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE) were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates) of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.
Collapse
|
35
|
Mirzaagha P, Louie M, Sharma R, Yanke LJ, Topp E, McAllister TA. Distribution and characterization of ampicillin- and tetracycline-resistant Escherichia coli from feedlot cattle fed subtherapeutic antimicrobials. BMC Microbiol 2011; 11:78. [PMID: 21504594 PMCID: PMC3103423 DOI: 10.1186/1471-2180-11-78] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 04/19/2011] [Indexed: 11/16/2022] Open
Abstract
Background Feedlot cattle in North America are routinely fed subtherapeutic levels of antimicrobials to prevent disease and improve the efficiency of growth. This practice has been shown to promote antimicrobial resistance (AMR) in subpopulations of intestinal microflora including Escherichia coli. To date, studies of AMR in feedlot production settings have rarely employed selective isolation, therefore yielding too few AMR isolates to enable characterization of the emergence and nature of AMR in E. coli as an indicator bacterium. E. coli isolates (n = 531) were recovered from 140 cattle that were housed (10 animals/pen) in 14 pens and received no dietary antimicrobials (control - 5 pens, CON), or were intermittently administered subtherapeutic levels of chlortetracycline (5 pens-T), chlortetracycline + sulfamethazine (4 pens-TS), or virginiamycin (5 pens-V) for two separate periods over a 9-month feeding period. Phenotype and genotype of the isolates were determined by susceptibility testing and pulsed field gel electrophoresis and distribution of characterized isolates among housed cattle reported. It was hypothesized that the feeding of subtherapeutic antibiotics would increase the isolation of distinct genotypes of AMR E. coli from cattle. Results Overall, patterns of antimicrobial resistance expressed by E. coli isolates did not change among diet groups (CON vs. antibiotic treatments), however; isolates obtained on selective plates (i.e., MA,MT), exhibited multi-resistance to sulfamethoxazole and chloramphenicol more frequently when obtained from TS-fed steers than from other treatments. Antibiograms and PFGE patterns suggested that AMR E. coli were readily transferred among steers within pens. Most MT isolates possessed the tet(B) efflux gene (58.2, 53.5, 40.8, and 50.6% of isolates from CON, T, TS, and V steers, respectively) whereas among the MA (ampicillin-resistant) isolates, the tem1-like determinant was predominant (occurring in 50, 66.7, 80.3, and 100% of isolates from CON, T, TS, and V steers, respectively). Conclusions Factors other than, or in addition to subtherapeutic administration of antibiotics influence the establishment and transmission of AMR E. coli among feedlot cattle.
Collapse
Affiliation(s)
- Parasto Mirzaagha
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Alexander TW, Yanke JL, Reuter T, Topp E, Read RR, Selinger BL, McAllister TA. Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics. BMC Microbiol 2011; 11:19. [PMID: 21261985 PMCID: PMC3037836 DOI: 10.1186/1471-2180-11-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 01/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen) were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control). Model fecal deposits (n = 3) were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of tet, sul and erm resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S-rRNA. RESULTS The concentrations of 16S-rRNA in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of 16S-rRNA differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of tet(B), tet(C), sul1, sul2, erm(A) tended to increase, and decline thereafter, whereas tet(M) and tet(W) gradually declined over 175 days. At day 7, the concentration of erm(X) was greatest in feces from cattle fed tylosin, compared to all other treatments. CONCLUSION The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days with concentrations of some genes increasing with time. Management practices that accelerate DNA degradation such as frequent land application or composting of manure may reduce the extent to which bovine feces serves as a reservoir of antimicrobial resistance.
