1
|
Sánchez-Moreno I, Fernandez-Garcia A, Mateljak I, Gomez de Santos P, Hofrichter M, Kellner H, Sanz-Aparicio J, Alcalde M. Structural Insights and Reaction Profile of a New Unspecific Peroxygenase from Marasmius wettsteinii Produced in a Tandem-Yeast Expression System. ACS Chem Biol 2024; 19:2240-2253. [PMID: 39367827 DOI: 10.1021/acschembio.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Fungal unspecific peroxygenases (UPOs) are gaining momentum in synthetic chemistry. Of special interest is the UPO from Marasmius rotula (MroUPO), which shows an exclusive repertoire of oxyfunctionalizations, including the terminal hydroxylation of alkanes, the α-oxidation of fatty acids and the C-C cleavage of corticosteroids. However, the lack of heterologous expression systems to perform directed evolution has impeded its engineering for practical applications. Here, we introduce a close ortholog of MroUPO, a UPO gene from Marasmius wettsteinii (MweUPO-1), that has a similar reaction profile to MroUPO and for which we have set up a directed evolution platform based on tandem-yeast expression. Recombinant MweUPO-1 was produced at high titers in the bioreactor (0.7 g/L) and characterized at the biochemical and atomic levels. The conjunction of soaking crystallographic experiments at a resolution up to 1.6 Å together with the analysis of reaction patterns sheds light on the substrate preferences of this promiscuous biocatalyst.
Collapse
Affiliation(s)
| | - Angela Fernandez-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, 28006 Madrid, Spain
| | - Ivan Mateljak
- EvoEnzyme S.L., C/Faraday 7, Parque Científico de Madrid, 28049 Madrid, Spain
| | | | - Martin Hofrichter
- Department of Bio- and Environmental Sciences TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Julia Sanz-Aparicio
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, 28006 Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| |
Collapse
|
2
|
Shen Q, Yan J, Han Y, Zhang Z, Li H, Kong D, Shi J, Cui C, Zhang W. Peroxygenase-Enabled Reductive Kinetic Resolution for the Enantioenrichment of Organoperoxides. Angew Chem Int Ed Engl 2024; 63:e202401590. [PMID: 38477082 DOI: 10.1002/anie.202401590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Enantiomerically pure organoperoxides serve as valuable precursors in organic transformations. Herein, we present the first examples of unspecific peroxygenase catalyzed kinetic resolution of racemic organoperoxides through asymmetric reduction. Through meticulous investigation of the reaction conditions, it is shown that the unspecific peroxygenase from Agrocybe aegerita (AaeUPO) exhibits robust catalytic activity in the kinetic resolution reactions of the model substrate with turnover numbers up to 60000 and turnover frequency of 5.6 s-1. Various aralkyl organoperoxides were successfully resolved by AaeUPO, achieving excellent enantioselectivities (e.g., up to 99 % ee for the (S)-organoperoxide products). Additionally, we screened commercial peroxygenase variants to obtain the organoperoxides with complementary chirality, with one mutant yielding the (R)-products. While unspecific peroxygenases have been extensively demonstrated as a powerful oxidative catalysts, this study highlights their usefulness in catalyzing the reduction of organoperoxides and providing versatile chiral synthons.
Collapse
Affiliation(s)
- Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juzhang Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Yuchen Han
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zaoxiao Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Dulin Kong
- School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Chengsen Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| |
Collapse
|
3
|
Zhao LX, Zou SP, Shen Q, Xue YP, Zheng YG. Enhancing the expression of the unspecific peroxygenase in Komagataella phaffii through a combination strategy. Appl Microbiol Biotechnol 2024; 108:320. [PMID: 38709366 DOI: 10.1007/s00253-024-13166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.
Collapse
Affiliation(s)
- Li-Xiang Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Yan X, Zhang X, Li H, Deng D, Guo Z, Kang L, Li A. Engineering of Unspecific Peroxygenases Using a Superfolder-Green-Fluorescent-Protein-Mediated Secretion System in Escherichia coli. JACS AU 2024; 4:1654-1663. [PMID: 38665664 PMCID: PMC11040664 DOI: 10.1021/jacsau.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Unspecific peroxygenases (UPOs), secreted by fungi, demonstrate versatility in catalyzing challenging selective oxyfunctionalizations. However, the number of peroxygenases and corresponding variants with tailored selectivity for a broader substrate scope is still limited due to the lack of efficient engineering strategies. In this study, a new unspecific peroxygenase from Coprinopsis marcescibilis (CmaUPO) is identified and characterized. To enhance or reverse the enantioselectivity of wildtype (WT) CmaUPO catalyzed asymmetric hydroxylation of ethylbenzene, CmaUPO was engineered using an efficient superfolder-green-fluorescent-protein (sfGFP)-mediated secretion system in Escherichia coli. Iterative saturation mutagenesis (ISM) was used to target the residual sites lining the substrate tunnel, resulting in two variants: T125A/A129G and T125A/A129V/A247H/T244A/F243G. The two variants greatly improved the enantioselectivities [21% ee (R) for WT], generating the (R)-1-phenylethanol or (S)-1-phenylethanol as the main product with 99% ee (R) and 84% ee (S), respectively. The sfGFP-mediated secretion system in E. coli demonstrates applicability for different UPOs (AaeUPO, CciUPO, and PabUPO-I). Therefore, this developed system provides a robust platform for heterologous expression and enzyme engineering of UPOs, indicating great potential for their sustainable and efficient applications in various chemical transformations.
