1
|
Oh H, Lee J. Psychrotrophic Bacteria Threatening the Safety of Animal-Derived Foods: Characteristics, Contamination, and Control Strategies. Food Sci Anim Resour 2024; 44:1011-1027. [PMID: 39246535 PMCID: PMC11377203 DOI: 10.5851/kosfa.2024.e70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Animal-derived foods, such as meat and dairy products, are prone to spoilage by psychrotrophic bacteria due to their high-water activity and nutritional value. These bacteria can grow at refrigerated temperatures, posing significant concerns for food safety and quality. Psychrotrophic bacteria, including Pseudomonas, Listeria, and Yersinia, not only spoil food but can also produce heat-resistant enzymes and toxins, posing health risks. This review examines the characteristics and species composition of psychrotrophic bacteria in animal-derived foods, their impact on food spoilage and safety, and contamination patterns in various products. It explores several nonthermal techniques to combat bacterial contamination as alternatives to conventional thermal methods, which can affect food quality. This review highlights the importance of developing nonthermal technologies to control psychrotrophic bacteria that threaten the cold storage of animal-derived foods. By adopting these technologies, the food industry can better ensure the safety and quality of animal-derived foods for consumers.
Collapse
Affiliation(s)
- Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeeyeon Lee
- Department of Food & Nutrition, Dong-eui University, Busan 47340, Korea
| |
Collapse
|
2
|
Wang LH, Chen L, Zhao S, Huang Y, Zeng XA, Aadil RM. Inactivation efficacy and mechanisms of atmospheric cold plasma on Alicyclobacillus acidoterrestris: Insight into the influence of growth temperature on survival. Front Nutr 2022; 9:1012901. [PMID: 36185645 PMCID: PMC9521650 DOI: 10.3389/fnut.2022.1012901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The bactericidal effect of dielectric barrier discharge-atmospheric cold plasma (DBD-ACP, 20, and 30 kV) against Alicyclobacillus acidoterrestris on the saline solution and apple juice was investigated. Results show that DBD-ACP is effective for the inactivation of A. acidoterrestris by causing significant changes in cell membrane permeability and bacterial morphology. The effect of culture temperatures on the resistance of A. acidoterrestris to DBD-ACP was also studied. A. acidoterrestris cells grown at 25°C had the lowest resistance but it was gradually increased as the culture temperature was increased (25-45°C) (p < 0.05). Moreover, results from Fourier transform infrared spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometer (GC-MS) analysis showed that the increase in the culture temperature can gradually cause the decreased level of cyclohexaneundecanoic acid in the cell membrane of A. acidoterrestris (p < 0.05). In contrast, cyclopentaneundecanoic acid, palmitic acid, and stearic acid showed an increasing trend in which the fluidity of the bacterial cell membrane decreased. This study shows a specific correlation between the resistance of A. acidoterrestris and the fatty acid composition of the cell membrane to DBD-ACP.
Collapse
Affiliation(s)
- Lang-Hong Wang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- College of Food Science and Technology and College of Life Sciences, Northwest University, Xi'an, China
| | - Lin Chen
- College of Food Science and Technology and College of Life Sciences, Northwest University, Xi'an, China
| | - Siqi Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanyan Huang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
| | - Xin-An Zeng
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Priyanka P, Kinsella GK, Henehan GT, Ryan BJ. Listeria monocytogenes is a solvent tolerant organism secreting a solvent stable lipase: potential biotechnological applications. Biotechnol Lett 2022; 44:1139-1147. [PMID: 36006575 PMCID: PMC9481501 DOI: 10.1007/s10529-022-03284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose The emerging biobased economy will require robust, adaptable, organisms for the production and processing of biomaterials as well as for bioremediation. Recently, the search for solvent tolerant organisms and solvent tolerant enzymes has intensified. Resilient organisms secreting solvent stable lipases are of particular interest for biotechnological applications. Methods Screening of soil samples for lipase-producing organisms was carried out on Rhodamine B plates. The most productive lipase-producing organisms were further screened for their resistance to solvents commonly used in biotechnological applications. Results In the course of screening, one of the isolated organisms that exhibited extracellular lipase activity, was identified as the human pathogen Listeria monocytogenes through 16S rRNA sequencing. Further exploration revealed that this organism was resistant to solvents ranging from log P − 0.81 to 4.0. Moreover, in the presence of these solvents, L. monocytogenes secreted an extracellular, solvent tolerant, lipase activity. This lipase retained approximately 80% activity when incubated in 30% (v/v) methanol for 24 h. Conclusion These findings identify L. monocytogenes as a potentially useful organism for biotechnological applications. However, the fact that Listeria is a pathogen is problematic and it will require the use of non-pathogenic or attenuated Listeria strains for practical applications. Nonetheless, the ability to adapt to rapidly changing environmental conditions, to grow at low temperatures, to resist solvents and to secrete an extracellular solvent tolerant lipase are unique and highly useful characteristics. The potential application of L. monocytogenes in wastewater bioremediation and plastics degradation is discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-022-03284-5.
