1
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
2
|
Yan B, Ma A. PriA is involved in Pleurotus ostreatus development and defense against Pseudomonas tolaasii. Antonie Van Leeuwenhoek 2023; 117:1. [PMID: 38095768 DOI: 10.1007/s10482-023-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Pleurotus ostreatus is a crucial commercial mushroom widely cultivated for diverse uses. Scientists have worked on breeding disease-resistant and high-yielding varieties to secure food supply. Studies on the molecular genetic mechanism of growth and development can provide valuable information to facilitate crop breeding programs by genetic engineering. Aegerolysins are pore-forming proteins widely distributed in both prokaryotes and eukaryotes, which are reported to have haemolytic activity and be involved in the early stages of fructification. The present study aimed to explore biological function of a differential expressed aegerolysin gene PriA in P. ostreatus. The expression level of PriA gene was higher in primordium and fruiting body than that in mycelium. The PriA expression in overexpression (OE) and RNAi interference (RNAi) strains was detected by qRT-PCR. The RNAi strains grew at slightly slower rates and advanced producing yellow pigments than the wild type, while OE strains showed no prominent phenotypic characteristics. Furthermore, Pseudomonas tolaasii infection assays showed that the PriA OE strains could enhance mycelia and caps resistance to P. tolaasii. These data demonstrate PriA from P. ostreatus play an essential role in mycelial development and increase antagonism against P. tolaasii. Our study provides some reference information on interactions between edible fungi and pathogenic bacteria and offers a new resistance-conferring gene for breeding.
Collapse
Affiliation(s)
- Biyun Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Yarden O, Zhang J, Marcus D, Changwal C, Mabjeesh SJ, Lipzen A, Zhang Y, Savage E, Ng V, Grigoriev IV, Hadar Y. Altered Expression of Two Small Secreted Proteins ( ssp4 and ssp6) Affects the Degradation of a Natural Lignocellulosic Substrate by Pleurotus ostreatus. Int J Mol Sci 2023; 24:16828. [PMID: 38069150 PMCID: PMC10705924 DOI: 10.3390/ijms242316828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small secreted proteins (SSPs) encoded by the ssp1-6 genes. Using RNA sequencing (RNA-seq), we determined that ssp4 and ssp6 are the predominant members of this gene family that were expressed by P. ostreatus during the first three weeks of growth on wheat straw. Downregulation of ssp4 in a strain harboring an ssp RNAi construct (KDssp1) was then confirmed, which, along with an increase in ssp6 transcript levels, coincided with reduced lignin degradation and the downregulation of vp2 and mnp1. In contrast, we observed an increase in the expression of genes related to pectin and side-chain hemicellulose degradation, which was accompanied by an increase in extracellular pectin-degrading capacity. Genome-wide comparisons between the KDssp1 and the wild-type strains demonstrated that ssp silencing conferred accumulated changes in gene expression at the advanced cultivation stages in an adaptive rather than an inductive mode of transcriptional response. Based on co-expression networking, crucial gene modules were identified and linked to the ssp knockdown genotype at different cultivation times. Based on these data, as well as previous studies, we propose that P. ostreatus SSPs have potential roles in modulating the lignocellulolytic and pectinolytic systems, as well as a variety of fundamental biological processes related to fungal growth and development.
Collapse
Affiliation(s)
- Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Dor Marcus
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Chunoti Changwal
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Sameer J. Mabjeesh
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Yu Zhang
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Emily Savage
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Vivian Ng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Igor V. Grigoriev
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| |
Collapse
|
4
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Plett JM, Plett KL. Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition. ISME COMMUNICATIONS 2022; 2:49. [PMID: 37938664 PMCID: PMC9723739 DOI: 10.1038/s43705-022-00139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 08/09/2023]
Abstract
The last few years have seen significant advances in the breadth of fungi for which we have genomic resources and our understanding of the biological mechanisms evolved to enable fungi to interact with their environment and other organisms. One field of research that has seen a paradigm shift in our understanding concerns the role of fungal small secreted proteins (SSPs) classified as effectors. Classically thought to be a class of proteins utilized by pathogenic microbes to manipulate host physiology in support of colonization, comparative genomic studies have demonstrated that mutualistic fungi and fungi not associated with a living host (i.e., saprotrophic fungi) also encode inducible effector and candidate effector gene sequences. In this review, we discuss the latest advances in understanding how fungi utilize these secreted proteins to colonize a particular niche and affect nutrition and nutrient cycles. Recent studies show that candidate effector SSPs in fungi may have just as significant a role in modulating hyphosphere microbiomes and in orchestrating fungal growth as they do in supporting colonization of a living host. We conclude with suggestions on how comparative genomics may direct future studies seeking to characterize and differentiate effector from other more generalized functions of these enigmatic secreted proteins across all fungal lifestyles.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| |
Collapse
|
6
|
Wirth S, Freihorst D, Krause K, Kothe E. What Role Might Non-Mating Receptors Play in Schizophyllum commune? J Fungi (Basel) 2021; 7:jof7050399. [PMID: 34065484 PMCID: PMC8161036 DOI: 10.3390/jof7050399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/10/2023] Open
Abstract
The B mating-type locus of the tetrapolar basidiomycete Schizophyllum commune encodes pheromones and pheromone receptors in multiple allelic specificities. This work adds substantial new evidence into the organization of the B mating-type loci of distantly related S. commune strains showing a high level of synteny in gene order and neighboring genes. Four pheromone receptor-like genes were found in the genome of S. commune with brl1, brl2 and brl3 located at the B mating-type locus, whereas brl4 is located separately. Expression analysis of brl genes in different developmental stages indicates a function in filamentous growth and mating. Based on the extensive sequence analysis and functional characterization of brl-overexpression mutants, a function of Brl1 in mating is proposed, while Brl3, Brl4 and Brl2 (to a lower extent) have a role in vegetative growth, possible determination of growth direction. The brl3 and brl4 overexpression mutants had a dikaryon-like, irregular and feathery phenotype, and they avoided the formation of same-clone colonies on solid medium, which points towards enhanced detection of self-signals. These data are supported by localization of Brl fusion proteins in tips, at septa and in not-yet-fused clamps of a dikaryon, confirming their importance for growth and development in S. commune.
