1
|
Hernández-Herreros N, Rivero-Buceta V, Pardo I, Prieto MA. Production of poly(3-hydroxybutyrate)/poly(lactic acid) from industrial wastewater by wild-type Cupriavidus necator H16. WATER RESEARCH 2024; 249:120892. [PMID: 38007895 DOI: 10.1016/j.watres.2023.120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The massive production of urban and industrial wastes has created a clear need for alternative waste management processes. One of the more promising strategies is to use waste as raw material for the production of biopolymers such as polyhydroxyalkanoates (PHAs). In this work, a lactate-enriched stream obtained by anaerobic digestion (AD) of wastewater (WW) from a candy production plant was used as a feedstock for PHA production in wild-type Cupriavidus necator H16. Unexpectedly, we observed the accumulation of poly(3-hydroxybutyrate)/poly(lactic acid) (P(3HB)/PLA), suggesting that the non-engineered strain already possesses the metabolic potential to produce these polymers of interest. The systematic study of factors, such as incubation time, nitrogen and lactate concentration, influencing the synthesis of P(3HB)/PLA allowed the production of a panel of polymers in a resting cell system with tailored lactic acid (LA) content according to the GC-MS of the biomass. Further biomass extraction suggested the presence of methanol soluble low molecular weight molecules containing LA, while 1 % LA could be detected in the purified polymer fraction. These results suggested that the cells are producing a blend of polymers. A proteomic analysis of C. necator resting cells under P(3HB)/PLA production conditions provides new insights into the latent pathways involved in this process. This study is a proof of concept demonstrating that LA can polymerize in a non-modified organism and paves the way for new metabolic engineering approaches for lactic acid polymer production in the model bacterium C. necator H16.
Collapse
Affiliation(s)
- Natalia Hernández-Herreros
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Virginia Rivero-Buceta
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Isabel Pardo
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Sander K, Abel AJ, Friedline S, Sharpless W, Skerker J, Deutschbauer A, Clark DS, Arkin AP. Eliminating genes for a two-component system increases PHB productivity in Cupriavidus basilensis 4G11 under PHB suppressing, nonstress conditions. Biotechnol Bioeng 2024; 121:139-156. [PMID: 37638652 DOI: 10.1002/bit.28532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Species of bacteria from the genus Cupriavidus are known, in part, for their ability to produce high amounts of poly-hydroxybutyrate (PHB) making them attractive candidates for bioplastic production. The native synthesis of PHB occurs during periods of metabolic stress, and the process regulating the initiation of PHB accumulation in these organisms is not fully understood. Screening an RB-TnSeq transposon library of Cupriavidus basilensis 4G11 allowed us to identify two genes of an apparent, uncharacterized two-component system, which when omitted from the genome enable increased PHB productivity in balanced, nonstress growth conditions. We observe average increases in PHB productivity of 56% and 41% relative to the wildtype parent strain upon deleting each gene individually from the genome. The increased PHB phenotype disappears, however, in nitrogen-free unbalanced growth conditions suggesting the phenotype is specific to fast-growing, replete, nonstress growth. Bioproduction modeling suggests this phenotype could be due to a decreased reliance on metabolic stress induced by nitrogen limitation to initiate PHB production in the mutant strains. Due to uncertainty in the two-component system's input signal and regulon, the mechanism by which these genes impart this phenotype remains unclear. Such strains may allow for the use of single-stage, continuous bioreactor systems, which are far simpler than many PHB bioproduction schemes used previously, given a similar product yield to batch systems in such a configuration. Bioproductivity modeling suggests that omitting this regulation in the cells may increase PHB productivity up to 24% relative to the wildtype organism when using single-stage continuous systems. This work expands our understanding of the regulation of PHB accumulation in Cupriavidus, in particular the initiation of this process upon transition into unbalanced growth regimes.
Collapse
Affiliation(s)
- Kyle Sander
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Anthony J Abel
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Skyler Friedline
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - William Sharpless
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
| | - Jeffrey Skerker
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Douglas S Clark
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
3
|
Llop A, Labella JI, Borisova M, Forchhammer K, Selim KA, Contreras A. Pleiotropic effects of PipX, PipY, or RelQ overexpression on growth, cell size, photosynthesis, and polyphosphate accumulation in the cyanobacterium Synechococcus elongatus PCC7942. Front Microbiol 2023; 14:1141775. [PMID: 37007489 PMCID: PMC10060972 DOI: 10.3389/fmicb.2023.1141775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The cyanobacterial protein PipY belongs to the Pyridoxal-phosphate (PLP)-binding proteins (PLPBP/COG0325) family of pyridoxal-phosphate-binding proteins, which are represented in all three domains of life. These proteins share a high degree of sequence conservation, appear to have purely regulatory functions, and are involved in the homeostasis of vitamin B6 vitamers and amino/keto acids. Intriguingly, the genomic context of the pipY gene in cyanobacteria connects PipY with PipX, a protein involved in signaling the intracellular energy status and carbon-to-nitrogen balance. PipX regulates its cellular targets via protein–protein interactions. These targets include the PII signaling protein, the ribosome assembly GTPase EngA, and the transcriptional regulators NtcA and PlmA. PipX is thus involved in the transmission of multiple signals that are relevant for metabolic homeostasis and stress responses in cyanobacteria, but the exact function of PipY is still elusive. Preliminary data indicated that PipY might also be involved in signaling pathways related to the stringent stress response, a pathway that can be induced in the unicellular cyanobacterium Synechococcus elongatus PCC7942 by overexpression of the (p)ppGpp synthase, RelQ. To get insights into the cellular functions of PipY, we performed a comparative study of PipX, PipY, or RelQ overexpression in S. elongatus PCC7942. Overexpression of PipY or RelQ caused similar phenotypic responses, such as growth arrest, loss of photosynthetic activity and viability, increased cell size, and accumulation of large polyphosphate granules. In contrast, PipX overexpression decreased cell length, indicating that PipX and PipY play antagonistic roles on cell elongation or cell division. Since ppGpp levels were not induced by overexpression of PipY or PipX, it is apparent that the production of polyphosphate in cyanobacteria does not require induction of the stringent response.