Collapse
Affiliation(s)
- Priyanka Priyanka
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| | - Gemma K Kinsella
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland.
| | - Gary T Henehan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| | - Barry J Ryan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland
| |
Collapse
|
4
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
5
|
Bacteriocin enterocin CRL35 is a modular peptide that induces non-bilayer states in bacterial model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183135. [DOI: 10.1016/j.bbamem.2019.183135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
|
6
|
Inactivation of Listeria Monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108635] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses. PLoS One 2019; 14:e0219422. [PMID: 31287844 PMCID: PMC6615604 DOI: 10.1371/journal.pone.0219422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
Yersinia pseudotuberculosis is an important foodborne pathogen threatening modern food safety due to its ability to survive and grow at low temperatures. DEAD-box RNA helicase CsdA has been shown to play an important role in the low-temperature growth of psychrotrophic Y. pseudotuberculosis. A total of five DEAD-box RNA helicase genes (rhlB, csdA, rhlE, dbpA, srmB) have been identified in Y. pseudotuberculosis IP32953. However, their role in various stress conditions used in food production is unclear. We studied the involvement of the DEAD-box RNA helicase-encoding genes in the cold tolerance of Y. pseudotuberculosis IP32953 using quantitative real-time reverse transcription (RT-qPCR) and mutational analysis. Quantitative RT-PCR revealed that mRNA transcriptional levels of csdA, rhlE, dbpA and srmB were significantly higher after cold shock at 3°C compared to non-shocked culture at 28°C, suggesting the involvement of these four genes in cold shock response at the transcriptional level. The deletion of csdA ceased growth, while the deletion of dbpA or srmB significantly impaired growth at 3°C, suggesting the requirement of these three genes in Y. pseudotuberculosis at low temperatures. Growth of each DEAD-box RNA helicase mutant was also investigated under pH, osmotic, ethanol and oxidative stress conditions. The five helicase-encoding genes did not play major roles in the growth of Y. pseudotuberculosis IP32953 under pH, osmotic, ethanol or oxidative stress.
Collapse
|
8
|
|
9
|
Wang J, Chen W, Nian H, Ji X, Lin L, Wei Y, Zhang Q. Inhibition of Polyunsaturated Fatty Acids Synthesis Decreases Growth Rate and Membrane Fluidity of Rhodosporidium kratochvilovae at Low Temperature. Lipids 2017; 52:729-735. [DOI: 10.1007/s11745-017-4273-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/08/2017] [Indexed: 12/01/2022]
|
10
|
Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress. Arch Microbiol 2016; 199:259-265. [PMID: 27695911 DOI: 10.1007/s00203-016-1300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/25/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry. This ubiquity can be partly explained by the ability of the organism to grow and persist at very low temperatures, a consequence of its ability to accumulate cryoprotective compound called osmolytes. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the stress response genes opuCA and betL (encoding carnitine and betaine transporters, respectively) and the housekeeping gene 16S rRNA. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting cold and freezing stress, conditions usually used to preserve foods. We showed that expression of the two cold-adapted genes encoded the transporters of the cryoprotectants carnitine and betaine in ATCC 19115 and the food-isolated L. monocytogenes S1 is induced after cold and freezing stress exposure. Furthermore, transcriptional analysis of the genes encoding opuCA and betL revealed that each transporter is induced to different degrees upon cold shock of L. monocytogenes ATCC 19115 and S1. Our results confirm an increase in carnitine uptake at low temperatures more than in betaine after cold-shocked temperature compared to the non-stress control treatment. It was concluded the use of carnitine and betaine as cryoprotectants is essential for rapid induction of the tested stress response under conditions typically encountered during food preservation.