Collapse
Affiliation(s)
- Trevor W Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta T1J 4B1, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Manaia CM, Vaz-Moreira I, Nunes OC. Antibiotic Resistance in Waste Water and Surface Water and Human Health Implications. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2011. [DOI: 10.1007/698_2011_118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Sharma R, Keffer-Wilkes L, Wu R, Li JQ, John SJ, Topp E. Enumeration and strain characterization of fecal Escherichia coli associated with feeding triticale dried distillers grain with solubles in beef cattle diets. Foodborne Pathog Dis 2010; 7:1323-30. [PMID: 20707734 DOI: 10.1089/fpd.2010.0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Triticale dried distillers grain with solubles (TDDGS), a major by-product of the bioethanol industry, has potential for utilization in animal feed. This study investigated the changes in generic fecal Escherichia coli strains associated with inclusion of TDDGS in cattle diets. Within this study, a longitudinal experiment (112 days) examined the effect of step-up increasing TDDGS inclusion from control to a final diet containing 30% TDDGS among cattle (n = 4), and a short-term experiment (28 days) compared animals (n = 16) fed control, 20%, 25%, or 30% TDDGS diets. We found that incorporation of either 20%, 25%, or 30% TDDGS did not have any effect on the amount of total E. coli shedding over either the longitudinal (p = 0.06) or the short-term (p = 0. 87) study. In both the experiments, 67% of the total E. coli isolates were found to be resistant to one or more of the 17 antimicrobials tested. Among the resistant isolates, cephalothin was the most prevalent resistance (44% isolates). Over the duration of the study, tet(C) was a commonly detected resistance gene in tetracycline-resistant E. coli. Significant diversity was observed among isolates with 33 and 31 pulsed-field gel electrophoresis patterns clustering into 11 and 10 restriction endonuclease digestion pattern clusters for the longitudinal and short-term studies, respectively. Neither the duration of feeding nor increasing the proportion of TDDGS within the diet affected the diversity of E. coli resistance phenotypes or the clonal relatedness of the observed strains. Individual animals retained similar or closely related strains. Based on this study, inclusion of TDDGS as a protein and fiber source in cattle diets is not associated with increased maintenance, shedding, or proliferation of resistant strains of generic E. coli, which is an important reservoir of antimicrobial resistance among cattle.
Collapse
Affiliation(s)
- Ranjana Sharma
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Hölzel C, Harms K, Küchenhoff H, Kunz A, Müller C, Meyer K, Schwaiger K, Bauer J. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides. J Appl Microbiol 2010; 108:1642-56. [DOI: 10.1111/j.1365-2672.2009.04570.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Mirzaagha P, Louie M, Read RR, Sharma R, Yanke LJ, Topp E, McAllister TA. Characterization of tetracycline- and ampicillin-resistant Escherichia coli isolated from the feces of feedlot cattle over the feeding period. Can J Microbiol 2009; 55:750-61. [PMID: 19767846 DOI: 10.1139/w09-015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate tetracycline and ampicillin resistance in Escherichia coli isolated from the feces of 50 crossbred steers housed in 5 feedlot pens. The steers were not administered antibiotics over a 246-day feeding period. A total of 216 isolates were selected for further characterization. The E. coli isolates were selected on MacConkey agar or on MacConkey agar amended with ampicillin (50 microg/mL) or tetracycline (4 microg/mL). Pulsed-field gel electrophoresis (PFGE) typing (XbaI digestion), screening against 11 antibiotics, and multiplex PCR for 14 tet and 3 beta-lactamase genes were conducted. Prevalence of antimicrobial resistance in E. coli at each sampling day was related both temporally and by pen. Multiplex PCR revealed that tet(B) was most prevalent among tetracycline-resistant isolates, whereas beta-lactamase tem1-like was detected mainly in ampicillin-resistant isolates. Our results suggest that antimicrobial resistance in E. coli populations persists over the duration of the feeding period, even in the absence of in-feed antibiotics. Many of the isolates with the same antibiograms had indistinguishable PFGE patterns. Characterization of the factors that influence the nature of this nonselective resistance could provide important information for consideration in the regulation of in-feed antimicrobials for feedlot cattle.