Collapse
Affiliation(s)
- Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Jose I. Labella
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Marina Borisova
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Khaled A. Selim
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- *Correspondence: Asunción Contreras,
| |
Collapse
|
4
|
Yáñez L, Rodríguez Y, Scott F, Vergara-Fernández A, Muñoz R. Production of (R)-3-hydroxybutyric acid from methane by in vivo depolymerization of polyhydroxybutyrate in Methylocystis parvus OBBP. BIORESOURCE TECHNOLOGY 2022; 353:127141. [PMID: 35405209 DOI: 10.1016/j.biortech.2022.127141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Methylocystis parvus OBBP accumulates polyhydroxybutyrate (PHB) using methane as the sole carbon and energy source. In this work, the feasibility of producing (R)-3-hydroxybutyric acid (R3HBA) via intracellularly accumulated PHB through depolymerization (in-vivo) was investigated. Results showed that a PHB to R3HBA conversion of 77.2 ± 0.9% (R3HBA titer of 0.153 ± 0.002 g L-1) can be attained in a mineral medium containing 1 g L-1 KNO3 at 30 °C with shaking at 200 rpm and a constant pH of 11 for 72 h. Nitrogen deprivation and neutral or acidic pHs strongly reduced the excreted R3HBA concentration. Reduced oxygen availability negatively affected the R3HBA yield, which decreased to 73.6 ± 4.9% (titer of 0.139 ± 0.01 g L-1) under microaerobic conditions. Likewise, the presence of increasing concentrations of R3HBA in the medium before the onset of PHB depolymerization reduced the initial R3HBA release rate and R3HBA yield.
Collapse
Affiliation(s)
- Luz Yáñez
- Institute of Sustainable Processes, Universidad de Valladolid, Doctor Mergelina s/n, 47011, Spain; Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Los Andes, 7550000, Chile.
| | - Yadira Rodríguez
- Institute of Sustainable Processes, Universidad de Valladolid, Doctor Mergelina s/n, 47011, Spain.
| | - Felipe Scott
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Los Andes, 7550000, Chile.
| | - Alberto Vergara-Fernández
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Los Andes, 7550000, Chile.
| | - Raúl Muñoz
- Institute of Sustainable Processes, Universidad de Valladolid, Doctor Mergelina s/n, 47011, Spain.
| |
Collapse
|
5
|
A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications. PLoS Comput Biol 2022; 18:e1010106. [PMID: 35604933 PMCID: PMC9166356 DOI: 10.1371/journal.pcbi.1010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/03/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly promising microbial chassis due to its ability to grow on a wide range of low-cost feedstocks, including the waste gas carbon dioxide, whilst also naturally producing large quantities of polyhydroxybutyrate (PHB) during nutrient-limited conditions. Understanding the complex metabolic behaviour of this bacterium is a prerequisite for the design of successful engineering strategies for optimising product yields. We present a genome-scale metabolic model (GSM) of C. necator H16 (denoted iCN1361), which is directly constructed from the BioCyc database to improve the readability and reusability of the model. After the initial automated construction, we have performed extensive curation and both theoretical and experimental validation. By carrying out a genome-wide essentiality screening using a Transposon-directed Insertion site Sequencing (TraDIS) approach, we showed that the model could predict gene knockout phenotypes with a high level of accuracy. Importantly, we indicate how experimental and computational predictions can be used to improve model structure and, thus, model accuracy as well as to evaluate potential false positives identified in the experiments. Finally, by integrating transcriptomics data with iCN1361 we create a condition-specific model, which, importantly, better reflects PHB production in C. necator H16. Observed changes in the omics data and in-silico-estimated alterations in fluxes were then used to predict the regulatory control of key cellular processes. The results presented demonstrate that iCN1361 is a valuable tool for unravelling the system-level metabolic behaviour of C. necator H16 and can provide useful insights for designing metabolic engineering strategies. Genome-scale metabolic models (GSMs) provide a tool for unravelling the complex metabolic behaviour of bacteria and how they adapt to changing environments and genetic perturbations, and thus offer invaluable insights for biotechnology applications. For a GSM to be used efficiently for strain development purposes, however, the model must be easily readable and reusable by other researchers, whilst being able to predict metabolic behaviour with a high level of accuracy. In this work, we developed a GSM for Cupriavidus necator H16 that is linked to the BioCyc database, which provides an efficient way of application, model update, integration of experimental data and network visualisation for other researchers. Using our model, we demonstrate how integrating experimental observations, including Transposon-directed Insertion site Sequencing (TraDIS) and omics data, can be used to compensate for the lack of regulatory, kinetic and thermodynamic information in GSMs, and thus improve model accuracy. Importantly, we found that TraDIS in vivo screening and GSM analysis are complementary approaches, which can be used in combination to provide reliable gene essentiality predictions. Overall, our results offer an informed strategy for the deliberate manipulation of C. necator H16 metabolic capabilities, towards its industrial application to convert greenhouse gases into biochemicals and biofuels.
