1
|
Sivanesan I, Gopal J, Hasan N, Muthu M. A systematic assessment of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) application for rapid identification of pathogenic microbes that affect food crops: delivered and future deliverables. RSC Adv 2023; 13:17297-17314. [PMID: 37304772 PMCID: PMC10251190 DOI: 10.1039/d3ra01633a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
MALDI-TOF MS has decades of experience in the detection and identification of microbial pathogens. This has now become a valuable analytical tool when it comes to the identification and detection of clinical microbial pathogens. This review gives a brief synopsis of what has been achieved using MALDI-TOF MS in clinical microbiology. The major focus, however, is on summarizing and highlighting the effectiveness of MALDI-TOF MS as a novel tool for rapid identification of food crop microbial pathogens. The methods used and the sample preparation methodologies reported thus far have been highlighted and the challenges and gaps and recommendations for fine tuning the technique have been put forth. In an era where anything close to the health and welfare of humanity has been considered as the top priority, this review pitches on one such relevant research topics.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University 1 Hwayang-dong, Gwangjin-gu Seoul 05029 Korea
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS) Thandalam Chennai 602105 Tamil Nadu India +91 44 2681 1009 +91 44 66726677
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University P.O. Box 114 Jazan Saudi Arabia
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS) Thandalam Chennai 602105 Tamil Nadu India +91 44 2681 1009 +91 44 66726677
| |
Collapse
|
2
|
Liu T, Kang L, Xu J, Wang J, Gao S, Li Y, Li J, Yuan Y, Yuan B, Wang J, Zhao B, Xin W. PVBase: A MALDI-TOF MS Database for Fast Identification and Characterization of Potentially Pathogenic Vibrio Species From Multiple Regions of China. Front Microbiol 2022; 13:872825. [PMID: 35656002 PMCID: PMC9152771 DOI: 10.3389/fmicb.2022.872825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
The potentially pathogenic species of the genus Vibrio pose a threat to both humans and animals, creating medical burdens and economic losses to the mariculture industry. Improvements in surveillance and diagnosis are needed to successfully manage vibriosis outbreaks. Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can provide rapid diagnosis and has been widely used in the identification of Vibrio spp. The main weakness of this technology is the limited number of strains and species of Vibrio in the existing commercial database. Here, we develop a new in-house database named PVBase containing 790 main spectra projections (MSP) of ten Vibrio species that come from various regions of China and include abundant clinical and environmental strains. PVBase was validated through a blind test of 65 Vibrio strains. The identification accuracy and scoring of Vibrio strains was greatly improved through the addition of PVBase. Identification accuracy increased from 73.4 to 100%. The number of strains with identification scores above 2.2 increased from 53.1% to 96.9% and 53.1% of strains had an identification score above 2.59. Moreover, perfect discrimination was obtained when using all of the MSPs created for the Vibrio species, even for very closely related species such as V. cholerae, V. albensis, and V. mimicus or V. alginolyticus, V. parahaemolyticus, and V. harveyi. In addition, we used phyloproteomic analysis to study whether there are differences in protein fingerprints of different regions or pathogenic strains. We found that MSP characteristics of Vibrio species were not related to their region or source. With the construction of PVBase, the identification efficiency of potentially pathogenic Vibrio species has been greatly improved, which is an important advance for epidemic prevention and control, and aquaculture disease detection.
Collapse
Affiliation(s)
- Tingting Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Baohua Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| |
Collapse
|
3
|
Ashfaq MY, Da'na DA, Al-Ghouti MA. Application of MALDI-TOF MS for identification of environmental bacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114359. [PMID: 34959061 DOI: 10.1016/j.jenvman.2021.114359] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 05/22/2023]
Abstract
Bacteria play a variety of roles in the environment. They maintain the balance in the ecosystem and provide different ecosystem services such as in biogeochemical cycling of nutrients, biodegradation of toxic pollutants, and others. Therefore, isolation and identification of different environmental bacteria are important to most environmental research. Due to the high cost and time associated with the conventional molecular techniques, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has gained considerable attention for routine identification of bacteria. This review aims to provide an overview of the application of MALDI-TOF MS in various environmental studies through bibliometric analysis and literature review. The bibliometric analysis helped to understand the time-variable application of MALDI-TOF MS in various environmental studies. The categorical literature review covers various environmental studies comprising areas like ecology, food microbiology, environmental biotechnology, agriculture, and plant sciences, which show the application of the technique for identification and characterization of pollutant-degrading, plant-associated, disease-causing, soil-beneficial, and other environmental bacteria. Further research should focus on bridging the gap between the phylogenetic identity of bacteria and their specific environmental functions or metabolic traits that can help in rapid advancements in environmental research, thereby, improving time and cost savings.