Collapse
|
11
|
Teixeira JS, Maier MB, Miller P, Gänzle MG, McMullen LM. The effect of growth temperature, process temperature, and sodium chloride on the high-pressure inactivation of Listeria monocytogenes on ham. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2700-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
|
13
|
Gadea R, Fernández Fuentes MÁ, Pérez Pulido R, Gálvez A, Ortega E. Adaptive tolerance to phenolic biocides in bacteria from organic foods: Effects on antimicrobial susceptibility and tolerance to physical stresses. Food Res Int 2016; 85:131-143. [PMID: 29544828 DOI: 10.1016/j.foodres.2016.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to analyze the effects of step-wise exposure of biocide-sensitive bacteria from organic foods to phenolic biocides triclosan (TC) and hexachlorophene [2,2'-methylenebis(3,4,6-trichlorophenol)] (CF). The analysis included changes in the tolerance to the biocide itself, the tolerance to other biocides, and cross-resistance to clinically important antibiotics. The involvement of efflux mechanisms was also studied as well as the possible implication of modifications in cytoplasmic membrane fluidity in the resistance mechanisms. The influence of biocide tolerance on growth capacity of the adapted strains and on subsequent resistance to other physical stresses has also been analyzed. Repeated exposure of bacteria from organic foods to phenolic biocides resulted in most cases in partially increased tolerance to the same biocide, to dissimilar biocides and other antimicrobial compounds. Nine TC-adapted strains and six CF-adapted strains were able to develop high levels of biocide tolerance, and these were stable in the absence of biocide selective pressure. Most strains adapted to TC and one CF-adapted strain showed significantly higher anisotropy values than their corresponding wildtype strains, suggesting that changes in membrane fluidity could be involved in biocide adaptation. Exposure to gradually increasing concentrations of CF induced a decrease in heat tolerance. Biocide adaptation had no significant effects of gastric acid or bile resistance, suggesting that biocide adaptation should not influence survival in the gastrointestinal tract.
Collapse
Affiliation(s)
- Rebeca Gadea
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Miguel Ángel Fernández Fuentes
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Rubén Pérez Pulido
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain.
| | - Elena Ortega
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| |
Collapse
|
14
|
Shen Q, Pandare P, Soni KA, Nannapaneni R, Mahmoud BS, Sharma CS. Influence of temperature on alkali stress adaptation in Listeria monocytogenes. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
The Acid Tolerance Response Alters Membrane Fluidity and Induces Nisin Resistance in Listeria monocytogenes. Probiotics Antimicrob Proteins 2016; 1:130-5. [PMID: 26783167 DOI: 10.1007/s12602-009-9025-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ability of L. monocytogenes cells to adapt to a variety of stressors contributes to its growth in a wide range of foods. The present study examines the effect of acid and of the acid tolerance response (ATR) on membrane fluidity and on the organism's resistance to acid and to the bacteriocin nisin. When ATR was induced in wild-type cells, these cells also became resistant to nisin. ATR(+) cells also had lower membrane rigidities than control ATR(-) cells that had not been subjected to the acid tolerance response. However, cells that were genetically resistant to nisin did not show any significant (P < 0.05) change in rigidity when grown in the presence of nisin. These studies suggest that the use of acid and nisin for L. monocytogenes control in ready-to-eat foods may be compromised if cross-resistance emerges.