Collapse
|
6
|
The over-expression of phasin and regulator genes promoting the synthesis of polyhydroxybutyrate in Cupriavidus necator H16 under non-stress conditions. Appl Environ Microbiol 2021; 88:e0145821. [PMID: 34731058 DOI: 10.1128/aem.01458-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cupriavidus necator H16 is an ideal strain for polyhydroxybutyrate (PHB) production from CO2. Low-oxygen-stress can induce PHB synthesis in C. necator H16 while reducing bacterial growth under chemoautotrophic culture. The optimum growth and PHB synthesis of C. necator H16 cannot be achieved simultaneously, which restricts PHB production. The present study was initiated to address the issue through comparative transcriptome and gene function analysis. Firstly, the comparative transcriptome of C. necator H16 chemoautotrophically cultured under low-oxygen-stress and non-stress conditions was studied. Three types of transcription different genes were discovered: PHB enzymatic synthesis, PHB granulation, and regulators. Under low-oxygen-stress condition, acetoacetyl-CoA reductase gene phaB2, PHB synthase gene phaC2, phasins genes phaP1 and phaP2, regulators genes uspA and rpoN were up-regulated 3.0, 2.5, 1.8, 2.7, 3.5, 1.6 folds, respectively. Secondly, the functions of up-regulated genes and their applications in PHB synthesis were further studied. It was found that the over-expression of phaP1, phaP2, uspA, and rpoN can induce PHB synthesis under non-stress condition, while phaB2 and phaC2 have no significant effect. Under the optimum condition, PHB percentage content in C. necator H16 was respectively increased by 37.2%, 28.4%, 15.8%, and 41.0% with the over-expression of phaP1, phaP2, uspA, and rpoN, and the corresponding PHB production increased by 49.8%, 42.9%, 47.0%, and 77.5% under non-stress chemoautotrophic conditions. Similar promotion by phaP1, phaP2, uspA, and rpoN was observed in heterotrophically cultured C. necator H16. The PHB percentage content and PHB production were respectively increased by 54.4% and 103.1% with the over-expression of rpoN under non-stress heterotrophic conditions. Importance Microbial fixation of CO2 is an effective way to reduce greenhouse gases. Some microbes such as C. necator H16 usually accumulate PHB when they grow under stress. Low-oxygen-stress can induce PHB synthesis when C. necator H16 is autotrophically cultured with CO2, H2, and O2, while under stress, growth is restricted and total PHB yield is reduced. Achieving the optimal bacterial growth and PHB synthesis at the same time is an ideal condition for transforming CO2 into PHB by C. necator H16. The present study was initiated to clarify the molecular basis of low-oxygen-stress promoting PHB accumulation and to realize the optimal PHB production by C. necator H16. Genes up-regulated under non-stress conditions were identified through comparative transcriptome analysis and over-expression of phasin and regulator genes were demonstrated to promote PHB synthesis in C. necator H16.
Collapse
|
7
|
Mitra R, Xu T, Chen GQ, Xiang H, Han J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb Biotechnol 2021; 15:1446-1470. [PMID: 34473895 PMCID: PMC9049629 DOI: 10.1111/1751-7915.13915] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are a promising and sustainable alternative to the petroleum‐based synthetic plastics. Regulation of PHA synthesis is receiving considerable importance as engineering the regulatory factors might help developing strains with improved PHA‐producing abilities. PHA synthesis is dedicatedly regulated by a number of regulatory networks. They tightly control the PHA content, granule size and their distribution in cells. Most PHA‐accumulating microorganisms have multiple regulatory networks that impart a combined effect on PHA metabolism. Among them, several factors ranging from global to specific regulators, have been identified and characterized till now. This review is an attempt to categorically summarize the diverse regulatory circuits that operate in some important PHA‐producing microorganisms. However, in several organisms, the detailed mechanisms involved in the regulation of PHA synthesis is not well‐explored and hence further research is needed. The information presented in this review might help researcher to identify the prevailing research gaps in PHA regulation.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Gutschmann B, Bock MCE, Jahns S, Neubauer P, Brigham CJ, Riedel SL. Untargeted metabolomics analysis of Ralstonia eutropha during plant oil cultivations reveals the presence of a fucose salvage pathway. Sci Rep 2021; 11:14267. [PMID: 34253787 PMCID: PMC8275744 DOI: 10.1038/s41598-021-93720-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Process engineering of biotechnological productions can benefit greatly from comprehensive analysis of microbial physiology and metabolism. Ralstonia eutropha (syn. Cupriavidus necator) is one of the best studied organisms for the synthesis of biodegradable polyhydroxyalkanoate (PHA). A comprehensive metabolomic study during bioreactor cultivations with the wild-type (H16) and an engineered (Re2058/pCB113) R. eutropha strain for short- and or medium-chain-length PHA synthesis has been carried out. PHA production from plant oil was triggered through nitrogen limitation. Sample quenching allowed to conserve the metabolic states of the cells for subsequent untargeted metabolomic analysis, which consisted of GC-MS and LC-MS analysis. Multivariate data analysis resulted in identification of significant changes in concentrations of oxidative stress-related metabolites and a subsequent accumulation of antioxidative compounds. Moreover, metabolites involved in the de novo synthesis of GDP-L-fucose as well as the fucose salvage pathway were identified. The related formation of fucose-containing exopolysaccharides potentially supports the emulsion-based growth of R. eutropha on plant oils.
