1
|
Bozkurt EU, Ørsted EC, Volke DC, Nikel PI. Accelerating enzyme discovery and engineering with high-throughput screening. Nat Prod Rep 2024. [PMID: 39403004 DOI: 10.1039/d4np00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to August 2024Enzymes play an essential role in synthesizing value-added chemicals with high specificity and selectivity. Since enzymes utilize substrates derived from renewable resources, biocatalysis offers a pathway to an efficient bioeconomy with reduced environmental footprint. However, enzymes have evolved over millions of years to meet the needs of their host organisms, which often do not align with industrial requirements. As a result, enzymes frequently need to be tailored for specific industrial applications. Combining enzyme engineering with high-throughput screening has emerged as a key approach for developing novel biocatalysts, but several challenges are yet to be addressed. In this review, we explore emergent strategies and methods for isolating, creating, and characterizing enzymes optimized for bioproduction. We discuss fundamental approaches to discovering and generating enzyme variants and identifying those best suited for specific applications. Additionally, we cover techniques for creating libraries using automated systems and highlight innovative high-throughput screening methods that have been successfully employed to develop novel biocatalysts for natural product synthesis.
Collapse
Affiliation(s)
- Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Wang Q, Zhang J, Zhao Z, Li Y, You J, Wang Y, Li X, Xu M, Rao Z. Dual genetic level modification engineering accelerate genome evolution of Corynebacterium glutamicum. Nucleic Acids Res 2024; 52:8609-8627. [PMID: 38967005 DOI: 10.1093/nar/gkae577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum. Firstly, the modification engineering of transcription and replication levels based on RNA polymerase α subunit and DNA helicase Cgl0854 as the 'dock' of cytidine deaminase (pmCDA1) significantly increased the mutation rate, proving that the localization of pmCDA1 around transient ssDNA is necessary for genome mutation. Then, the combined modification and optimization of engineering at dual genetic level achieved 1.02 × 104-fold increased mutation rate. The genome sequencing revealed that the oMut-Cgts perform uniform and efficient C:G→T:A transitions on a genome-wide scale. Furthermore, oMut-Cgts-mediated rapid evolution of C. glutamicum with stress (acid, oxidative and ethanol) tolerance proved that the tool has powerful functions in multi-dimensional biological engineering (rapid phenotype evolution, gene function mining and protein evolution). The strategies for rapid genome evolution provided in this study are expected to be applicable to a variety of applications in all prokaryotic cells.
Collapse
Affiliation(s)
- Qing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jie Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhe Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yichen Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yi Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
3
|
Song Y, Sun M, Ma F, Xu D, Mu G, Jiao Y, Yu P, Tuo Y. Lactiplantibacillus plantarum DLPT4 Protects Against Cyclophosphamide-Induced Immunosuppression in Mice by Regulating Immune Response and Intestinal Flora. Probiotics Antimicrob Proteins 2024; 16:321-333. [PMID: 36715883 DOI: 10.1007/s12602-022-10015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/31/2023]
Abstract
In this study, the strain Lactiplantibacillus plantarum DLPT4 was investigated for the immunostimulatory activity in cyclophosphamide (CTX)-induced immunosuppressed BALB/c mice. L. plantarum DLPT4 was administered to BALB/c mice by oral gavage for 30 days, and CTX was injected intraperitoneally from the 25th to the 27th days. Intraperitoneal injection of CTX caused damage to the thymic cortex and intestines, and the immune dysfunction of the BALB/c mice. L. plantarum DLPT4 oral administration exerted immunoregulating effects evidenced by increasing serum immunoglobulin (IgA, IgG, and IgM) levels and reducing the genes expression of pro-inflammatory factors (IL-6, IL-1β, and TNF-α) of the CTX-induced immunosuppressed mice. The results of the metagenome-sequencing analysis showed that oral administration of L. plantarum DLPT4 could regulate the intestinal microbial community of the immunosuppressed mice by changing the ratio of Lactiplantibacillus and Bifidobacterium. Meanwhile, the abundance of carbohydrate enzyme (CAZyme), immune diseases metabolic pathways, and AP-1/MAPK signaling pathways were enriched in the mice administrated with L. plantarum DLPT4. In conclusion, oral administration of L. plantarum DLPT4 ameliorated symptoms of CTX-induced immunosuppressed mice by regulating gut microbiota, influencing the abundance of carbohydrate esterase in the intestinal flora, and enhancing immune metabolic activity. L. plantarum DLPT4 could be a potential probiotic to regulate the immune response.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Dongxue Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yang Jiao