Collapse
|
16
|
Moon H, Rhee MS. Synergism between carvacrol or thymol increases the antimicrobial efficacy of soy sauce with no sensory impact. Int J Food Microbiol 2015; 217:35-41. [PMID: 26490647 DOI: 10.1016/j.ijfoodmicro.2015.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 11/15/2022]
Abstract
Here, we examined the antimicrobial effects of soy sauce containing essential oils (EOs) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes at 22°C and 4°C. To screen a variety of combined effects, soy sauce was mixed with six different EOs (carvacrol, thymol, eugenol, trans-cinnamaldehyde, β-resorcylic acid, and vanillin), each at a concentration of 1mM for 10 min. None of the oils showed bactericidal activity when used alone. Soy sauce combined with carvacrol and thymol induced the greatest antibacterial activity against all tested bacteria; therefore, these oils were further tested at 0.25, 0.5, and 1mM (0.0039%, 0.0078%, and 0.0157%) for 1, 5, and 10 min at 4°C and 22°C. In addition, sensory evaluation of soy sauce containing each EO at 0.25, 0.5, 1, and 2mM was performed using the nine point hedonic test. Carvacrol or thymol (1mM) eliminated all the test bacteria (initial population, 7.0-7.5logCFU/ml) in 1-5 min at 22°C and within 10 min at 4°C. L. monocytogenes was slightly more tolerant at 4°C, which may be attributable to the ability of the cell membrane to adapt to low temperatures. The sensory scores for soy sauce containing EOs were not significantly different from that of soy sauce without EOs (P>0.05). The stability of EO efficacy in soy sauce was also verified. These results suggest that carvacrol and thymol act synergistically with other factors present in soy sauce to increase antimicrobial activity against major foodborne pathogens at both 4°C and 22°C. The synergism may be attributable to the combination of factors (mainly high salt concentration and low pH imparted by organic acids) present in soy sauce and the membrane attacking properties of carvacrol and thymol. This method will facilitate the production of microbiologically safe soy sauce, soy sauce-based marinades, and various marinated foods.
Collapse
Affiliation(s)
- Hyeree Moon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
He J, Yang Z, Hu B, Ji X, Wei Y, Lin L, Zhang Q. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. Yeast 2015; 32:683-90. [PMID: 26284451 DOI: 10.1002/yea.3095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 11/11/2022] Open
Abstract
This study aimed to investigate the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of the Δ(12)-desaturase gene. The optimum temperature for YM25079 growth was analysed first, then the composition changes of membrane lipid in YM25079 were detected by GC-MS and membrane fluidity was evaluated by 1-anilinonaphthalene-8-sulphonate (ANS) fluorescence. Meanwhile, the encoding sequence of Δ(12)-fatty acid desaturase in YM25079 was cloned and further transformed into Saccharomyces cerevisiae INVScl for functional analysis. The mRNA expression levels of Δ(12)-fatty acid desaturase at 15°C and 25°C were analysed by real-time PCR. YM25079 could grow at 5-30°C, with the optimum temperature of 15°C. The membrane fluidity of YM25079 was not significantly reduced when the culture temperature decreased from 25°C to 15°C, but the content of polyunsaturated fatty acids (PUFAs), including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%. Furthermore, a novel Δ(12)-fatty acid desaturase gene YM25079RGD12 from YM25079 was successfully identified and characterized, and the mRNA transcription level of the Δ(12)-desaturase gene was about five-fold higher in YM25079 cells grown at 15°C than that at 25°C. These results suggests that the cold adaptation of Rhodotorula glutinis YM25079 might result from higher expression of genes, especially the Δ(12)-fatty acid desaturase gene, during polyunsaturated fatty acids biosynthesis, which increased the content of PUFAs in the cell membrane and maintained the membrane fluidity at low temperature.