Collapse
Affiliation(s)
- Björn Gutschmann
- grid.6734.60000 0001 2292 8254Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Martina C. E. Bock
- grid.6734.60000 0001 2292 8254Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Stefan Jahns
- grid.6734.60000 0001 2292 8254Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- grid.6734.60000 0001 2292 8254Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Christopher J. Brigham
- grid.422596.e0000 0001 0639 028XSchool of Engineering, Wentworth Institute of Technology, Boston, MA USA
| | - Sebastian L. Riedel
- grid.6734.60000 0001 2292 8254Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 2021; 45:fuaa058. [PMID: 33118006 DOI: 10.1093/femsre/fuaa058] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
Collapse
Affiliation(s)
- Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Luis Paulo Silveira Alves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anna Maria Pirttilä
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
10
|
Sindhu R, Madhavan A, Arun KB, Pugazhendhi A, Reshmy R, Awasthi MK, Sirohi R, Tarafdar A, Pandey A, Binod P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. BIORESOURCE TECHNOLOGY 2021; 327:124791. [PMID: 33579565 DOI: 10.1016/j.biortech.2021.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics. Consequently, considerable research have been attempted to advance a better understanding of mechanisms related to the metabolic synthesis and characteristics of PHAs and to develop native and recombinant microorganisms that can proficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent developments in metabolic engineering and synthetic biology applied to enhance PHA synthesis include, promoter engineering, ribosome-binding site (RBS) engineering, development of synthetic constructs etc. This review gives a brief overview of metabolic routes and regulators of PHA production and its intervention strategies.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
11
|
Wang P, Yin Y, Wang X, Wen J. Enhanced ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by employing polyhydroxybutyrate as an intracellular carbon reservoir and optimizing carbon addition. Microb Cell Fact 2021; 20:70. [PMID: 33731113 PMCID: PMC7968196 DOI: 10.1186/s12934-021-01561-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ascomycin is a multifunctional antibiotic produced by Streptomyces hygroscopicus var. ascomyceticus. As a secondary metabolite, the production of ascomycin is often limited by the shortage of precursors during the late fermentation phase. Polyhydroxybutyrate is an intracellular polymer accumulated by prokaryotic microorganisms. Developing polyhydroxybutyrate as an intracellular carbon reservoir for precursor synthesis is of great significance to improve the yield of ascomycin. RESULTS The fermentation characteristics of the parent strain S. hygroscopicus var. ascomyceticus FS35 showed that the accumulation and decomposition of polyhydroxybutyrate was respectively correlated with cell growth and ascomycin production. The co-overexpression of the exogenous polyhydroxybutyrate synthesis gene phaC and native polyhydroxybutyrate decomposition gene fkbU increased both the biomass and ascomycin yield. Comparative transcriptional analysis showed that the storage of polyhydroxybutyrate during the exponential phase accelerated biosynthesis processes by stimulating the utilization of carbon sources, while the decomposition of polyhydroxybutyrate during the stationary phase increased the biosynthesis of ascomycin precursors by enhancing the metabolic flux through primary pathways. The comparative analysis of cofactor concentrations confirmed that the biosynthesis of polyhydroxybutyrate depended on the supply of NADH. At low sugar concentrations found in the late exponential phase, the optimization of carbon source addition further strengthened the polyhydroxybutyrate metabolism by increasing the total concentration of cofactors. Finally, in the fermentation medium with 22 g/L starch and 52 g/L dextrin, the ascomycin yield of the co-overexpression strain was increased to 626.30 mg/L, which was 2.11-fold higher than that of the parent strain in the initial medium (296.29 mg/L). CONCLUSIONS Here we report for the first time that polyhydroxybutyrate metabolism is beneficial for cell growth and ascomycin production by acting as an intracellular carbon reservoir, stored as polymers when carbon sources are abundant and depolymerized into monomers for the biosynthesis of precursors when carbon sources are insufficient. The successful application of polyhydroxybutyrate in increasing the output of ascomycin provides a new strategy for improving the yields of other secondary metabolites.
Collapse
Affiliation(s)
- Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
12
|
Horvatek P, Salzer A, Hanna AMF, Gratani FL, Keinhörster D, Korn N, Borisova M, Mayer C, Rejman D, Mäder U, Wolz C. Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes. PLoS Genet 2020; 16:e1009282. [PMID: 33378356 PMCID: PMC7802963 DOI: 10.1371/journal.pgen.1009282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/12/2021] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp upregulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR, katA, sodA) and the psmα1–4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis. Most bacteria make use of the second messenger (pp)pGpp to reprogram bacterial metabolism under nutrient-limiting conditions. In the human pathogen Staphylococcus aureus, (pp)pGpp plays an important role in virulence, phagosomal escape and antibiotic tolerance. Here, we analyzed the immediate consequences of (pp)pGpp synthesis upon transcriptional induction of the (pp)pGpp-producing enzymes Rel, RelP or RelQ. (pp)pGpp synthesis provokes immediate changes in the nucleotide pool and severely impacts the expression of hundreds of genes. A main consequence of (pp)pGpp synthesis in S. aureus is the induction of ROS-inducing toxic phenol soluble modulins (PSMs) and simultaneous expression of the detoxifying system to protect the producer. This mechanism is likely of special advantage for the pathogen after phagocytosis.
Collapse
Affiliation(s)
- Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Andrea Salzer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | | | - Fabio Lino Gratani
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
- Quantitative Proteomics & Proteome Center Tuebingen, University of Tuebingen, Germany
| | - Daniela Keinhörster
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Haas TM, Qiu D, Häner M, Angebauer L, Ripp A, Singh J, Koch HG, Jessen-Trefzer C, Jessen HJ. Four Phosphates at One Blow: Access to Pentaphosphorylated Magic Spot Nucleotides and Their Analysis by Capillary Electrophoresis. J Org Chem 2020; 85:14496-14506. [PMID: 32502348 PMCID: PMC7684580 DOI: 10.1021/acs.joc.0c00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
complex phosphorylation pattern of natural and modified pentaphosphorylated
magic spot nucleotides is generated in a highly efficient way. A cyclic
pyrophosphoryl phosphoramidite (cPyPA) reagent is used to introduce
four phosphates on nucleosides regioselectively in a one-flask key
transformation. The obtained magic spot nucleotides are used to develop
a capillary electrophoresis UV detection method, enabling nucleotide
assignment in complex bacterial extracts.