Collapse
Affiliation(s)
| | | | | | - Di Deng
- State Key Laboratory of Biocatalysis
and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology,
School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Zhiyong Guo
- State Key Laboratory of Biocatalysis
and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology,
School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Lixin Kang
- State Key Laboratory of Biocatalysis
and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology,
School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis
and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology,
School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| |
Collapse
|
5
|
Agosto-Maldonado A, Guo J, Niu W. Engineering carboxylic acid reductases and unspecific peroxygenases for flavor and fragrance biosynthesis. J Biotechnol 2024; 385:1-12. [PMID: 38428504 PMCID: PMC11062483 DOI: 10.1016/j.jbiotec.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Emerging consumer demand for safer, more sustainable flavors and fragrances has created new challenges for the industry. Enzymatic syntheses represent a promising green production route, but the broad application requires engineering advancements for expanded diversity, improved selectivity, and enhanced stability to be cost-competitive with current methods. This review discusses recent advances and future outlooks for enzyme engineering in this field. We focus on carboxylic acid reductases (CARs) and unspecific peroxygenases (UPOs) that enable selective productions of complex flavor and fragrance molecules. Both enzyme types consist of natural variants with attractive characteristics for biocatalytic applications. Applying protein engineering methods, including rational design and directed evolution in concert with computational modeling, present excellent examples for property improvements to unleash the full potential of enzymes in the biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
| |
Collapse
|
6
|
Fu X, Lin K, Zhang X, Guo Z, Kang L, Li A. Identification, heterologous expression and characterization of a new unspecific peroxygenase from Marasmius fiardii PR-910. BIORESOUR BIOPROCESS 2024; 11:33. [PMID: 38647936 PMCID: PMC10992195 DOI: 10.1186/s40643-024-00751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Unspecific peroxygenases (UPOs) are glycosylated enzymes that provide an efficient method for oxyfunctionalizing a variety of substrates using only hydrogen peroxide (H2O2) as the oxygen donor. However, their poor heterologous expression has hindered their practical application. Here, a novel UPO from Marasmius fiardii PR910 (MfiUPO) was identified and heterologously expressed in Pichia pastoris. By employing a two-copy expression cassette, the protein titer reached 1.18 g L-1 in a 5 L bioreactor, marking the highest record. The glycoprotein rMfiUPO exhibited a smeared band in the 40 to 55 kDa range and demonstrated hydroxylation, epoxidation and alcohol oxidation. Moreover, the peroxidative activity was enhanced by 150% after exposure to 50% (v/v) acetone for 40 h. A semi-preparative production of 4-OH-β-ionone on a 100 mL scale resulted in a 54.2% isolated yield with 95% purity. With its high expression level, rMfiUPO is a promising candidate as an excellent parental template for enhancing desirable traits such as increased stability and selectivity through directed evolution, thereby meeting the necessary criteria for practical application.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Kexin Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Zhiyong Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Lixin Kang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China.
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
7
|
Dolz M, Monterrey DT, Beltrán-Nogal A, Menés-Rubio A, Keser M, González-Pérez D, de Santos PG, Viña-González J, Alcalde M. The colors of peroxygenase activity: Colorimetric high-throughput screening assays for directed evolution. Methods Enzymol 2023; 693:73-109. [PMID: 37977739 DOI: 10.1016/bs.mie.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal unspecific peroxygenases (UPOs) are arising as versatile biocatalysts for C-H oxyfunctionalization reactions. In recent years, several directed evolution studies have been conducted to design improved UPO variants. An essential part of this protein engineering strategy is the design of reliable colorimetric high-throughput screening (HTS) assays for mutant library exploration. Here, we present a palette of 12 colorimetric HTS assays along with their step-by-step protocols, which have been validated for directed UPO evolution campaigns. This array of colorimetric assays will pave the way for the discovery and design of new UPO variants.