Collapse
Affiliation(s)
- Jing He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China.,Genetic Diagnosis Centre, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Zhaojie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Binbin Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, People's Republic of China
| |
Collapse
|
18
|
Shen Q, Soni KA, Nannapaneni R. Stability of sublethal acid stress adaptation and induced cross protection against lauric arginate in Listeria monocytogenes. Int J Food Microbiol 2015; 203:49-54. [DOI: 10.1016/j.ijfoodmicro.2015.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 02/04/2023]
|
19
|
Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Casey A, Fox EM, Schmitz-Esser S, Coffey A, McAuliffe O, Jordan K. Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility. Front Microbiol 2014; 5:68. [PMID: 24616718 PMCID: PMC3937556 DOI: 10.3389/fmicb.2014.00068] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/07/2014] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes is a virulent food-borne pathogen most often associated with the consumption of “ready-to-eat” foods. The organism is a common contaminant of food processing plants where it may persist for extended periods of time. A commonly used approach for the control of Listeria monocytogenes in the processing environment is the application of biocides such as quaternary ammonium compounds. In this study, the transcriptomic response of a persistent strain of L. monocytogenes (strain 6179) on exposure to a sub-lethal concentration of the quaternary ammonium compound benzethonium chloride (BZT) was assessed. Using RNA-Seq, gene expression levels were quantified by sequencing the transcriptome of L. monocytogenes 6179 in the presence (4 ppm) and absence of BZT, and mapping each data set to the sequenced genome of strain 6179. Hundreds of differentially expressed genes were identified, and subsequent analysis suggested that many biological processes such as peptidoglycan biosynthesis, bacterial chemotaxis and motility, and carbohydrate uptake, were involved in the response of L. monocyotogenes to the presence of BZT. The information generated in this study further contributes to our understanding of the response of bacteria to environmental stress. In addition, this study demonstrates the importance of using the bacterium's own genome as a reference when analysing RNA-Seq data.
Collapse
Affiliation(s)
- Aidan Casey
- Teagasc Food Research Centre Fermoy, Ireland
| | - Edward M Fox
- CSIRO Animal Food and Health Sciences Werribee, VIC, Australia
| | - Stephan Schmitz-Esser
- Department of Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, University of Veterinary Medicine Vienna, Austria
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology Cork, Ireland
| | | | | |
Collapse
|
21
|
Boechat AL, Kaihami GH, Politi MJ, Lépine F, Baldini RL. A novel role for an ECF sigma factor in fatty acid biosynthesis and membrane fluidity in Pseudomonas aeruginosa. PLoS One 2013; 8:e84775. [PMID: 24386415 PMCID: PMC3875570 DOI: 10.1371/journal.pone.0084775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/18/2013] [Indexed: 01/27/2023] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are members of cell-surface signaling systems, abundant in the opportunistic pathogen Pseudomonas aeruginosa. Twenty genes coding for ECF sigma factors are present in P. aeruginosa sequenced genomes, most of them being part of TonB systems related to iron uptake. In this work, poorly characterized sigma factors were overexpressed in strain PA14, in an attempt to understand their role in the bacterium's physiology. Cultures overexpressing SigX displayed a biphasic growth curve, reaching stationary phase earlier than the control strain, followed by subsequent growth resumption. During the first stationary phase, most cells swell and die, but the remaining cells return to the wild type morphology and proceed to a second exponential growth. This is not due to compensatory mutations, since cells recovered from late time points and diluted into fresh medium repeated this behavior. Swollen cells have a more fluid membrane and contain higher amounts of shorter chain fatty acids. A proteomic analysis was performed to identify differentially expressed proteins due to overexpression of sigX, revealing the induction of several fatty acid synthesis (FAS) enzymes. Using qRT-PCR, we showed that at least one isoform from each of the FAS pathway enzymes were upregulated at the mRNA level in the SigX overexpressing strain thus pointing to a role for this ECF sigma factor in the FAS regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Ana Laura Boechat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gilberto Hideo Kaihami
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Mario José Politi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - François Lépine
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Regina L. Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
1,6-Diphenyl-1,3,5-hexatrine as a reporter of inner spore membrane fluidity in Bacillus subtilis and Alicyclobacillus acidoterrestris. J Microbiol Methods 2013; 96:101-3. [PMID: 24280194 DOI: 10.1016/j.mimet.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 11/23/2022]
Abstract
A method to determine the inner membrane fluidity of spore populations was developed using the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH). DPH incorporated into the inner spore membrane of Bacillus subtilis ATCC 6633 and Alicyclobacillus acidoterrestris N1100, during static and dynamic fluidity experiments. The membrane fluidity of A. acidoterrestris spores stripped of the outer spore coats was the same as that of native spores. In addition, laser scanning confocal microscopy confirmed the presence of DPH in the spore membrane. This is the first report of spores containing fluid regions of their inner membranes.