Collapse
Affiliation(s)
- Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany.,CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Velázquez-Sánchez C, Espín G, Peña C, Segura D. The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production. Front Bioeng Biotechnol 2020; 8:386. [PMID: 32426348 PMCID: PMC7204398 DOI: 10.3389/fbioe.2020.00386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.
Collapse
Affiliation(s)
- Claudia Velázquez-Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Peña
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
15
|
Evolutionary relationships between the transcriptional repressors of the polyhydroxyalkanoate reserve storage system in prokaryotes: Conserved but phylogenetically heterogeneous. Gene 2020; 735:144397. [PMID: 31991161 DOI: 10.1016/j.gene.2020.144397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 11/23/2022]
Abstract
Bacteria and archaea accumulate cytoplasmic polyhydroxyalkanoate (PHA) granules under nutrient-limited conditions with excess carbon. The transcriptional regulatory (TR) proteins found on the surface of PHA granules act as repressors as well as activators for the expression of major surface proteins called phasins. Until now, detailed information on the evolutionary relationships between these transcription regulators has not been available. Here, we conducted homology searches and analyzed information available for the domains and protein families of the TR proteins through phylogenetic studies. A total of 282 TR proteins were identified and further classified into four distinct subfamilies based upon the presence of conserved motifs: PHB_acc, TetR-like, AbrB-like, and PadR-like. Depending upon the particular family, the DNA-binding domains were located at either the N- or C-terminus. Our results indicated that TR proteins containing the PHB_acc domain are highly conserved within the bacteria, while other TR proteins are present only within archaea (AbrB-like), gram positive bacteria (PadR-like), or the Pseudomonas genera (TetR-like). The repression domains are charged, hydrophobic, and rich in leucine or glutamine. In phylogenetic analyses, many groups of TR proteins were clustered together according to identical domain architectures showing the independent origins of the TR proteins in the PHA reserve storage system. Further analyses revealed that the TR proteins have experienced multiple gene duplications across prokaryotes. Thus, this study investigated the evolutionary framework of TR proteins and has provided a comprehensive catalog of TR proteins for ongoing studies to characterize the functions of these proteins within diverse organisms.
Collapse
|
16
|
Yañez L, Conejeros R, Vergara-Fernández A, Scott F. Beyond Intracellular Accumulation of Polyhydroxyalkanoates: Chiral Hydroxyalkanoic Acids and Polymer Secretion. Front Bioeng Biotechnol 2020; 8:248. [PMID: 32318553 PMCID: PMC7147478 DOI: 10.3389/fbioe.2020.00248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are ubiquitous prokaryotic storage compounds of carbon and energy, acting as sinks for reducing power during periods of surplus of carbon source relative to other nutrients. With close to 150 different hydroxyalkanoate monomers identified, the structure and properties of these polyesters can be adjusted to serve applications ranging from food packaging to biomedical uses. Despite its versatility and the intensive research in the area over the last three decades, the market share of PHAs is still low. While considerable rich literature has accumulated concerning biochemical, physiological, and genetic aspects of PHAs intracellular accumulation, the costs of substrates and processing costs, including the extraction of the polymer accumulated in intracellular granules, still hampers a more widespread use of this family of polymers. This review presents a comprehensive survey and critical analysis of the process engineering and metabolic engineering strategies reported in literature aimed at the production of chiral (R)-hydroxycarboxylic acids (RHAs), either from the accumulated polymer or by bypassing the accumulation of PHAs using metabolically engineered bacteria, and the strategies developed to recover the accumulated polymer without using conventional downstream separations processes. Each of these topics, that have received less attention compared to PHAs accumulation, could potentially improve the economy of PHAs production and use. (R)-hydroxycarboxylic acids can be used as chiral precursors, thanks to its easily modifiable functional groups, and can be either produced de-novo or be obtained from recycled PHA products. On the other hand, efficient mechanisms of PHAs release from bacterial cells, including controlled cell lysis and PHA excretion, could reduce downstream costs and simplify the polymer recovery process.
Collapse
Affiliation(s)
- Luz Yañez
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Raúl Conejeros
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alberto Vergara-Fernández
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Felipe Scott
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
17
|
|
18
|
Ruwe M, Persicke M, Busche T, Müller B, Kalinowski J. Physiology and Transcriptional Analysis of (p)ppGpp-Related Regulatory Effects in Corynebacterium glutamicum. Front Microbiol 2019; 10:2769. [PMID: 31849906 PMCID: PMC6892785 DOI: 10.3389/fmicb.2019.02769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The alarmone species ppGpp and pppGpp are elementary components of bacterial physiology as they both coordinate the bacterial stress response and serve as fine-tuners of general metabolism during conditions of balanced growth. Since the regulation of (p)ppGpp metabolism and the effects of (p)ppGpp on cellular processes are highly complex and show massive differences between bacterial species, the underlying molecular mechanisms have so far only been insufficiently investigated for numerous microorganisms. In this study, (p)ppGpp physiology in the actinobacterial model organism Corynebacterium glutamicum was analyzed by phenotypic characterization and RNAseq-based transcriptome analysis. Total nutrient starvation was identified as the most effective method to induce alarmone production, whereas traditional induction methods such as the addition of serine hydroxamate (SHX) or mupirocin did not show a strong accumulation of (p)ppGpp. The predominant alarmone in C. glutamicum represents guanosine tetraphosphate, whose stress-associated production depends on the presence of the bifunctional RSH enzyme Rel. Interestingly, in addition to ppGpp, another substance yet not identified accumulated strongly under inducing conditions. A C. glutamicum triple mutant (Δrel,ΔrelS,ΔrelH) unable to produce alarmones [(p)ppGpp0 strain] exhibited unstable growth characteristics and interesting features such as an influence of illumination on its physiology, production of amino acids as well as differences in vitamin and carotenoid production. Differential transcriptome analysis using RNAseq provided numerous indications for the molecular basis of the observed phenotype. An evaluation of the (p)ppGpp-dependent transcriptional regulation under total nutrient starvation revealed a complex interplay with the involvement of ribosome-mediated transcriptional attenuation, the stress-responsive sigma factors σB and σH and transcription factors such as McbR, the master regulator of sulfur metabolism. In addition to the differential regulation of genes connected with various cell functions, the transcriptome analysis revealed conserved motifs within the promoter regions of (p)ppGpp-dependently and independently regulated genes. In particular, the representatives of translation-associated genes are both (p)ppGpp-dependent transcriptionally downregulated and show a highly conserved and so far unknown TTTTG motif in the -35 region, which is also present in other actinobacterial genera.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Biodegradation of polyhydroxybutyrate by Pseudomonas sp. DSDY0501 and purification and characterization of polyhydroxybutyrate depolymerase. 3 Biotech 2019; 9:359. [PMID: 31544013 DOI: 10.1007/s13205-019-1871-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/12/2019] [Indexed: 02/05/2023] Open