Collapse
Affiliation(s)
- Mikel Dolz
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Dianelis T Monterrey
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Alejandro Beltrán-Nogal
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Andrea Menés-Rubio
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - Merve Keser
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | - David González-Pérez
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain
| | | | - Javier Viña-González
- EvoEnzyme S.L., C/ Faraday 7. Parque Científico de Madrid, Cantoblanco, Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/ Marie Curie 2, Cantoblanco, Madrid, Spain.
| |
Collapse
|
8
|
Gomez de Santos P, Mateljak I, Hoang MD, Fleishman SJ, Hollmann F, Alcalde M. Repertoire of Computationally Designed Peroxygenases for Enantiodivergent C-H Oxyfunctionalization Reactions. J Am Chem Soc 2023; 145:3443-3453. [PMID: 36689349 PMCID: PMC9936548 DOI: 10.1021/jacs.2c11118] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The generation of enantiodivergent biocatalysts for C-H oxyfunctionalizations is ever more important in modern synthetic chemistry. Here, we have applied the FuncLib algorithm based on phylogenetic and Rosetta calculations to design a diverse repertoire of active, stable, and enantiodivergent fungal peroxygenases. 24 designs, each carrying 4-5 mutations in the catalytic core, were expressed functionally in yeast and benchmarked against characteristic model compounds. Several designs were active and stable in a range of temperature and pH, displaying unprecedented enantiodivergence, changing regioselectivity from alkyl to aromatic hydroxylation, and increasing catalytic efficiencies up to 10-fold, with 15-fold improvements in total turnover numbers over the parental enzyme. We find that this dramatic functional divergence stems from beneficial epistasis among the mutations and an extensive reorganization of the heme channel. Our work demonstrates that FuncLib can rapidly design highly functional libraries enriched in enantioselective peroxygenases not seen in nature for a range of biotechnological applications.
Collapse
Affiliation(s)
- Patricia Gomez de Santos
- Department
of Biocatalysis, Institute of Catalysis, ICP-CSIC, C/ Marie Curie
2, 28049 Madrid, Spain,EvoEnzyme
S.L., Parque Científico de Madrid, C/ Faraday 7, 28049 Madrid, Spain
| | - Ivan Mateljak
- EvoEnzyme
S.L., Parque Científico de Madrid, C/ Faraday 7, 28049 Madrid, Spain
| | - Manh Dat Hoang
- Department
of Biocatalysis, Institute of Catalysis, ICP-CSIC, C/ Marie Curie
2, 28049 Madrid, Spain,Chair
of Biochemical Engineering, Technical University
of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Frank Hollmann
- Department
of Biotechnology, Delft University of Technology, van der Massweg 9, 2629HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis, ICP-CSIC, C/ Marie Curie
2, 28049 Madrid, Spain,
| |
Collapse
|
9
|
Discovery and Heterologous Expression of Unspecific Peroxygenases. Catalysts 2023. [DOI: 10.3390/catal13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since 2004, unspecific peroxygenases, in short UPOs (EC. 1.11.2.1), have been explored. UPOs are closing a gap between P450 monooxygenases and chloroperoxidases. These enzymes are highly active biocatalysts for the selective oxyfunctionalisation of C–H, C=C and C-C bonds. UPOs are secreted fungal proteins and Komagataella phaffii (Pichia pastoris) is an ideal host for high throughput screening approaches and UPO production. Heterologous overexpression of 26 new UPOs by K. phaffii was performed in deep well plate cultivation and shake flask cultivation up to 50 mL volume. Enzymes were screened using colorimetric assays with 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), naphthalene and 5-nitro-1,3-benzodioxole (NBD) as reporter substrates. The PaDa-I (AaeUPO mutant) and HspUPO were used as benchmarks to find interesting new enzymes with complementary activity profiles as well as good producing strains. Herein we show that six UPOs from Psathyrella aberdarensis, Coprinopsis marcescibilis, Aspergillus novoparasiticus, Dendrothele bispora and Aspergillus brasiliensis are particularly active.
Collapse
|
10
|
Surfing the wave of oxyfunctionalization chemistry by engineering fungal unspecific peroxygenases. Curr Opin Struct Biol 2022; 73:102342. [PMID: 35240455 DOI: 10.1016/j.sbi.2022.102342] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
The selective insertion of oxygen into non-activated organic molecules has to date been considered of utmost importance to synthesize existing and next generation industrial chemicals or pharmaceuticals. In this respect, the minimal requirements and high activity of fungal unspecific peroxygenases (UPOs) situate them as the jewel in the crown of C-H oxyfunctionalization biocatalysts. Although their limited availability and development has hindered their incorporation into industry, the conjunction of directed evolution and computational design is approaching UPOs to practical applications. In this review, we will address the most recent advances in UPO engineering, both of the long and short UPO families, while discussing the future prospects in this fast-moving field of research.