- College of Life Science and Engineering of Hexi University, Zhangye, 734000, People's Republic of China
| | - Ping Yu
- High Change (Shenyang) Child-Food Products Co, Ltd, Shenyang, 110011, People's Republic of China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| |
Collapse
|
4
|
Yang S, Bai M, Kwok LY, Zhong Z, Sun Z. The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem. Crit Rev Food Sci Nutr 2023; 65:728-745. [PMID: 37983125 DOI: 10.1080/10408398.2023.2280706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Mei Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
5
|
Zeng Z, Gu J, Lin S, Li Q, Wang W, Guo Y. Molecular basis of the phenotypic variants arising from a Pseudoalteromonas lipolytica mutator. Microb Genom 2023; 9:001118. [PMID: 37850970 PMCID: PMC10634453 DOI: 10.1099/mgen.0.001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Bacterial deficiencies in the DNA repair system can produce mutator strains that promote adaptive microevolution. However, the role of mutator strains in marine Pseudoalteromonas, capable of generating various gain-of-function genetic variants within biofilms, remains largely unknown. In this study, inactivation of mutS in Pseudoalteromonas lipolytica conferred an approximately 100-fold increased resistance to various antibiotics, including ciprofloxacin, rifampicin and aminoglycoside. Furthermore, the mutator of P. lipolytica generated variants that displayed enhanced biofilm formation but reduced swimming motility, indicating a high phenotypic diversity within the ΔmutS population. Additionally, we observed a significant production rate of approximately 50 % for the translucent variants, which play important roles in biofilm formation, when the ΔmutS strain was cultured on agar plates or under shaking conditions. Using whole-genome deep-sequencing combined with genetic manipulation, we demonstrated that point mutations in AT00_17115 within the capsular biosynthesis cluster were responsible for the generation of translucent variants in the ΔmutS subpopulation, while mutations in flagellar genes fliI and flgP led to a decrease in swimming motility. Collectively, this study reveals a specific mutator-driven evolution in P. lipolytica, characterized by substantial genetic and phenotypic diversification, thereby offering a reservoir of genetic attributes associated with microbial fitness.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
6
|
Cai N, Chen J, Gao N, Ni X, Lei Y, Pu W, Wang L, Che B, Fan L, Zhou W, Feng J, Wang Y, Zheng P, Sun J. Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of Corynebacterium glutamicum. Nucleic Acids Res 2023; 51:8623-8642. [PMID: 37449409 PMCID: PMC10484736 DOI: 10.1093/nar/gkad602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Corynebacterium glutamicum is an important industrial workhorse for production of amino acids and chemicals. Although recently developed genome editing technologies have advanced the rational genetic engineering of C. glutamicum, continuous genome evolution based on genetic mutators is still unavailable. To address this issue, the DNA replication and repair machinery of C. glutamicum was targeted in this study. DnaQ, the homolog of ϵ subunit of DNA polymerase III responsible for proofreading in Escherichia coli, was proven irrelevant to DNA replication fidelity in C. glutamicum. However, the histidinol phosphatase (PHP) domain of DnaE1, the α subunit of DNA polymerase III, was characterized as the key proofreading element and certain variants with PHP mutations allowed elevated spontaneous mutagenesis. Repression of the NucS-mediated post-replicative mismatch repair pathway or overexpression of newly screened NucS variants also impaired the DNA replication fidelity. Simultaneous interference with the DNA replication and repair machinery generated a binary genetic mutator capable of increasing the mutation rate by up to 2352-fold. The mutators facilitated rapid evolutionary engineering of C. glutamicum to acquire stress tolerance and protein overproduction phenotypes. This study provides efficient tools for evolutionary engineering of C. glutamicum and could inspire the development of mutagenesis strategy for other microbial hosts.
