1
|
Yao NH, Du YN, Xiong JX, Xiao Y, He HH, Xie ZF, Huang D, Song Q, Chen J, Yan D, Chao HJ. Microbial detoxification of 3,5-xylenol via a novel process with sequential methyl oxidation by Rhodococcus sp. CHJ602. ENVIRONMENTAL RESEARCH 2023; 220:115258. [PMID: 36634895 DOI: 10.1016/j.envres.2023.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The compound 3,5-xylenol is an essential precursor used in pesticides and industrial intermediate in the disinfectants and preservatives industry. Its widespread application makes it an important source of pollution. Microbial bioremediation is more environmentally friendly than the physicochemical treatment process for removing alkylphenols from a polluted environment. However, the 3,5-xylenol-degrading bacteria is unavailable, and its degradation mechanism remains unclear. Here, a 3,5-xylenol-metabolizing bacterial strain, designated Rhodococcus sp. CHJ602, was isolated using 3,5-xylenol as the sole source of carbon and energy from a wastewater treatment factory. Results showed that strain CHJ602 maintained a high 3,5-xylenol-degrading performance under the conditions of 30.15 °C and pH 7.37. The pathway involved in 3,5-xylenol degradation by strain CHJ602 must be induced by 3,5-xylenol. Based on the identification of intermediate metabolites and enzyme activities, this bacterium could oxidize 3,5-xylenol by a novel metabolic pathway. One methyl oxidation converted 3,5-xylenol to 3-hydroxymethyl-5-methylphenol, 3-hydroxy-5-methyl benzaldehyde, and 3-hydroxy-5-methylbenzoate. After that, another methyl oxidation is converted to 5-hydroxyisophthalicate, which is metabolized by the protocatechuate pathway. It is catalyzed by a series of enzymes in strain CHJ602. In addition, toxicity bioassay result indicates that 3,5-xylenol is toxic to zebrafish and Rhodococcus sp. CHJ602 could eliminate 3,5-xylenol in water to protect zebrafish from its toxicity. The results provide insights into the bioremediation of wastewater contaminated 3,5-xylenol.
Collapse
Affiliation(s)
- Ni-Hong Yao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Ya-Nan Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Jia-Xi Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Ying Xiao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Hang-Hang He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Ze-Feng Xie
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan, 430223, PR China
| | - Duo Huang
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan, 430223, PR China
| | - Qi Song
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan, 430223, PR China
| | - Jing Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Dazhong Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Hong-Jun Chao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China.
| |
Collapse
|
2
|
Lu GH, Zong MH, Li N. Combining Electro-, Photo-, and Biocatalysis for One-Pot Selective Conversion of Furfural into Value-Added C4 Chemicals. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guang-Hui Lu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| |
Collapse
|
3
|
Thirumalai A, Ganapathy Raman P, Jayavelu T, Subramanian R. Bridging the gap between maleate hydratase, citraconase and isopropylmalate isomerase: Insights into the single broad-specific enzyme. Enzyme Microb Technol 2023; 162:110140. [DOI: 10.1016/j.enzmictec.2022.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022]
|
4
|
Fan K, Feng Q, Li K, Lin J, Wang W, Cao Y, Gai H, Song H, Huang T, Zhu Q, Xiao M. The metabolism of pyrene by a novel Altererythrobacter sp. with in-situ co-substrates: A mechanistic analysis based on pathway, genomics, and enzyme activity. CHEMOSPHERE 2022; 307:135784. [PMID: 35870609 DOI: 10.1016/j.chemosphere.2022.135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Using co-substrates to enhance the metabolic activity of microbes is an effective way for high-molecular-weight polycyclic aromatic hydrocarbons removal in petroleum-contaminated environments. However, the long degradation period and exhausting substrates limit the enhancement of metabolic activity. In this study, Altererythrobacter sp. N1 was screened from petroleum-contaminated soil in Shengli Oilfield, China, which could utilize pyrene as the sole carbon source and energy source. Saturated aromatic fractions and crude oils were used as in-situ co-substrates to enhance pyrene degradation. Enzyme activity was influenced by the different co-substrates. The highest degradation rate (75.98%) was achieved when crude oil was used as the substrate because strain N1 could utilize saturated and aromatic hydrocarbons from crude oil simultaneously to enhance the degrading enzyme activity. Moreover, the phthalate pathway was dominant, while the salicylate pathway was secondary. Furthermore, the Rieske-type aromatic cyclo-dioxygenase gene was annotated in the Altererythrobacter sp. N1 genome for the first time. Therefore, the co-metabolism of pyrene was sustained to achieve a long degradation period without the addition of exogenous substrates. This study is valuable as a potential method for the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Kaiqi Fan