Collapse
Affiliation(s)
- Parasto Mirzaagha
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Longitudinal characterization of resistant Escherichia coli in fecal deposits from cattle fed subtherapeutic levels of antimicrobials. Appl Environ Microbiol 2009; 75:7125-34. [PMID: 19801481 DOI: 10.1128/aem.00944-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Model fecal deposits from cattle fed or not fed antimicrobial growth promoters were examined over 175 days in the field for growth and persistence of total Escherichia coli and numbers and proportions of ampicillin-resistant (Amp(r)) and tetracycline-resistant (Tet(r)) E. coli. In addition, genotypic diversity and the frequency of genetic determinants encoded by Amp(r) and Tet(r) E. coli were investigated. Cattle were fed diets containing chlortetracycline (44 ppm; A44 treatment group), chlortetracycline plus sulfamethazine (both at 44 ppm; AS700 treatment group), or no antibiotics (control). Fecal deposits were sampled 12 times over 175 days. Numbers of Tet(r) E. coli in A44 and AS700 deposits were higher (P < 0.001) than those of controls and represented up to 35.6% and 20.2% of total E. coli, respectively. A time-by-treatment interaction (P < 0.001) was observed for the numbers of Tet(r) and Amp(r) E. coli. Except for Amp(r) E. coli in control deposits, all E. coli numbers increased (P < 0.001) in deposits up to day 56. Even after 175 days, high Tet(r) E. coli numbers were detected in A44 and AS700 deposits [5.9 log(10) CFU (g dry matter)(-1) and 5.4 log(10) CFU (g dry matter)(-1), respectively]. E. coli genotypes, as determined by pulsed-field gel electrophoresis, were diverse and were influenced by the antimicrobial growth promoter and the sampling time. Of the determinants screened, bla(TEM1), tetA, tetB, tetC, sul1, and sul2 were frequently detected. Occurrence of determinants was influenced by the feeding of antimicrobials. Fecal deposits remain a source of resistant E. coli even after a considerable period of environmental exposure.
Collapse
|
42
|
Sharma R, Munns K, John SJ, Penner G, Oba M, Topp E, Beauchemin KA. Commensal fecal Escherichia coli diversity in dairy cows at high and low risk for incurring subacute ruminal acidosis. Foodborne Pathog Dis 2009; 6:973-80. [PMID: 19642917 DOI: 10.1089/fpd.2009.0270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Subacute ruminal acidosis (SARA) is a common digestive disorder in dairy cows characterized by prolonged periods of undesirably low rumen pH (<5.8) and is caused by the accumulation of volatile fatty acids in rumen. This disorder damages the ruminal mucosa, causes diarrhea, reduces dry matter intake (DMI), and can result in anorexia and death. In this study, nonlactating dairy cows were fed diets predisposing them to a high risk (HR; n = 6) or a low risk (LR; n = 6) for experiencing SARA. The goal was to investigate differences in antimicrobial resistance selection, proliferation, and characterization of Escherichia coli strain types among the two treatment groups. Fecal samples were used to isolate total, tetracycline-resistant (Tet(r)), and ampicillin-resistant E. coli, and selected isolates were examined. We found reduced total (1.2-fold) and Tet(r) (1.4-fold) E. coli in HR cows. Low ampicillin-resistant E. coli shedding was detected from both HR (0.22 colony forming unit/g) and LR (0.46 colony forming unit/g) cows. Overall, 39 pulsed-field gel electrophoresis (PFGE) profiles and 13 antibiotic resistance profiles (phenotypes) were identified from the total isolates examined (n = 144). The LR cows exhibited diverse genotypes (22 PFGE profiles) clustering into seven restriction endonuclease digestion pattern clusters (REPCs) within total and Tet(r) E. coli. In comparison, isolates from HR animals showed increased genotypic relatedness (16 PFGE profiles and 13 REPC with comparable phenotypes). From both HR and LR cows, no significant differences in the detection of a particular phenotype were observed (p > 0.05), and tet(A) allele was frequently detected among isolates from HR (45.2%) and tet(B) from LR (36.6%) cows. Changes in fecal E. coli genotypes should be explored further for its usefulness as an indicator for SARA since dairy cows are a reservoir of diverse E. coli strain types. Our results elucidate phenotypic and genotypic differences in fecal E. coli shed between HR and LR cows.
Collapse
Affiliation(s)
- Ranjana Sharma
- Agriculture and Agri-Food Research Centre, Lethbridge, AB T1J 4B1 Canada.
| | | | | | | | | | | | | |
Collapse
|