Collapse
|
23
|
Influence of freezing stress on morphological alteration and biofilm formation by Listeria monocytogenes: relationship with cell surface hydrophobicity and membrane fluidity. Arch Microbiol 2013; 195:705-15. [DOI: 10.1007/s00203-013-0921-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/23/2013] [Accepted: 08/17/2013] [Indexed: 12/25/2022]
|
24
|
Guélon T, Hunter R, Mathias J, Deffuant G. Homogenization ofPseudomonas aeruginosaPAO1 biofilms visualized by freeze-substitution electron microscopy. Biotechnol Bioeng 2013; 110:1405-18. [DOI: 10.1002/bit.24805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/08/2012] [Accepted: 11/28/2012] [Indexed: 11/09/2022]
|
25
|
Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl Environ Microbiol 2012; 78:2602-12. [PMID: 22307309 DOI: 10.1128/aem.07658-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The food-borne pathogen Listeria monocytogenes experiences osmotic stress in many habitats, including foods and the gastrointestinal tract of the host. During transmission, L. monocytogenes is likely to experience osmotic stress at different temperatures and may adapt to osmotic stress in a temperature-dependent manner. To understand the impact of temperature on the responses this pathogen uses to adapt to osmotic stress, we assessed genome-wide changes in the L. monocytogenes H7858 transcriptome during short-term and long-term adaptation to salt stress at 7°C and 37°C. At both temperatures, the short-term response to salt stress included increased transcript levels of sigB and SigB-regulated genes, as well as mrpABCDEFG, encoding a sodium/proton antiporter. This antiporter was found to play a role in adaptation to salt stress at both temperatures; ΔmrpABCDEFG had a significantly longer lag phase than the parent strain in BHI plus 6% NaCl at 7°C and 37°C. The short-term adaptation to salt stress at 7°C included increased transcript levels of two genes encoding carboxypeptidases that modify peptidoglycan. These carboxypeptidases play a role in the short-term adaptation to salt stress only at 7°C, where the deletion mutants had significantly different lag phases than the parent strain. Changes in the transcriptome at both temperatures suggested that exposure to salt stress could provide cross-protection to other stresses, including peroxide stress. Short-term exposure to salt stress significantly increased H(2)O(2) resistance at both temperatures. These results provide information for the development of knowledge-based intervention methods against this pathogen, as well as provide insight into potential mechanisms of cross-protection.
Collapse
|
26
|
MILADI HANENE, BAKHROUF AMINA, AMMAR EMNA. CELLULAR LIPID FATTY ACID PROFILES OF REFERENCE AND FOOD ISOLATESLISTERIA MONOCYTOGENESAS A RESPONSE TO REFRIGERATION AND FREEZING STRESS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00607.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Ruminant rhombencephalitis-associated Listeria monocytogenes alleles linked to a multilocus variable-number tandem-repeat analysis complex. Appl Environ Microbiol 2011; 77:8325-35. [PMID: 21984240 DOI: 10.1128/aem.06507-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is among the most important food-borne pathogens and is well adapted to persist in the environment. To gain insight into the genetic relatedness and potential virulence of L. monocytogenes strains causing central nervous system (CNS) infections, we used multilocus variable-number tandem-repeat analysis (MLVA) to subtype 183 L. monocytogenes isolates, most from ruminant rhombencephalitis and some from human patients, food, and the environment. Allelic-profile-based comparisons grouped L. monocytogenes strains mainly into three clonal complexes and linked single-locus variants (SLVs). Clonal complex A essentially consisted of isolates from human and ruminant brain samples. All but one rhombencephalitis isolate from cattle were located in clonal complex A. In contrast, food and environmental isolates mainly clustered into clonal complex C, and none was classified as clonal complex A. Isolates of the two main clonal complexes (A and C) obtained by MLVA were analyzed by PCR for the presence of 11 virulence-associated genes (prfA, actA, inlA, inlB, inlC, inlD, inlE, inlF, inlG, inlJ, and inlC2H). Virulence gene analysis revealed significant differences in the actA, inlF, inlG, and inlJ allelic profiles between clinical isolates (complex A) and nonclinical isolates (complex C). The association of particular alleles of actA, inlF, and newly described alleles of inlJ with isolates from CNS infections (particularly rhombencephalitis) suggests that these virulence genes participate in neurovirulence of L. monocytogenes. The overall absence of inlG in clinical complex A and its presence in complex C isolates suggests that the InlG protein is more relevant for the survival of L. monocytogenes in the environment.