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qingmin Feng
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Kun Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Yanbin Cao
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Hengjun Gai
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hongbing Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Tingting Huang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Quanhong Zhu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Meng Xiao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
5
|
Characterization of the 2,6-Dimethylphenol Monooxygenase MpdAB and Evaluation of Its Potential in Vitamin E Precursor Synthesis. Appl Environ Microbiol 2022; 88:e0011022. [PMID: 35380460 DOI: 10.1128/aem.00110-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,6-Dimethylphenol (2,6-DMP) is a widely used chemical intermediate whose residue has been frequently detected in the environment, posing a threat to some aquatic organisms. Microbial degradation is an effective method to eliminate 2,6-DMP in nature. However, the genetic and biochemical mechanisms of 2,6-DMP metabolism remain unknown. Mycobacterium neoaurum B5-4 is a 2,6-DMP-degrading bacterium isolated in our previous study. Here, a 2,6-DMP degradation-deficient mutant of strain B5-4 was screened. Comparative genomic, transcriptomic, gene disruption, and genetic complementation data indicated that mpdA and mpdB are responsible for the initial step of 2,6-DMP degradation in M. neoaurum B5-4. MpdAB was predicted to be a two-component flavin-dependent monooxygenase system, which shows 32% and 36% identities with HsaAB from Mycobacterium tuberculosis CDC1551. The transcription of mpdA and mpdB was substantially increased upon exposure to 2,6-DMP. Nuclear magnetic resonance analysis showed that purified 6×His-MpdA and 6×His-MpdB hydroxylated 2,6-DMP and 2,3,6-trimethylphenol (2,3,6-TMP) at the para-position using NADH and flavin adenine dinucleotide (FAD) as cofactors. The apparent Km values of MpdAB for 2,6-DMP and 2,3,6-TMP were 0.12 ± 0.01 and 0.17 ± 0.01 mM, respectively, and the corresponding kcat/Km values were 4.02 and 2.84 s-1 mM-1, respectively. Since para-hydroxylated 2,3,6-TMP is a major precursor for vitamin E synthesis, the potential of MpdAB in vitamin E synthesis was preliminarily evaluated using whole-cell catalysis. Low expression levels of MpdA and 2,3,6-TMP cytotoxicity limited the efficiency of whole-cell catalysis. Together, this study reveals the genetic and biochemical basis for the initial step of 2,6-DMP biodegradation and provides candidate enzymes for vitamin E synthesis. IMPORTANCE Although the microbial degradation of the six isomers of dimethylphenol has been extensively studied, the genetic and biochemical mechanisms of 2,6-DMP degradation remain unclear. This study identified the genes responsible for the initial step in the 2,6-DMP catabolic pathway in M. neoaurum B5-4. Moreover, MpdAB also catalyzed the transformation of 2,3,6-TMP to 2,3,5-trimethylhydroquinone (2,3,5-TMHQ), a crucial step in vitamin E synthesis. Overall, this study provides candidate enzymes for both the bioremediation of 2,6-DMP contamination and the development of a green method to synthesize vitamin E.
Collapse
|
6
|
Guo X, Zhang M, Cao M, Zhang W, Kang Z, Xu P, Ma C, Gao C. d-2-Hydroxyglutarate dehydrogenase plays a dual role in l-serine biosynthesis and d-malate utilization in the bacterium Pseudomonas stutzeri. J Biol Chem 2018; 293:15513-15523. [PMID: 30131334 DOI: 10.1074/jbc.ra118.003897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Indexed: 02/03/2023] Open
Abstract
Pseudomonas is a very large bacterial genus in which several species can use d-malate for growth. However, the enzymes that can metabolize d-malate, such as d-malate dehydrogenase, appear to be absent in most Pseudomonas species. d-3-Phosphoglycerate dehydrogenase (SerA) can catalyze the production of d-2-hydroxyglutarate (d-2-HG) from 2-ketoglutarate to support d-3-phosphoglycerate dehydrogenation, which is the initial reaction in bacterial l-serine biosynthesis. In this study, we show that SerA of the Pseudomonas stutzeri strain A1501 reduces oxaloacetate to d-malate and that d-2-HG dehydrogenase (D2HGDH) from P. stutzeri displays d-malate-oxidizing activity. Of note, D2HGDH participates in converting a trace amount of d-malate to oxaloacetate during bacterial l-serine biosynthesis. Moreover, D2HGDH is crucial for the utilization of d-malate as the sole carbon source for growth of P. stutzeri A1501. We also found that the D2HGDH expression is induced by the exogenously added d-2-HG or d-malate and that a flavoprotein functions as a soluble electron carrier between D2HGDH and electron transport chains to support d-malate utilization by P. stutzeri These results support the idea that D2HGDH evolves as an enzyme for both d-malate and d-2-HG dehydrogenation in P. stutzeri In summary, D2HGDH from P. stutzeri A1501 participates in both a core metabolic pathway for l-serine biosynthesis and utilization of extracellular d-malate.