Collapse
Affiliation(s)
- Ningyun Cai
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Lei
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
7
|
Jia YL, Li J, Nong FT, Yan CX, Ma W, Zhu XF, Zhang LH, Sun XM. Application of Adaptive Laboratory Evolution in Lipid and Terpenoid Production in Yeast and Microalgae. ACS Synth Biol 2023; 12:1396-1407. [PMID: 37084707 DOI: 10.1021/acssynbio.3c00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Due to the complexity of metabolic and regulatory networks in microorganisms, it is difficult to obtain robust phenotypes through artificial rational design and genetic perturbation. Adaptive laboratory evolution (ALE) engineering plays an important role in the construction of stable microbial cell factories by simulating the natural evolution process and rapidly obtaining strains with stable traits through screening. This review summarizes the application of ALE technology in microbial breeding, describes the commonly used methods for ALE, and highlights the important applications of ALE technology in the production of lipids and terpenoids in yeast and microalgae. Overall, ALE technology provides a powerful tool for the construction of microbial cell factories, and it has been widely used in improving the level of target product synthesis, expanding the range of substrate utilization, and enhancing the tolerance of chassis cells. In addition, in order to improve the production of target compounds, ALE also employs environmental or nutritional stress strategies corresponding to the characteristics of different terpenoids, lipids, and strains.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Feng Zhu
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Hui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
8
|
Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol 2023; 50:kuac023. [PMID: 36323428 PMCID: PMC9936214 DOI: 10.1093/jimb/kuac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Xianzhong Yin
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Bingyang Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
9
|
Minireview: Engineering evolution to reconfigure phenotypic traits in microbes for biotechnological applications. Comput Struct Biotechnol J 2022; 21:563-573. [PMID: 36659921 PMCID: PMC9816911 DOI: 10.1016/j.csbj.2022.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has long been used as the tool of choice for microbial engineering applications, ranging from the production of commodity chemicals to the innovation of complex phenotypes. With the advent of systems and synthetic biology, the ALE experimental design has become increasingly sophisticated. For instance, implementation of in silico metabolic model reconstruction and advanced synthetic biology tools have facilitated the effective coupling of desired traits to adaptive phenotypes. Furthermore, various multi-omic tools now enable in-depth analysis of cellular states, providing a comprehensive understanding of the biology of even the most genomically perturbed systems. Emerging machine learning approaches would assist in streamlining the interpretation of massive and multiplexed datasets and promoting our understanding of complexity in biology. This review covers some of the representative case studies among the 700 independent ALE studies reported to date, outlining key ideas, principles, and important mechanisms underlying ALE designs in bioproduction and synthetic cell engineering, with evidence from literatures to aid comprehension.
Collapse
|
10
|
Wang P, Yi Y, Lü X. CRISPR/Cas9-Based Genome Editing Platform for Companilactobacillus crustorum to Reveal the Molecular Mechanism of Its Probiotic Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15279-15289. [PMID: 34747603 DOI: 10.1021/acs.jafc.1c05389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Companilactobacillus crustorum usually serves as a starter culture for the food industry. Recent studies revealed that this species also possesses probiotic properties. Genome engineering, including point mutation or gene deletion, is desired to understand the mechanisms of its probiotic and fermentation properties. To tackle the hurdle in genetic manipulation in C. crustorum, here, we established a fast and easy CRISPR/Cas9-based platform for precise genome editing in this species. The platform includes two CRISPR/Cas9 systems and a CRISPR/Cas9-based editing system. Using the developed methods, we were able to knockout 12 genes in C. crustorum by deleting a fragment located in the open reading frames. The editing efficiency ranged from 14.3 to 100%. Moreover, we developed a CRISPR-assisted cytidine base-editing system, enabling programmed C to T conversion in the chromosome for gene inactivation or point mutation. To further exploit this platform, we investigated the role of nine putative bacteriocin-encoding genes and found that bacteriocins BM173 and BM1157 mostly contributed to the antimicrobial activity of C. crustorum MN047 against Staphylococcus aureus and Escherichia coli. In addition, the regulation of bacteriocin expression was also revealed to be linked with the quorum-sensing modulator luxS. This work will dramatically accelerate the genetic engineering of C. crustorum and close-related species.
Collapse
Affiliation(s)
- Panpan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Shi A, Broach JR. Microbial adaptive evolution. J Ind Microbiol Biotechnol 2021; 49:6407523. [PMID: 34673973 PMCID: PMC9118994 DOI: 10.1093/jimb/kuab076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023]
Abstract
Bacterial species can adapt to significant changes in their environment by mutation followed by selection, a phenomenon known as “adaptive evolution.” With the development of bioinformatics and genetic engineering, research on adaptive evolution has progressed rapidly, as have applications of the process. In this review, we summarize various mechanisms of bacterial adaptive evolution, the technologies used for studying it, and successful applications of the method in research and industry. We particularly highlight the contributions of Dr. L. O. Ingram. Microbial adaptive evolution has significant impact on our society not only from its industrial applications, but also in the evolution, emergence, and control of various pathogens.