Abstract
Strain DSDY0501 with polyhydroxybutyrate (PHB)-degrading ability was isolated from activated sludge. The morphological, physiological, and biochemical properties of the strain and phylogenetic analysis indicated that the strain belongs to Pseudomonas sp. The strain used PHB as the sole carbon source and degraded PHB films completely in 21 h in liquid culture. An extracellular PHB depolymerase was purified from the supernatant of the culture by ultrafiltration and Sephacryl S-200 gel filtration. The specific activity of the purified enzyme increased 24.2-fold, and the recovery yield was 16.61%. Extracellular PHB depolymerase, a monomeric enzyme with a molecular weight of approximately 57.9 kDa, showed optimum activity at 60 °C and pH 9.0, and was stable in the temperature range of 10-60 °C and a pH range of 6.0-10.0. The secondary structure of the enzyme contained approximately 60% α-helix and 40% β-pleated sheet according to the circular dichroism spectrum. Mass spectrum analysis showed that the main degradation product of the enzyme was PHB monomer, indicating the exo-type action of this PHB depolymerase.
Collapse
|
20
|
In-Line Monitoring of Polyhydroxyalkanoate (PHA) Production during High-Cell-Density Plant Oil Cultivations Using Photon Density Wave Spectroscopy. Bioengineering (Basel) 2019; 6:bioengineering6030085. [PMID: 31546779 PMCID: PMC6783927 DOI: 10.3390/bioengineering6030085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable plastic-like materials with versatile properties. Plant oils are excellent carbon sources for a cost-effective PHA production, due to their high carbon content, large availability, and comparatively low prices. Additionally, efficient process development and control is required for competitive PHA production, which can be facilitated by on-line or in-line monitoring devices. To this end, we have evaluated photon density wave (PDW) spectroscopy as a new process analytical technology for Ralstonia eutropha (Cupriavidus necator) H16 plant oil cultivations producing polyhydroxybutyrate (PHB) as an intracellular polymer. PDW spectroscopy was used for in-line recording of the reduced scattering coefficient µs’ and the absorption coefficient µa at 638 nm. A correlation of µs’ with the cell dry weight (CDW) and µa with the residual cell dry weight (RCDW) was observed during growth, PHB accumulation, and PHB degradation phases in batch and pulse feed cultivations. The correlation was used to predict CDW, RCDW, and PHB formation in a high-cell-density fed-batch cultivation with a productivity of 1.65 gPHB·L−1·h−1 and a final biomass of 106 g·L−1 containing 73 wt% PHB. The new method applied in this study allows in-line monitoring of CDW, RCDW, and PHA formation.
Collapse
|
21
|
Importance of Poly-3-Hydroxybutyrate Metabolism to the Ability of Herbaspirillum seropedicae To Promote Plant Growth. Appl Environ Microbiol 2019; 85:AEM.02586-18. [PMID: 30610076 PMCID: PMC6414382 DOI: 10.1128/aem.02586-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/22/2018] [Indexed: 01/21/2023] Open
Abstract
The application of bacteria as plant growth promoters is a sustainable alternative to mitigate the use of chemical fertilization in agriculture, reducing negative economic and environmental impacts. Several plant growth-promoting bacteria synthesize and accumulate the intracellular polymer polyhydroxybutyrate (PHB). However, the role of PHB in plant-bacterium interactions is poorly understood. In this study, applying the C4 model grass Setaria viridis and several mutants in the PHB metabolism of the endophyte Herbaspirillum seropedicae yielded new findings on the importance of PHB for bacterial colonization of S. viridis roots. Taken together, the results show that deletion of genes involved in the synthesis and degradation of PHB reduced the ability of the bacteria to enhance plant growth but with little effect on overall root colonization. The data suggest that PHB metabolism likely plays an important role in supporting specific metabolic routes utilized by the bacteria to stimulate plant growth. Herbaspirillum seropedicae is an endophytic bacterium that establishes an association with a variety of plants, such as rice, corn, and sugarcane, and can significantly increase plant growth. H. seropedicae produces polyhydroxybutyrate (PHB), stored in the form of insoluble granules. Little information is available on the possible role of PHB in bacterial root colonization or in plant growth promotion. To investigate whether PHB is important for the association of H. seropedicae with plants, we inoculated roots of Setaria viridis with H. seropedicae strain SmR1 and mutants defective in PHB production (ΔphaP1, ΔphaP1 ΔphaP2, ΔphaC1, and ΔphaR) or mobilization (ΔphaZ1 ΔphaZ2). The strains producing large amounts of PHB colonized roots, significantly increasing root area and the number of lateral roots compared to those of PHB-negative strains. H. seropedicae grows under microaerobic conditions, which can be found in the rhizosphere. When grown under low-oxygen conditions, only the parental strain and ΔphaP2 mutant exhibited normal growth. The lack of normal growth under low oxygen correlated with the inability to stimulate plant growth, although there was no effect on the level of root colonization. The data suggest that PHB is produced in the root rhizosphere and plays a role in maintaining normal metabolism under microaerobic conditions. To confirm this, we screened for green fluorescent protein (GFP) expression under the control of the H. seropedicae promoters of the PHA synthase and PHA depolymerase genes in the rhizosphere. PHB synthesis is active on the root surface and later PHB depolymerase expression is activated. IMPORTANCE The application of bacteria as plant growth promoters is a sustainable alternative to mitigate the use of chemical fertilization in agriculture, reducing negative economic and environmental impacts. Several plant growth-promoting bacteria synthesize and accumulate the intracellular polymer polyhydroxybutyrate (PHB). However, the role of PHB in plant-bacterium interactions is poorly understood. In this study, applying the C4 model grass Setaria viridis and several mutants in the PHB metabolism of the endophyte Herbaspirillum seropedicae yielded new findings on the importance of PHB for bacterial colonization of S. viridis roots. Taken together, the results show that deletion of genes involved in the synthesis and degradation of PHB reduced the ability of the bacteria to enhance plant growth but with little effect on overall root colonization. The data suggest that PHB metabolism likely plays an important role in supporting specific metabolic routes utilized by the bacteria to stimulate plant growth.