Collapse
|
28
|
Mattila M, Lindström M, Somervuo P, Markkula A, Korkeala H. Role of flhA and motA in growth of Listeria monocytogenes at low temperatures. Int J Food Microbiol 2011; 148:177-83. [PMID: 21683466 DOI: 10.1016/j.ijfoodmicro.2011.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 05/09/2011] [Accepted: 05/26/2011] [Indexed: 11/15/2022]
Abstract
While temperature-dependent induction of flagella is a well-characterized phenomenon in Listeria monocytogenes, the essentiality of increased flagellum production during growth at low temperatures remains unclear. To study this relationship, we compared the relative expression levels of two motility genes, flhA and motA, at 3°C, 25°C and 37°C in L. monocytogenes strain EGD-e by using qRT-PCR, and compared the growth curves, motility, and flagellation between the wild-type and flhA and motA deletion mutants. The relative expression levels of flhA and motA at 3°C were significantly higher than at 37°C (p<0.01). At 3°C, the level of flhA transcripts was also significantly higher than at 25°C (p<0.01). Growth curve analysis showed that at 3°C both the growth rates and maximum optical densities of ΔflhA and ΔmotA strains at 600 nm were significantly lower than those of the wild-type (p<0.001), while no significant differences were observed between the wild-type and the mutants at 37°C, and 25°C. Mutant strains ΔflhA and ΔmotA were nonmotile at all three temperatures. At 25°C, the number of flagellated cells of ΔmotA was notably reduced compared with the wild-type, whereas ΔflhA appeared nonflagellated at all temperatures. The results suggest that flhA and motA play a role in the cold tolerance of L. monocytogenes strain EGD-e, and that motile flagella may be needed for optimal cold stress response of L. monocytogenes.
Collapse
Affiliation(s)
- Mirjami Mattila
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
29
|
Bisbiroulas P, Psylou M, Iliopoulou I, Diakogiannis I, Berberi A, Mastronicolis S. Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride. Lett Appl Microbiol 2011; 52:275-80. [DOI: 10.1111/j.1472-765x.2010.02995.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Bisbiroulas P, Psylou M, Iliopoulou I, Diakogiannis I, Berberi A, Mastronicolis S. Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride. Lett Appl Microbiol 2011. [DOI: 10.1111/j.1472-765x.2011.02995.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Alonso-Hernando A, Alonso-Calleja C, Capita R. Effects of exposure to poultry chemical decontaminants on the membrane fluidity of Listeria monocytogenes and Salmonella enterica strains. Int J Food Microbiol 2010; 137:130-6. [DOI: 10.1016/j.ijfoodmicro.2009.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 11/18/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
|
32
|
Park BJ, Abu-Lail NI. Variations in the Nanomechanical Properties of Virulent and Avirulent Listeria monocytogenes. SOFT MATTER 2010; 6:3898-3909. [PMID: 20871743 PMCID: PMC2944262 DOI: 10.1039/b927260g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Atomic force microscopy (AFM) was used to quantify both the nanomechanical properties of pathogenic (ATCC 51776 & EGDe) and non-pathogenic (ATCC 15313 & HCC25) Listeria monocytogenes strains and the conformational properties of their surface biopolymers. The nanomechanical properties of the various L. monocytogenes strains were quantified in terms of Young's moduli of cells. To estimate Young's moduli, the classic Hertz model of contact mechanics and a modified version of it that takes into account substrate effects were used to fit the AFM nanoindentation-force measurements collected while pushing onto the bacterial surface biopolymer brush. When compared, the classic Hertz model always predicted higher Young's moduli values of bacterial cell elasticity compared to the modified Hertz model. On average, the modified Hertz model showed that virulent strains are approximately twice as rigid (88.1 ± 14.5 KPa) as the avirulent strains (47.3 ± 7.6 kPa). To quantify the conformational properties of L. monocytogenes' strains surface biopolymers, two models were used. First, the entropic-based, statistical mechanical, random walk formulation, the wormlike chain (WLC) model was used to estimate the elastic properties of the bacterial surface molecules. The WLC model results indicated that the virulent strains are characterized by a more flexible surface biopolymers as indicated by shorter persistence lengths (L(p) = 0.21 ± 0.08 nm) compared to the avirulent strains (L(p) = 0.24 ± 0.14 nm). Second, a steric model developed to describe the repulsive forces measured between the AFM tip and bacterial surface biopolymers indicated that the virulent strains are characterized by crowded and longer biopolymer brushes compared to those of the avirulent strains. Finally, scaling relationships developed for grafted polyelectrolyte brushes indicated L. monocytogenes strains' biopolymer brushes are charged. Collectively, our data indicate that the conformational properties of the bacterial surface biopolymers and their surface densities play an important role in controlling the overall bacterial cell elasticity.