Collapse
Affiliation(s)
- Aiqin Shi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - James R Broach
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Zheng Y, Hong K, Wang B, Liu D, Chen T, Wang Z. Genetic Diversity for Accelerating Microbial Adaptive Laboratory Evolution. ACS Synth Biol 2021; 10:1574-1586. [PMID: 34129323 DOI: 10.1021/acssynbio.0c00589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adaptive laboratory evolution (ALE) is a widely used and highly effective tool for improving microbial phenotypes and investigating the evolutionary roots of biological phenomena. Serving as the raw materials of evolution, mutations have been extensively utilized to increase the chances of engineering molecules or microbes with tailor-made functions. The generation of genetic diversity is therefore a core technology for accelerating ALE, and a high-quality mutant library is crucial to its success. Because of its importance, technologies for generating genetic diversity have undergone rapid development in recent years. Here, we review the existing techniques for the construction of mutant libraries, briefly introduce their mechanisms and applications, discuss ongoing and emerging efforts to apply engineering technologies in the construction of mutant libraries, and suggest future perspectives for library construction.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Kunqiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Baowei Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dingyu Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Fernández-Cabezón L, Cros A, Nikel PI. Spatiotemporal Manipulation of the Mismatch Repair System of Pseudomonas putida Accelerates Phenotype Emergence. ACS Synth Biol 2021; 10:1214-1226. [PMID: 33843192 DOI: 10.1021/acssynbio.1c00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of complex phenotypes in industrially relevant bacteria is a major goal of metabolic engineering, which encompasses the implementation of both rational and random approaches. In the latter case, several tools have been developed toward increasing mutation frequencies, yet the precise control of mutagenesis processes in cell factories continues to represent a significant technical challenge. Pseudomonas species are endowed with one of the most efficient DNA mismatch repair (MMR) systems found in the bacterial domain. Here, we investigated if the endogenous MMR system could be manipulated as a general strategy to artificially alter mutation rates in Pseudomonas species. To bestow a conditional mutator phenotype in the platform bacterium Pseudomonas putida, we constructed inducible mutator devices to modulate the expression of the dominant-negative mutLE36K allele. Regulatable overexpression of mutLE36K in a broad-host-range, easy-to-cure plasmid format resulted in a transitory inhibition of the MMR machinery, leading to a significant increase (up to 438-fold) in DNA mutation frequencies and a heritable fixation of mutations in the genome. Following such an accelerated mutagenesis-followed by selection approach, three phenotypes were successfully evolved: resistance to antibiotics streptomycin and rifampicin (either individually or combined) and reversion of a synthetic uracil auxotrophy. Thus, these mutator devices could be applied to accelerate the evolution of metabolic pathways in long-term evolutionary experiments, alternating cycles of (inducible) mutagenesis coupled to selection schemes toward the desired phenotype(s).
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Nyabako BA, Fang H, Cui F, Liu K, Tao T, Zan X, Sun W. Enhanced Acid Tolerance in Lactobacillus acidophilus by Atmospheric and Room Temperature Plasma (ARTP) Coupled with Adaptive Laboratory Evolution (ALE). Appl Biochem Biotechnol 2020; 191:1499-1514. [PMID: 32125647 DOI: 10.1007/s12010-020-03264-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
The aim of this study was to improve the acid tolerance of Lactobacillus acidophilus by combining atmospheric and room temperature plasma (ARTP) mutation with adaptive laboratory evolution (ALE). To achieve a high mutation efficiency, 60 s was determined as the ideal exposure time for ARTP mutation of L. acidophilus with a survival rate of 5.91%. The ARTP-ALE mutant strain LAartp-ale2 displayed increased lactic acid stress tolerance with survival rates of 75.67% and 25.78% when cultured in pH 3.0 and 2.5, respectively, for 3 h. Physiological analysis revealed that the ARTP-ALE mutant exhibited a lower inner membrane permeability than that of the parental strain during acid stress. Furthermore, the mutant LAartp-ale2 produced more biofilm in response to lactic acid-induced acid stress and showed an increased hydrophobicity (87.2%) when compared to the parent strain (76.2%) at pH 2.5. LAartp-ale2 exhibited a higher unsaturated fatty acid (UFA) to saturated fatty acid (SFA) ratio that affected the physical state of the cell membrane for increased survival in pH 3.0 and 2.5. The mutation with ARTP coupled with ALE in the present study proved to be effective in enhancing the acid tolerance of L. acidophilus for potential industrial use.