Collapse
|
22
|
Polyhydroxyalkanoate (PHA) Polymer Accumulation and pha Gene Expression in Phenazine (phz⁻) and Pyrrolnitrin (prn⁻) Defective Mutants of Pseudomonas chlororaphis PA23. Polymers (Basel) 2018; 10:polym10111203. [PMID: 30961128 PMCID: PMC6290614 DOI: 10.3390/polym10111203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas chlororaphis PA23 was isolated from the rhizosphere of soybeans and identified as a biocontrol bacterium against Sclerotinia sclerotiorum, a fungal plant pathogen. This bacterium produces a number of secondary metabolites, including phenazine-1-carboxylic acid, 2-hydroxyphenazine, pyrrolnitrin (PRN), hydrogen cyanide, proteases, lipases and siderophores. It also synthesizes and accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds under nutrient-limited conditions. Pseudomonads like P. chlororaphis metabolize glucose via the Entner-Doudoroff and Pentose Phosphate pathways, which provide precursors for phenazine production. Mutants defective in phenazine (PHZ; PA23-63), PRN (PA23-8), or both (PA23-63-1) accumulated higher concentrations of PHAs than the wild-type strain (PA23) when cultured in Ramsay’s Minimal Medium with glucose or octanoic acid as the carbon source. Expression levels of six pha genes, phaC1, phaZ, phaC2, phaD, phaF, and phaI, were compared with wild type PA23 by quantitative real time polymerase chain reaction (qPCR). The qPCR studies indicated that there was no change in levels of transcription of the PHA synthase genes phaC1 and phaC2 in the phz- (PA23-63) and phz-prn- (PA23-63-1) mutants in glucose medium. There was a significant increase in expression of phaC2 in octanoate medium. Transcription of phaD, phaF and phaI increased significantly in the phz-prn- (PA23-63-1) mutant. Mutations in regulatory genes like gacS, rpoS, and relA/spoT, which affect PHZ and PRN production, also resulted in altered gene expression. The expression of phaC1, phaC2, phaF, and phaI genes was down-regulated significantly in gacS and rpoS mutants. Thus, it appears that PHZ, PRN, and PHA production is regulated by common mechanisms. Higher PHA production in the phz- (PA23-63), prn- (PA23-8), and phz-prn- (PA23-63-1) mutants in octanoic medium could be correlated with higher expression of phaC2. Further, the greater PHA production observed in the phz- and prn- mutants was not due to increased transcription of PHA synthase genes in glucose medium, but due to more accessibility of carbon substrates and reducing power, which were otherwise used for the synthesis of PHZ and PRN.
Collapse
|
23
|
Juengert JR, Patterson C, Jendrossek D. Poly(3-Hydroxybutyrate) (PHB) Polymerase PhaC1 and PHB Depolymerase PhaZa1 of Ralstonia eutropha Are Phosphorylated In Vivo. Appl Environ Microbiol 2018; 84:e00604-18. [PMID: 29678915 PMCID: PMC6007124 DOI: 10.1128/aem.00604-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/15/2018] [Indexed: 01/02/2023] Open
Abstract
In this study, we screened poly(3-hydroxybutyrate) (PHB) synthase PhaC1 and PHB depolymerase PhaZa1 of Ralstonia eutropha for the presence of phosphorylated residues during the PHB accumulation and PHB degradation phases. Thr373 of PHB synthase PhaC1 was phosphorylated during the stationary growth phase but was not modified during the exponential and PHB accumulation phases. Ser35 of PHB depolymerase PhaZa1 was identified in the phosphorylated form during both the exponential and stationary growth phases. Additional phosphosites were identified for both proteins in sample-dependent forms. Site-directed mutagenesis of the codon for Thr373 and other phosphosites of PhaC1 revealed a strong negative impact on PHB synthase activity. Modifications of Thr26 and Ser35 of PhaZa1 reduced the ability of R. eutropha to mobilize PHB in the stationary growth phase. Our results show that phosphorylation of PhaC1 and PhaZa1 can be important for the modulation of the activities of PHB synthase and PHB depolymerase.IMPORTANCE Poly(3-hydroxybutyrate) (PHB) and related polyhydroxyalkanoates (PHAs) are important intracellular carbon and energy storage compounds in many prokaryotes. The accumulation of PHB or PHAs increases the fitness of cells during periods of starvation and under other stress conditions. The simultaneous presence of PHB synthase (PhaC1) and PHB depolymerase (PhaZa1) on synthesized PHB granules in Ralstonia eutropha (alternative designation, Cupriavidus necator) was previously shown in several laboratories. These findings imply that the activities of PHB synthase and PHB depolymerase should be regulated to avoid a futile cycle of simultaneous synthesis and degradation of PHB. Here, we addressed this question by identifying the phosphorylation sites on PhaC1 and PhaZa1 and by site-directed mutagenesis of the identified residues. Furthermore, we conducted in vitro and in vivo analyses of PHB synthase activity and PHB contents.