Collapse
|
7
|
Zhao Z, Cai F, Gao R, Ding M, Jiang S, Chen P, Pang G, Chenthamara K, Shen Q, Bayram Akcapinar G, Druzhinina IS. At least three families of hyphosphere small secreted cysteine-rich proteins can optimize surface properties to a moderately hydrophilic state suitable for fungal attachment. Environ Microbiol 2021; 23:5750-5768. [PMID: 33538393 PMCID: PMC8596622 DOI: 10.1111/1462-2920.15413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The secretomes of filamentous fungi contain a diversity of small secreted cysteine‐rich proteins (SSCPs) that have a variety of properties ranging from toxicity to surface activity. Some SSCPs are recognized by other organisms as indicators of fungal presence, but their function in fungi is not fully understood. We detected a new family of fungal surface‐active SSCPs (saSSCPs), here named hyphosphere proteins (HFSs). An evolutionary analysis of the HFSs in Pezizomycotina revealed a unique pattern of eight single cysteine residues (C‐CXXXC‐C‐C‐C‐C‐C) and a long evolutionary history of multiple gene duplications and ancient interfungal lateral gene transfers, suggesting their functional significance for fungi with different lifestyles. Interestingly, recombinantly produced saSSCPs from three families (HFSs, hydrophobins and cerato‐platanins) showed convergent surface‐modulating activity on glass and on poly(ethylene‐terephthalate), transforming their surfaces to a moderately hydrophilic state, which significantly favoured subsequent hyphal attachment. The addition of purified saSSCPs to the tomato rhizosphere had mixed effects on hyphal attachment to roots, while all tested saSSCPs had an adverse effect on plant growth in vitro. We propose that the exceptionally high diversity of saSSCPs in Trichoderma and other fungi evolved to efficiently condition various surfaces in the hyphosphere to a fungal‐beneficial state.
Collapse
Affiliation(s)
- Zheng Zhao
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Feng Cai
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China.,Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Renwei Gao
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Mingyue Ding
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Siqi Jiang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Peijie Chen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Guan Pang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Günseli Bayram Akcapinar
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irina S Druzhinina
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China.,Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| |
Collapse
|
8
|
Valette N, Renou J, Boutilliat A, Fernández-González AJ, Gautier V, Silar P, Guyeux C, Charr JC, Cuenot S, Rose C, Gelhaye E, Morel-Rouhier M. OSIP1 is a self-assembling DUF3129 protein required to protect fungal cells from toxins and stressors. Environ Microbiol 2021; 23:1594-1607. [PMID: 33393164 DOI: 10.1111/1462-2920.15381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022]
Abstract
Secreted proteins are key players in fungal physiology and cell protection against external stressing agents and antifungals. Oak stress-induced protein 1 (OSIP1) is a fungal-specific protein with unknown function. By using Podospora anserina and Phanerochaete chrysosporium as models, we combined both in vivo functional approaches and biophysical characterization of OSIP1 recombinant protein. The P. anserina OSIP1Δ mutant showed an increased sensitivity to the antifungal caspofungin compared to the wild type. This correlated with the production of a weakened extracellular exopolysaccharide/protein matrix (ECM). Since the recombinant OSIP1 from P. chrysosporium self-assembled as fibers and was capable of gelation, it is likely that OSIP1 is linked to ECM formation that acts as a physical barrier preventing drug toxicity. Moreover, compared to the wild type, the OSIP1Δ mutant was more sensitive to oak extractives including chaotropic phenols and benzenes. It exhibited a strongly modified secretome pattern and an increased production of proteins associated to the cell-wall integrity signalling pathway, when grown on oak sawdust. This demonstrates that OSIP1 has also an important role in fungal resistance to extractive-induced stress.