Collapse
Affiliation(s)
- Mohammad Y Ashfaq
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Dana A Da'na
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Kumar V, Sinha AK, Uka A, Antonacci A, Scognamiglio V, Mazzaracchio V, Cinti S, Arduini F. Multi-potential biomarkers for seafood quality assessment: Global wide implication for human health monitoring. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Mougin J, Flahaut C, Roquigny R, Bonnin-Jusserand M, Grard T, Le Bris C. Rapid Identification of Vibrio Species of the Harveyi Clade Using MALDI-TOF MS Profiling With Main Spectral Profile Database Implemented With an In-House Database: Luvibase. Front Microbiol 2020; 11:586536. [PMID: 33162963 PMCID: PMC7581793 DOI: 10.3389/fmicb.2020.586536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/17/2020] [Indexed: 12/02/2022] Open
Abstract
Vibrio bacteria, and particularly members of the Harveyi clade, are the causative agents of vibriosis. This disease is responsible for mass mortality events and important economic losses on aquaculture farms. Improvements in surveillance and diagnosis are needed to successfully manage vibriosis outbreaks. 16S rRNA gene sequencing is generally considered to be the gold standard for bacterial identification but the cost and long processing time make it difficult to apply for routine identification. In contrast, MALDI-TOF MS offers rapid diagnosis and is commonly used in veterinary laboratories today. The major limiting factor for using this technique is the low environmental bacterial diversity in the commonly available databases. Here, we demonstrate that the sole use of the commercially available Bruker BioTyper database is not fully adequate for identifying Vibrio bacteria isolated from aquaculture farms. We therefore developed a new in-house database named Luvibase, composed of 23 reference MALDI-TOF mass spectra profiles obtained from Vibrio collection strains, mostly belonging to the Harveyi clade. The comparison of the accuracy of MALDI-TOF MS profiling and 16S rRNA gene sequencing revealed a lack of resolution for 16S rRNA gene sequencing. In contrast, MALDI-TOF MS profiling proved to be a more reliable tool for resolving species-level variations within the Harveyi clade. Finally, combining the Luvibase with the Bruker ver.9.0.0.0 database, led to successful identification of 47 Vibrio isolates obtained from moribund abalone, seabass and oysters. Thus, the use of Luvibase allow for increased confidence in identifying Vibrio species belonging to the Harveyi clade.
Collapse
Affiliation(s)
- Julia Mougin
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Christophe Flahaut
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Roxane Roquigny
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Maryse Bonnin-Jusserand
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Thierry Grard
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| |
Collapse
|
6
|
Carrera M, Piñeiro C, Martinez I. Proteomic Strategies to Evaluate the Impact of Farming Conditions on Food Quality and Safety in Aquaculture Products. Foods 2020; 9:E1050. [PMID: 32759674 PMCID: PMC7466198 DOI: 10.3390/foods9081050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023] Open
Abstract
This review presents the primary applications of various proteomic strategies to evaluate the impact of farming conditions on food quality and safety in aquaculture products. Aquaculture is a quickly growing sector that represents 47% of total fish production. Food quality, dietary management, fish welfare, the stress response, food safety, and antibiotic resistance, which are covered by this review, are among the primary topics in which proteomic techniques and strategies are being successfully applied. The review concludes by outlining future directions and potential perspectives.