Collapse
Affiliation(s)
- Janina R Juengert
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Cameron Patterson
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
- Western University, London, Ontario, Canada
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
24
|
Bhatia SK, Yoon JJ, Kim HJ, Hong JW, Gi Hong Y, Song HS, Moon YM, Jeon JM, Kim YG, Yang YH. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. BIORESOURCE TECHNOLOGY 2018; 257:92-101. [PMID: 29486411 DOI: 10.1016/j.biortech.2018.02.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 05/24/2023]
Abstract
Ralstonia eutropha is a well-known microbe reported for polyhydroxyalkonate (PHA) production, and unable to utilize sucrose as carbon source. Two strains, Ralstonia eutropha H16 and Ralstonia eutropha 5119 were co-cultured with sucrose hydrolyzing microbes (Bacillus subtilis and Bacillus amyloliquefaciens) for PHA production. Co-culture of B. subtilis:R. eutropha 5119 (BS:RE5) resulted in best PHA production (45% w/w dcw). Optimization of the PHA production process components through response surface resulted in sucrose: NH4Cl:B. subtilis: R. eutropha (3.0:0.17:0.10:0.190). Along with the hydrolysis of sucrose, B. subtilis also ferments sugars into organic acid (propionic acid), which acts as a precursor for HV monomer unit. Microbial consortia of BS:RE5 when cultured in optimized media led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV) with 66% w/w of dcw having 16 mol% HV fraction. This co-culture strategy overcomes the need for metabolic engineering of R. eutropha for sucrose utilization, and addition of precursor for copolymer production.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, South Korea
| | - Jeong-Jun Yoon
- Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology (KITECH), Chonan 31056, South Korea
| | - Hyun-Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Ju Won Hong
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Yoon Gi Hong
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Hun-Seok Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Yu-Mi Moon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Jong-Min Jeon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
25
|
Kutralam-Muniasamy G, Peréz-Guevara F. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16. World J Microbiol Biotechnol 2018; 34:79. [DOI: 10.1007/s11274-018-2460-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/28/2022]
|
26
|
Bhatia SK, Bhatia RK, Choi YK, Kan E, Kim YG, Yang YH. Biotechnological potential of microbial consortia and future perspectives. Crit Rev Biotechnol 2018; 38:1209-1229. [PMID: 29764204 DOI: 10.1080/07388551.2018.1471445] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| | - Ravi Kant Bhatia
- c Department of Biotechnology , Himachal Pradesh University , Shimla , India
| | - Yong-Keun Choi
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Eunsung Kan
- d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Yun-Gon Kim
- e Department of Chemical Engineering , Soongsil University , Seoul , South Korea
| | - Yung-Hun Yang
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| |
Collapse
|
27
|
Ruwe M, Rückert C, Kalinowski J, Persicke M. Functional Characterization of a Small Alarmone Hydrolase in Corynebacterium glutamicum. Front Microbiol 2018; 9:916. [PMID: 29867827 PMCID: PMC5954133 DOI: 10.3389/fmicb.2018.00916] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
The (pp)pGpp metabolism is an important component of bacterial physiology as it is involved in various stress responses and mechanisms of cell homeostasis, e.g., the regulation of growth. However, in order to better understand the (pp)pGpp associated regulation, it is crucial to study the molecular mechanisms of (pp)pGpp metabolism. In recent years, bioinformatic analyses of the RelA/SpoT homolog (RSH) superfamily have led to the discovery of small monofunctional RSH derivatives in addition to the well-known bifunctional Rel proteins. These are also referred to as small alarmone synthetases (SASs) or small alarmone hydrolases (SAHs). In this study, the ORF cg1485 from C. glutamicum was identified as a putative SAH encoding gene, based on a high similarity of the corresponding amino acid sequence with the (pp)pGpp hydrolysis domain. The characterization of its gene product, designated as RelHCg, represents the first functional investigation of a bacterial representative of the SAH subfamily. The predicted pyrophosphohydrolase activity was demonstrated in vivo by expression in two E. coli strains, characterized by different alarmone basal levels, as well as by in vitro analysis of the purified protein. During the assay-based analysis of hydrolysis activity in relation to the three known alarmone species, both RelHCg and the bifunctional RSH enzyme RelCg were found to exhibit a pronounced substrate inhibition for alarmone concentrations of more than 0.75 mM. This characteristic of (pp)pGpp hydrolases could be an important mechanism for realizing the bistable character of the (pp)pGpp metabolism between a (pp)pGpp basal level and stress-associated alarmone production. The deletion of relHCg caused only a minor effect on growth behavior in both wild-type background and deletion mutants with deletion of (pp)pGpp synthetases. Based on this observation, the protein is probably only present or active under specific environmental conditions. The independent loss of the corresponding gene in numerous representatives of the genus Corynebacterium, which was found by bioinformatic analyses, also supports this hypothesis. Furthermore, growth analysis of all possible deletion combinations of the three active C. glutamicum RSH genes revealed interesting functional relationships which will have to be investigated in more detail in the future.
Collapse
Affiliation(s)
- Matthias Ruwe
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|