Collapse
Affiliation(s)
| | - Nehal I. Abu-Lail
- Corresponding Author: Nehal I. Abu-Lail, Ph.D., Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, United States, , 509-335-4961
| |
Collapse
|
33
|
Toxicity of a serotonin-derived neuromelanin. Biochem Biophys Res Commun 2009; 391:1297-300. [PMID: 20026057 DOI: 10.1016/j.bbrc.2009.12.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 11/22/2022]
Abstract
Postoperative Cognitive Dysfunction (POCD) is associated with increased mortality in the elderly and may occur from lipid peroxidation in aging. We previously showed that sevoflurane sequesters acrolein, which promotes the formation of a novel species of a putative neuromelanin. The current study examined the properties of this serotonin-derived melanoid (SDM). The interaction of SDM with unilamellar vesicles (ULVs) was examined using lipid membrane probes. Vesicle disruption was investigated by leakage of dye from calcein-loaded ULVs. We observed that SDM decreased diphenyl-hexatriene fluorescence anisotropy and increased the temperature-dependent change in anisotropy. SDM changed the absorbance of merocyanin-bound ULVs. SDM increased detergent-mediated calcein leakage. SDM structure was dramatically altered upon interaction with ULVs. We also observed that SDM enhanced detergent-mediated leakage of loaded ULVs, suggesting that SDM may be neurotoxic. We propose that inhalational agents, which sequester acrolein, may promote the production of certain species of neuromelanin that depletes local serotonin and enhances neuronal vulnerability.
Collapse
|
34
|
Jacob R, Porto-Fett ACS, Call JE, Luchansky JB. Fate of surface-inoculated Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium on kippered beef during extended storage at refrigeration and abusive temperatures. J Food Prot 2009; 72:403-7. [PMID: 19350987 DOI: 10.4315/0362-028x-72.2.403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium on kippered beef was evaluated. Individual pieces of the product were separately inoculated on the top and bottom surfaces with each three- to six-strain pathogen cocktail at ca. 6.0 log CFU per piece and stored at 4, 10, 21, or 30 degrees C for up to 28 days in each of two trials. When kippered beef was inoculated with E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes and stored at 4, 10, 21, or 30 degrees C for up to 28 days, pathogen numbers decreased ca. 0.4 to 0.9, 1.0 to 1.8, 3.0 to > or = 5.25, and > or = 5.0 to 5.25 log CFU per piece, respectively. Average D-values for E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes stored at 4 to 30 degrees C for 28 days were ca. 41 to 4.6, 40.8 to 5.3, and 29.5 to 4.3 days, respectively. As expected, the higher the storage temperature, the greater the level and rate of inactivation for all three pathogens. These data establish that kippered beef does not provide an environment conducive to proliferation of these pathogens.
Collapse
Affiliation(s)
- Renata Jacob
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Microbial Food Safety Research Unit, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | | | | | | |
Collapse
|