Collapse
Affiliation(s)
- Mónica Carrera
- Food Technology Department, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain
| | - Carmen Piñeiro
- Scientific Instrumentation and Quality Service (SICIM), Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain;
| | - Iciar Martinez
- Research Centre for Experimental Marine Biology and Biotechnology—Plentzia Marine Station (PiE), University of the Basque Country UPV/EHU, 48620 Plentzia, Spain;
- IKERBASQUE Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
7
|
Dong Y, Zhao P, Chen L, Wu H, Si X, Shen X, Shen H, Qiao Y, Zhu S, Chen Q, Jia W, Dong J, Li J, Gao S. Fast, simple and highly specific molecular detection of Vibrio alginolyticus pathogenic strains using a visualized isothermal amplification method. BMC Vet Res 2020; 16:76. [PMID: 32131821 PMCID: PMC7057676 DOI: 10.1186/s12917-020-02297-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background Vibrio alginolyticus is an important pathogen that has to be closely monitored and controlled in the mariculture industry because of its strong pathogenicity, quick onset after infection and high mortality rate in aquatic animals. Fast, simple and specific methods are needed for on-site detection to effectively control outbreaks and prevent economic losses. The detection specificity towards the pathogenic strains has to be emphasized to facilitate pointed treatment and prevention. Polymerase chain reaction (PCR)-based molecular approaches have been developed, but their application is limited due to the requirement of complicated thermal cycling machines and trained personnel. Results A fast, simple and highly specific detection method for V. alginolyticus pathogenic strains was established based on isothermal recombinase polymerase amplification (RPA) and lateral flow dipsticks (LFD). The method targeted the virulence gene toxR, which is reported to have good coverage for V. alginolyticus pathogenic strains. To ensure the specificity of the method, the primer-probe set of the RPA system was carefully designed to recognize regions in the toxR gene that diverge in different Vibrio species but are conserved in V. alginolyticus pathogenic strains. The primer-probe set was determined after a systematic screening of amplification performance, primer-dimer formation and false positive signals. The RPA-LFD method was confirmed to have high specificity for V. alginolyticus pathogenic strains without any cross reaction with other Vibrio species or other pathogenic bacteria and was able to detect as little as 1 colony forming unit (CFU) per reaction without DNA purification, or 170 fg of genomic DNA, or 6.25 × 103 CFU/25 g in spiked shrimp without any enrichment. The method finishes detection within 30 min at temperatures between 35 °C and 45 °C, and the visual signal on the dipstick can be directly read by the naked eye. In an application simulation, randomly spiked shrimp homogenate samples were 100% accurately detected. Conclusions The RPA-LFD method developed in this study is fast, simple, highly specific and does not require complicated equipment. This method is applicable for on-site detection of V. alginolyticus pathogenic strains for the mariculture industry.
Collapse
Affiliation(s)
- Yu Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Li Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huahua Wu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, 226007, China
| | - Yi Qiao
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, 226007, China
| | - Shanyuan Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Qiong Chen
- Wuhan Institute for Food and Cosmetic Control, Wuhan, 430000, China
| | - Weiwei Jia
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Juan Li
- Wuhan Institute for Food and Cosmetic Control, Wuhan, 430000, China.
| | - Song Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Garin-Fernandez A, Wichels A. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea. Mar Genomics 2019; 51:100725. [PMID: 31757758 DOI: 10.1016/j.margen.2019.100725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
The incidence of potentially pathogenic Vibrio species in the marine environment around Europe, is correlated with the increase of surface seawater temperature. Despite their importance, little is known about the trigger factors of potential outbreak-causing strains in this region. As prophages may compose a major reservoir of virulence traits in marine ecosystems, this study aims to identify and characterize the genomes of lysogenic Vibrio phages exemplarily from the North Sea. Therefore, 31 isolates from potentially pathogenic Vibrio species from the North Sea were screened for inducible prophages with mitomycin C. From them, one V. cholerae isolate and 40% V. parahaemolyticus isolates carried inducible prophages. Three lysogenic phages were selected for genomic characterization. The phage vB_VpaM_VP-3212 (unclassified Myoviridae) has a genome with a length of 36.81 Kbp and 55 CDS were identified. This lysogenic phage of V. parahaemolyticus contains genes related to replicative transposition mechanism, such as transposase and mobile elements similar to Mu-like viruses. The phage vB_VpaP_VP-3220 (Podoviridae, unclassified Nona33virus) has a genome length of 58,14 Kbp and contains 63 CDS. This V. parahaemolyticus phage probably uses a headful (pac) packaging replication mechanism. The phage vB_VchM_VP-3213 (unclassified Myoviridae) has a genome with a length of 41 Kbp and 63 CDS were identified, including integrase and Xer system for lysogenic recombination. This lysogenic phage of V. cholerae has similar genomic features as lambdoid phages. Although no pathogenicity genes were identified, their similarity among other phage genomes indicates that these phages can affect the development of pathogenic Vibrio strains in marine environments.
