1
|
Xia C, Cheng W, Ren M, Zhu Y. Chromium(VI) and nitrate removal from groundwater using biochar-assisted zero valent iron autotrophic bioreduction: Enhancing electron transfer efficiency and reducing EPS accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125313. [PMID: 39547561 DOI: 10.1016/j.envpol.2024.125313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Current strategies primarily utilize heterotrophic or mixotrophic bioreduction for the simultaneous removal of Cr(VI) and NO3- from groundwater. However, given the oligotrophic nature of groundwater, autotrophic bioreduction could be more appropriate, though it remains notably underdeveloped. Here, an autotrophic bioreduction technology utilizing biochar (BC)-assisted zero valent iron (ZVI) is proposed. The pyrolysis temperature of BC was optimized to enhance electron transfer efficiency and reduce extracellular polymeric substances (EPS) accumulation. BC500, with the superior electron transfer capabilities, was the most effective. After an 11-week period, the ZVI + BC500 biotic column still achieved 100% removal efficiency for Cr(VI) and 93.37 ± 0.33% for NO3-, with initial concentrations of 26 mg/L and 50 mg/L, respectively. Its performance significantly surpasses that of ZVI alone, effectively reducing the interference of Cr(VI) on denitrification. The presence of quinone and phenolic compounds in BC500, serving as electron-accepting and electron-donating groups, improves the efficiency of electron transfer between ZVI and microbes. Metagenomic analysis showed an increase in the growth of autotrophic bacteria such as Hydrogenophaga spp. and Rhodanobacter denitrificans, and heterotrophic bacteria including Arenimonas daejeonensis and Chryseobacterium shandongense. The promotion facilitates the expression of genes associated with Cr(VI) reduction (chrR, nemA) and denitrification (narG, nirS). BC500 also enhanced EPS production, which facilitates the adsorption and reduction of Cr(VI), mitigating its inhibitory effects on denitrification. Notably, in the ZVI + BC500 biotic column, the accumulated EPS primarily consists of loosely bound EPS rather than tightly bound EPS, potentially reducing the risk of pore clogging during in-situ groundwater treatment.
Collapse
Affiliation(s)
- Chuanjin Xia
- School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China; School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu, 730000, PR China
| | - Weidong Cheng
- School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China
| | - Meng Ren
- School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China
| | - Yuling Zhu
- School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China.
| |
Collapse
|
2
|
Yu L, Zhang T, Yang J, Zhang R, Zhou J, Ding F, Shao C, Guo R. Isolation of a novel multiple-heavy metal resistant Lampropedia aestuarii GYF-1 and investigation of its bioremediation potential. BMC Microbiol 2023; 23:330. [PMID: 37936059 PMCID: PMC10629017 DOI: 10.1186/s12866-023-03093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Heavy metal contamination has been a severe worldwide environmental issue. For industrial pollutions, heavy metals rarely exist as singular entities. Hence, researches have increasingly focused on the detrimental effect of mixed heavy metal pollution. Genome analysis of Lampropedia strains predicted a repertoire of heavy metal resistance genes. However, we are still lack of experimental evidence regarding to heavy metal resistance of Lampropedia, and their potential in mixed heavy metal removal remain elusive. RESULTS In this study, a Lampropedia aestuarii strain GYF-1 was isolated from soil samples near steel factory. Heavy metal tolerance assay indicated L. aestuarii GYF-1 possessed minimal inhibition values of 2 mM, 10 mM, 6 mM, 4 mM, 6 mM, 0.8 mM, and 4 mM for CdCl2, K2CrO4, CuCl2, NiCl2, Pb(CH3COO)2, ZnSO4, and FeCl2, respectively. The biosorption assay demonstrated its potential in soil remediation from mixed heavy metal pollution. Next the draft genome of L. aestuarii GYF-1 was obtained and annotated, which revealed strain GYF-1 are abundant in heavy metal resistance genes. Further evaluations on differential gene expressions suggested adaptive mechanisms including increased lipopolysaccharides level and enhanced biofilm formation. CONCLUSION In this study, we demonstrated a newly isolated L. aestuarii GYF-1 exhibited mixed heavy metal resistance, which proven its capability of being a potential candidate strain for industrial biosorption application. Further genome analysis and differential gene expression assay suggest enhanced LPS and biofilm formation contributed to the adaptation of mixed heavy metals.
Collapse
Affiliation(s)
- Lan Yu
- College of Life Sciences, Huzhou University, Huzhou, 313000, P.R. China
| | - Tao Zhang
- College of Life Sciences, Huzhou University, Huzhou, 313000, P.R. China
| | - Jiacheng Yang
- College of Life Sciences, Huzhou University, Huzhou, 313000, P.R. China
| | - Rongfei Zhang
- College of Life Sciences, Huzhou University, Huzhou, 313000, P.R. China
| | - Junbo Zhou
- College of Life Sciences, Huzhou University, Huzhou, 313000, P.R. China
| | - Fan Ding
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou, 313000, P.R. China
| | - Rongkai Guo
- College of Life Sciences, Huzhou University, Huzhou, 313000, P.R. China.