Collapse
Affiliation(s)
- Xiaoting Guo
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Manman Zhang
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Menghao Cao
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Wen Zhang
- the Institute of Medical Sciences, Second Hospital of Shandong University, Jinan 250033, China, and
| | - Zhaoqi Kang
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Ping Xu
- the State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuiqing Ma
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Chao Gao
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China,
| |
Collapse
|
7
|
A Novel Degradation Mechanism for Pyridine Derivatives in Alcaligenes faecalis JQ135. Appl Environ Microbiol 2018; 84:AEM.00910-18. [PMID: 29802182 DOI: 10.1128/aem.00910-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
5-Hydroxypicolinic acid (5HPA), a natural pyridine derivative, is microbially degraded in the environment. However, the physiological, biochemical, and genetic foundations of 5HPA metabolism remain unknown. In this study, an operon (hpa), responsible for 5HPA degradation, was cloned from Alcaligenes faecalis JQ135. HpaM was a monocomponent flavin adenine dinucleotide (FAD)-dependent monooxygenase and shared low identity (only 28 to 31%) with reported monooxygenases. HpaM catalyzed the ortho decarboxylative hydroxylation of 5HPA, generating 2,5-dihydroxypyridine (2,5DHP). The monooxygenase activity of HpaM was FAD and NADH dependent. The apparent Km values of HpaM for 5HPA and NADH were 45.4 μM and 37.8 μM, respectively. The genes hpaX, hpaD, and hpaF were found to encode 2,5DHP dioxygenase, N-formylmaleamic acid deformylase, and maleamate amidohydrolase, respectively; however, the three genes were not essential for 5HPA degradation in A. faecalis JQ135. Furthermore, the gene maiA, which encodes a maleic acid cis-trans isomerase, was essential for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135, indicating that it might be a key gene in the metabolism of pyridine derivatives. The genes and proteins identified in this study showed a novel degradation mechanism of pyridine derivatives.IMPORTANCE Unlike the benzene ring, the uneven distribution of the electron density of the pyridine ring influences the positional reactivity and interaction with enzymes; e.g., the ortho and para oxidations are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylations of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA gene coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives.
Collapse
|
8
|
Li N, Yao L, He Q, Qiu J, Cheng D, Ding D, Tao Q, He J, Jiang J. 3,6-Dichlorosalicylate Catabolism Is Initiated by the DsmABC Cytochrome P450 Monooxygenase System in Rhizorhabdus dicambivorans Ndbn-20. Appl Environ Microbiol 2018; 84:e02133-17. [PMID: 29196293 PMCID: PMC5795090 DOI: 10.1128/aem.02133-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
The degradation of the herbicide dicamba is initiated by demethylation to form 3,6-dichlorosalicylate (3,6-DCSA) in Rhizorhabdusdicambivorans Ndbn-20. In the present study, a 3,6-DCSA degradation-deficient mutant, Ndbn-20m, was screened. A cluster, dsmR1DABCEFGR2, was lost in this mutant. The cluster consisted of nine genes, all of which were apparently induced by 3,6-DCSA. DsmA shared 30 to 36% identity with the monooxygenase components of reported three-component cytochrome P450 systems and formed a monophyletic branch in the phylogenetic tree. DsmB and DsmC were most closely related to the reported [2Fe-2S] ferredoxin and ferredoxin reductase, respectively. The disruption of dsmA in strain Ndbn-20 resulted in inactive 3,6-DCSA degradation. When dsmABC, but not dsmA alone, was introduced into mutant Ndbn-20m and Sphingobium quisquiliarum DC-2 (which is unable to degrade salicylate and its derivatives), they acquired the ability to hydroxylate 3,6-DCSA. Single-crystal X-ray diffraction demonstrated that the DsmABC-catalyzed hydroxylation occurred at the C-5 position of 3,6-DCSA, generating 3,6-dichlorogentisate (3,6-DCGA). In addition, DsmD shared 51% identity with GtdA (a gentisate and 3,6-DCGA 1,2-dioxygenase) from Sphingomonas sp. strain RW5. However, unlike GtdA, the purified DsmD catalyzed the cleavage of gentisate and 3-chlorogentisate but not 6-chlorogentisate or 3,6-DCGA in vitro Based on the bioinformatic analysis and gene function studies, a possible catabolic pathway of dicamba in R. dicambivorans Ndbn-20 was proposed.IMPORTANCE Dicamba is widely used to control a variety of broadleaf weeds and is a promising target herbicide for the engineering of herbicide-resistant crops. The catabolism of dicamba has thus received increasing attention. Bacteria mineralize dicamba initially via demethylation, generating 3,6-dichlorosalicylate. However, the catabolism of 3,6-dichlorosalicylate remains unknown. In this study, we cloned a gene cluster, dsmR1DABCEFGR2, involved in 3,6-dichlorosalicylate degradation from R. dicambivorans Ndbn-20, demonstrated that the cytochrome P450 monooxygenase system DsmABC was responsible for the 5-hydroxylation of 3,6-dichlorosalicylate, and proposed a dicamba catabolic pathway. This study provides a basis to elucidate the catabolism of dicamba and has benefits for the ecotoxicological study of dicamba. Furthermore, the hydroxylation of salicylate has been previously reported to be catalyzed by single-component flavoprotein or three-component Rieske non-heme iron oxygenase, whereas DsmABC was the only cytochrome P450 monooxygenase system hydroxylating salicylate and its methyl- or chloro-substituted derivatives.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Li Yao
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Qin He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dan Cheng
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Derong Ding
- Beijing DBN Biotech Co., Ltd., Beijing, China
| | - Qing Tao
- Beijing DBN Biotech Co., Ltd., Beijing, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiandong Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|