Collapse
|
11
|
Broadening the Biocatalytic Toolbox-Screening and Expression of New Unspecific Peroxygenases. Antioxidants (Basel) 2022; 11:antiox11020223. [PMID: 35204106 PMCID: PMC8868357 DOI: 10.3390/antiox11020223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Unspecific peroxygenases (UPOs) catalyze the selective transfer of single oxygen atoms from peroxides to a broad range of substrates such as un-activated hydrocarbons. Since specific oxyfunctionalizations are among the most-desired reactions in synthetic chemistry, UPOs are of high industrial interest. To broaden the number of available enzymes, computational and experimental methods were combined in this study. After a comparative alignment and homology modelling, the enzymes were expressed directly in P. pastoris. Out of ten initially selected sequences, three enzymes (one from Aspergillus niger and two from Candolleomyces aberdarensis) were actively expressed. Cultivation of respective expression clones in a bioreactor led to production titers of up to 300 mg L−1. Enzymes were purified to near homogeneity and characterized regarding their specific activities and pH-optima for typical UPO substrates. This work demonstrated that directed evolution is not necessarily required to produce UPOs in P. pastoris at respective titers. The heterologous producibility of these three UPOs will expand the toolbox of available enzymes and help to advance their synthetic application.
Collapse
|
12
|
Hofrichter M, Kellner H, Herzog R, Karich A, Kiebist J, Scheibner K, Ullrich R. Peroxide-Mediated Oxygenation of Organic Compounds by Fungal Peroxygenases. Antioxidants (Basel) 2022; 11:163. [PMID: 35052667 PMCID: PMC8772875 DOI: 10.3390/antiox11010163] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
Unspecific peroxygenases (UPOs), whose sequences can be found in the genomes of thousands of filamentous fungi, many yeasts and certain fungus-like protists, are fascinating biocatalysts that transfer peroxide-borne oxygen (from H2O2 or R-OOH) with high efficiency to a wide range of organic substrates, including less or unactivated carbons and heteroatoms. A twice-proline-flanked cysteine (PCP motif) typically ligates the heme that forms the heart of the active site of UPOs and enables various types of relevant oxygenation reactions (hydroxylation, epoxidation, subsequent dealkylations, deacylation, or aromatization) together with less specific one-electron oxidations (e.g., phenoxy radical formation). In consequence, the substrate portfolio of a UPO enzyme always combines prototypical monooxygenase and peroxidase activities. Here, we briefly review nearly 20 years of peroxygenase research, considering basic mechanistic, molecular, phylogenetic, and biotechnological aspects.
Collapse
Affiliation(s)
- Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Robert Herzog
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Alexander Karich
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Jan Kiebist
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; (J.K.); (K.S.)
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Katrin Scheibner
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; (J.K.); (K.S.)
| | - René Ullrich
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| |
Collapse
|
13
|
Regioselective and Stereoselective Epoxidation of n-3 and n-6 Fatty Acids by Fungal Peroxygenases. Antioxidants (Basel) 2021; 10:antiox10121888. [PMID: 34942990 PMCID: PMC8698580 DOI: 10.3390/antiox10121888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Epoxide metabolites from n-3 and n-6 polyunsaturated fatty acids arouse interest thanks to their physiological and pharmacological activities. Their chemical synthesis has significant drawbacks, and enzymes emerge as an alternative with potentially higher selectivity and greener nature. Conversion of eleven eicosanoid, docosanoid, and other n-3/n-6 fatty acids into mono-epoxides by fungal unspecific peroxygenases (UPOs) is investigated, with emphasis on the Agrocybe aegerita (AaeUPO) and Collariella virescens (rCviUPO) enzymes. GC-MS revealed the strict regioselectivity of the n-3 and n-6 reactions with AaeUPO and rCviUPO, respectively, yielding 91%-quantitative conversion into mono-epoxides at the last double bond. Then, six of these mono-epoxides were obtained at mg-scale, purified and further structurally characterized by 1H, 13C and HMBC NMR. Moreover, chiral HPLC showed that the n-3 epoxides were also formed (by AaeUPO) with total S/R enantioselectivity (ee > 99%) while the n-6 epoxides (from rCviUPO reactions) were formed in nearly racemic mixtures. The high regio- and enantioselectivity of several of these reactions unveils the synthetic utility of fungal peroxygenases in fatty acid epoxidation.
Collapse
|