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, P.R. China.
| |
Collapse
|
3
|
Hilpmann S, Rossberg A, Steudtner R, Drobot B, Hübner R, Bok F, Prieur D, Bauters S, Kvashnina KO, Stumpf T, Cherkouk A. Presence of uranium(V) during uranium(VI) reduction by Desulfosporosinus hippei DSM 8344 T. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162593. [PMID: 36889400 DOI: 10.1016/j.scitotenv.2023.162593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Microbial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344T, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D. hippei DSM 8344T showed a relatively fast removal of uranium from the supernatants in artificial Opalinus Clay pore water, but no removal in 30 mM bicarbonate solution. Combined speciation calculations and luminescence spectroscopic investigations showed the dependence of U(VI) reduction on the initial U(VI) species. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed uranium-containing aggregates on the cell surface and some membrane vesicles. By combining different spectroscopic techniques, including UV/Vis spectroscopy, as well as uranium M4-edge X-ray absorption near-edge structure recorded in high-energy-resolution fluorescence-detection mode and extended X-ray absorption fine structure analysis, the partial reduction of U(VI) could be verified, whereby the formed U(IV) product has an unknown structure. Furthermore, the U M4 HERFD-XANES showed the presence of U(V) during the process. These findings offer new insights into U(VI) reduction by sulfate-reducing bacteria and contribute to a comprehensive safety concept for a repository for high-level radioactive waste.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Damien Prieur
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Stephen Bauters
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Kristina O Kvashnina
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
4
|
Pellizza L, Bialer MG, Sieira R, Aran M. MliR, a novel MerR-like regulator of iron homeostasis, impacts metabolism, membrane remodeling, and cell adhesion in the marine Bacteroidetes Bizionia argentinensis. Front Microbiol 2022; 13:987756. [PMID: 36118216 PMCID: PMC9478572 DOI: 10.3389/fmicb.2022.987756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The MerR family is a group of transcriptional activators with conserved N-terminal helix-turn-helix DNA binding domains and variable C-terminal effector binding regions. In most MerR proteins the effector binding domain (EBD) contains a cysteine center suited for metal binding and mediates the response to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. We here present a novel transcriptional regulator classified in the MerR superfamily that lacks an EBD domain and has neither conserved metal binding sites nor cysteine residues. This regulator from the psychrotolerant bacteria Bizionia argentinensis JUB59 is involved in iron homeostasis and was named MliR (MerR-like iron responsive Regulator). In silico analysis revealed that homologs of the MliR protein are widely distributed among different bacterial species. Deletion of the mliR gene led to decreased cell growth, increased cell adhesion and filamentation. Genome-wide transcriptomic analysis showed that genes associated with iron homeostasis were downregulated in mliR-deletion mutant. Through nuclear magnetic resonance-based metabolomics, ICP-MS, fluorescence microscopy and biochemical analysis we evaluated metabolic and phenotypic changes associated with mliR deletion. This work provides the first evidence of a MerR-family regulator involved in iron homeostasis and contributes to expanding our current knowledge on relevant metabolic pathways and cell remodeling mechanisms underlying in the adaptive response to iron availability in bacteria.
Collapse
|
5
|
Rogiers T, Van Houdt R, Williamson A, Leys N, Boon N, Mijnendonckx K. Molecular Mechanisms Underlying Bacterial Uranium Resistance. Front Microbiol 2022; 13:822197. [PMID: 35359714 PMCID: PMC8963506 DOI: 10.3389/fmicb.2022.822197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental uranium pollution due to industries producing naturally occurring radioactive material or nuclear accidents and releases is a global concern. Uranium is hazardous for ecosystems as well as for humans when accumulated through the food chain, through contaminated groundwater and potable water sources, or through inhalation. In particular, uranium pollution pressures microbial communities, which are essential for healthy ecosystems. In turn, microorganisms can influence the mobility and toxicity of uranium through processes like biosorption, bioreduction, biomineralization, and bioaccumulation. These processes were characterized by studying the interaction of different bacteria with uranium. However, most studies unraveling the underlying molecular mechanisms originate from the last decade. Molecular mechanisms help to understand how bacteria interact with radionuclides in the environment. Furthermore, knowledge on these underlying mechanisms could be exploited to improve bioremediation technologies. Here, we review the current knowledge on bacterial uranium resistance and how this could be used for bioremediation applications.
Collapse
Affiliation(s)
- Tom Rogiers
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Adam Williamson
- Centre Etudes Nucléaires de Bordeaux Gradignan (CENBG), Bordeaux, France
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- *Correspondence: Kristel Mijnendonckx,
| |
Collapse
|
6
|
Yu H, Huang L, Zhang G, Zhou P. Physiological metabolism of electrochemically active bacteria directed by combined acetate and Cd(II) in single-chamber microbial electrolysis cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127538. [PMID: 34736191 DOI: 10.1016/j.jhazmat.2021.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
It is of great interest to explore physiological metabolism of electrochemically active bacteria (EAB) for combined organics and heavy metals in single-chamber microbial electrolysis cells (MECs). Four pure culture EAB varying degrees responded to the combined acetate (1.0-5.0 g/L) and Cd(II) (20-150 mg/L) at different initial concentrations in the single-chamber MECs, shown as significant relevance of Cd(II) removal (2.57-7.35 mg/L/h) and H2 production (0-0.0011 m3/m3/h) instead of acetate removal (73-130 mg/L/h), to these EAB species at initial Cd(II) below 120 mg/L and initial acetate below 3.0 g/L. A high initial acetate (5.0 g/L) compensated the Cd(II) inhibition and broadened the removal of Cd(II) to 150 mg/L. These EAB physiologically released variable amounts of extracellular polymeric substances with a compositional diversity in response to the changes of initial Cd(II) and circuital current whereas the activities of typical intracellular enzymes were more apparently altered by the initial Cd(II) than the circuital current. These results provide experimental validation of the presence, the metabolic plasticity and the physiological response of these EAB directed by the changes of initial Cd(II) and acetate concentrations in the single-chamber MECs, deepening our understanding of EAB physiological coping strategies in metallurgical microbial electro-ecological cycles.
Collapse
Affiliation(s)
- Haihang Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|