Collapse
Affiliation(s)
- Belinda Amanda Nyabako
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Hua Fang
- ShangHai YuanYao Biotechnology, Co., Ltd, Shanghai, 201316, People's Republic of China
| | - FengJie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,ShangHai YuanYao Biotechnology, Co., Ltd, Shanghai, 201316, People's Republic of China.
| | - KaiYue Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - TingLei Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - XinYi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - WenJing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
16
|
Kang M, Kim K, Choe D, Cho S, Kim SC, Palsson B, Cho BK. Inactivation of a Mismatch-Repair System Diversifies Genotypic Landscape of Escherichia coli During Adaptive Laboratory Evolution. Front Microbiol 2019; 10:1845. [PMID: 31474949 PMCID: PMC6706779 DOI: 10.3389/fmicb.2019.01845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/26/2019] [Indexed: 01/09/2023] Open
Abstract
Adaptive laboratory evolution (ALE) is used to find causal mutations that underlie improved strain performance under the applied selection pressure. ALE studies have revealed that mutator populations tend to outcompete their non-mutator counterparts following the evolutionary trajectory. Among them, mutS-inactivated mutator cells, characterize d by a dysfunctional methyl-mismatch repair system, are frequently found in ALE experiments. Here, we examined mutS inactivation as an approach to facilitate ALE of Escherichia coli. The wild-type E. coli MG1655 and mutS knock-out derivative (ΔmutS) were evolved in parallel for 800 generations on lactate or glycerol minimal media in a serial-transfer experiment. Whole-genome re-sequencing of each lineage at 100-generation intervals revealed that (1) mutations emerge rapidly in the ΔmutS compared to in the wild-type strain; (2) mutations were more than fourfold higher in the ΔmutS strain at the end-point populations compared to the wild-type strain; and (3) a significant number of random mutations accumulated in the ΔmutS strains. We then measured the fitness of the end-point populations on an array of non-adaptive carbon sources. Interestingly, collateral fitness increases on non-adaptive carbon sources were more pronounced in the ΔmutS strains than the parental strain. Fitness measurement of single mutants revealed that the collateral fitness increase seen in the mutator lineages can be attributed to a pool of random mutations. Together, this study demonstrates that short-term mutator ALE extensively expands possible genotype space, resulting in versatile bacteria with elevated fitness levels across various carbon sources.
Collapse
Affiliation(s)
- Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
17
|
Harris TI, Paterson CA, Farjood F, Wadsworth ID, Caldwell L, Lewis RV, Jones JA, Vargis E. Utilizing Recombinant Spider Silk Proteins To Develop a Synthetic Bruch's Membrane for Modeling the Retinal Pigment Epithelium. ACS Biomater Sci Eng 2019; 5:4023-4036. [PMID: 33448804 DOI: 10.1021/acsbiomaterials.9b00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch's membrane. Nonporous silk membranes were prepared with comparable thicknesses (<10 μm) to that of native Bruch's membrane. Biomechanical characterization was performed prior to seeding cells. The ability of RPE cells (ARPE-19) to attach and grow on the membranes was then evaluated with bright-field and electron microscopy, intracellular DNA quantification, and immunocytochemical staining (ZO-1 and F-actin). Controls were cultured on permeable Transwell support membranes and characterized with the same methods. A size-dependent permeability assay, using FITC-dextran, was used to determine cell-membrane barrier function. Compared to Transwell controls, RPE cells cultured on rSSps membranes developed more native-like "cobblestone" morphologies, exhibited higher intracellular DNA content, and expressed key organizational proteins more consistently. Comparisons of the membranes to native structures revealed that the silk membranes exhibited equivalent thicknesses, biomechanical properties, and barrier functions. These findings support the use of recombinant spider silk proteins to model Bruch's membrane and develop more biomimetic retinal models.
Collapse
|
18
|
Kick-starting evolution efficiency with an autonomous evolution mutation system. Metab Eng 2019; 54:127-136. [DOI: 10.1016/j.ymben.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 01/25/2023]
|
19
|
Fernández‐Cabezón L, Cros A, Nikel PI. Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnol J 2019; 14:e1800439. [DOI: 10.1002/biot.201800439] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lorena Fernández‐Cabezón
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
20
|
Measures to improve wine malolactic fermentation. Appl Microbiol Biotechnol 2019; 103:2033-2051. [DOI: 10.1007/s00253-018-09608-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
|
21
|
Arnold JW, Simpson JB, Roach J, Kwintkiewicz J, Azcarate-Peril MA. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential. Front Microbiol 2018; 9:242. [PMID: 29515537 PMCID: PMC5826259 DOI: 10.3389/fmicb.2018.00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022] Open
Abstract
Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the characterization of bacterial strains is critical for the development of novel probiotics, as variability between strains can dramatically alter bacterial physiology and functionality.
Collapse
Affiliation(s)
- Jason W. Arnold
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Joshua B. Simpson
- Department of Chemistry, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey Roach
- Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - Jakub Kwintkiewicz
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|