Collapse
Affiliation(s)
- Nicolas Valette
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Julien Renou
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Alexis Boutilliat
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | | | - Valérie Gautier
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, 75205, France
| | - Philippe Silar
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, 75205, France
| | - Christophe Guyeux
- Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon, 25030, France
| | - Jean-Claude Charr
- Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, 16 route de Gray, Besançon, 25030, France
| | - Stéphane Cuenot
- Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssinière, Nantes Cedex 3, 44322, France
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, 54000, France
| | - Eric Gelhaye
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| | - Mélanie Morel-Rouhier
- Université de Lorraine, INRAE, Interactions Arbres/Micro-organismes (IAM), UMR 1136, Nancy, 54000, France
| |
Collapse
|
9
|
Feldman D, Yarden O, Hadar Y. Seeking the Roles for Fungal Small-Secreted Proteins in Affecting Saprophytic Lifestyles. Front Microbiol 2020; 11:455. [PMID: 32265881 PMCID: PMC7105643 DOI: 10.3389/fmicb.2020.00455] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Small secreted proteins (SSPs) comprise 40–60% of the total fungal secretome and are present in fungi of all phylogenetic groups, representing the entire spectrum of lifestyles. They are characteristically shorter than 300 amino acids in length and have a signal peptide. The majority of SSPs are coded by orphan genes, which lack known domains or similarities to known protein sequences. Effectors are a group of SSPs that have been investigated extensively in fungi that interact with living hosts, either pathogens or mutualistic systems. They are involved in suppressing the host defense response and altering its physiology. Here, we aim to delineate some of the potential roles of SSPs in saprotrophic fungi, that have been bioinformatically predicted as effectors, and termed in this mini-review as “effector-like” proteins. The effector-like Ssp1 from the white-rot fungus Pleurotus ostreatus is presented as a case study, and its potential role in regulating the ligninolytic system, secondary metabolism, development, and fruiting body initiation are discussed. We propose that deciphering the nature of effector-like SSPs will contribute to our understanding of development and communication in saprophytic fungi, as well as help, to elucidate the origin, regulation, and mechanisms of fungal-host, fungal-fungal, and fungal-bacterial interactions.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Wen Z, Zeng Z, Ren F, Asiegbu FO. The Conifer Root and Stem Rot Pathogen ( Heterobasidion parviporum): Effectome Analysis and Roles in Interspecific Fungal Interactions. Microorganisms 2019; 7:microorganisms7120658. [PMID: 31817407 PMCID: PMC6955712 DOI: 10.3390/microorganisms7120658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion parviporum Niemelä & Korhonen is an economically important basidiomycete, causing root and stem rot disease of Norway spruce (Picea abies (L.) Karst) in Northern Europe. The H. parviporum genome encodes numerous small secreted proteins, which might be of importance for interacting with mycorrhiza symbionts, endophytes, and other saprotrophs. We hypothesized that small secreted proteins from H. parviporum (HpSSPs) are involved in interspecific fungal interaction. To identify HpSSP-coding genes potentially involved, we screened the H. parviporum effectome and compared their transcriptomic profiles during fungal development and in planta tree infection. We further conducted phylogenetic analysis, and identified a subset of hypothetical proteins with nonpredicted domain or unknown function as HpSSPs candidates for further characterization. The HpSSPs candidates were selected based on high-quality sequence, cysteine residue frequency, protein size, and in planta expression. We subsequently explored their roles during in vitro interaction in paired cultures of H. parviporum with ectomycorrhizal Cortinarius gentilis, endophytic Phialocephala sphaeroides, saprotrophs (Mycena sp., Phlebiopsis gigantea, and Phanerochaete chrysosporium), respectively. The transcriptomic profile revealed that a large proportion of effector candidates was either barely expressed or highly expressed under all growth conditions. In vitro dual-culture test showed that P. sphaeroides and C. gentilis were overgrown by H. parviporum. The barrage zone formation or no physical contact observed in paired cultures with the saprotrophs suggest they had either combative interaction or antibiosis effect with H. parviporum. Several HpSSPs individuals were up- or downregulated during the nonself interactions. The results of HpSSPs gene expression patterns provide additional insights into the diverse roles of SSPs in tree infection and interspecific fungal interactions.
Collapse
Affiliation(s)
- Zilan Wen
- Faculty of Agriculture and Forestry, P. O. Box 27, Latokartanonkaari 7, University of Helsinki, 00014 Helsinki, Finland; (Z.W.); (Z.Z.); (F.R.)
| | - Zhen Zeng
- Faculty of Agriculture and Forestry, P. O. Box 27, Latokartanonkaari 7, University of Helsinki, 00014 Helsinki, Finland; (Z.W.); (Z.Z.); (F.R.)
| | - Fei Ren
- Faculty of Agriculture and Forestry, P. O. Box 27, Latokartanonkaari 7, University of Helsinki, 00014 Helsinki, Finland; (Z.W.); (Z.Z.); (F.R.)
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, No. 1 Shuiza Road, Beijing 102300, China
| | - Fred O. Asiegbu
- Faculty of Agriculture and Forestry, P. O. Box 27, Latokartanonkaari 7, University of Helsinki, 00014 Helsinki, Finland; (Z.W.); (Z.Z.); (F.R.)
- Correspondence: ; Tel.: +358-294158109
| |
Collapse
|