Collapse
Affiliation(s)
- Alexa Garin-Fernandez
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany
| |
Collapse
|
9
|
Li P, Xin W, Xia S, Luo Y, Chen Z, Jin D, Gao S, Yang H, Ji B, Wang H, Yan Y, Kang L, Wang J. MALDI-TOF mass spectrometry-based serotyping of V. parahaemolyticus isolated from the Zhejiang province of China. BMC Microbiol 2018; 18:185. [PMID: 30424744 PMCID: PMC6234682 DOI: 10.1186/s12866-018-1328-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is as an important food-borne pathogen circulating in China. Since 1996, the core serotype has become O3:K6, which has specific genetic markers. This serotype causes the majority of outbreaks worldwide. Until now, nearly 21 serotypes were considered as serovariants of O3:K6. Among these, O4:K68, O1:K25 and O1:KUT have caused pandemic outbreaks. O4:K8, a serovariant of O3:K6, has become the second most dominant serotype circulating in China after O3:K6. In this study, we report the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze and characterize 146 V. parahaemolyticus isolates belonging to 23 serotypes. RESULTS Upon mass spectral analysis, isolates belonging to O4:K8 formed a distinct group among the five main pandemic groups (O3:K6, O4:K8, O4:K68, O1:K25 and O1:KUT). Two major protein peaks (m/z 4383 and 4397) were significantly different between serotype O4:K8 and the four other pandemic strains. Both of these peaks were present in 32 out of 36 O4:K8 isolates, but were absent in 105 out of 110 non-O4:K8 isolates. These peaks were also absent in all 74 pandemic serotypes (O3:K6, O4:K68, O1:K25 and O1:KUT). CONCLUSION Our results highlight the threat of O4:K8 forming a distinct group, which differs significantly from pandemic serotypes on the proteomic level. The use of MALDI-TOF MS has not been reported before in a study of this nature. Mass spectrum peaks at m/z 4383 and 4397 may be specific for O4:K8. However, we cannot conclude that MALDI-TOF MS can be used to serotype V. parahaemolyticus.
Collapse
Affiliation(s)
- Ping Li
- Graduate College, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, Anhui, China.,Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, No.486 Wenqiao Road, Nanhu district, Jiaxing, 314050, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing, 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing, 100071, China
| | - Susu Xia
- Graduate College, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, Anhui, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing, 100071, China
| | - Yun Luo
- Department of Microbiology, Zhejiang Province Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou, 310000, China
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, No.486 Wenqiao Road, Nanhu district, Jiaxing, 314050, China
| | - Dazhi Jin
- Department of Microbiology, Zhejiang Province Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou, 310000, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing, 100071, China
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing, 100071, China
| | - Bin Ji
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing, 100071, China
| | - Henghui Wang
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, No.486 Wenqiao Road, Nanhu district, Jiaxing, 314050, China
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, No.486 Wenqiao Road, Nanhu district, Jiaxing, 314050, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing, 100071, China.
| | - Jinglin Wang
- Graduate College, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, Anhui, China. .,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
10
|
Bronzato GF, Oliva MS, Alvin MG, Pribul BR, Rodrigues DP, Coelho SM, Coelho IS, Souza MM. MALDI-TOF MS as a tool for the identification of Vibrio alginolyticus from Perna perna mussels (Linnaeus, 1758). PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ABSTRACT: Vibrio species are ubiquitous in aquatic environments, including coastal and marine habitats. Vibrio alginolyticus is an opportunistic pathogen for fish, crustaceans and mussels and their identification by biochemical tests may be impaired due their nutritional requirements. The study used Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to identify 49 Vibrio spp. isolates associated with mussels (Perna perna) from different locations along the Rio de Janeiro coast. The rpoA gene was used as a genus-specific marker of Vibrio spp. and was positive in all 209 isolates. MALDI-TOF MS confirmed 87.8% of V. alginolyticus when compared to the results of the biochemical tests. Four isolates were identified as Shewanella putrefaciens (8.16%) and one was identified as V. parahaemolyticus (2.0%). Just one isolate was not identified by this technique (2.0%). The pyrH sequencing confirmed 75% of the proteomic technique results. MALDI-TOF MS is an excellent option for characterization of bacterial species, as it is efficient, fast and easy to apply. In addition, our study confirms its high specificity and sensitivity in these marine bacteria identification.
Collapse
|
11
|
Fernández-Álvarez C, Torres-Corral Y, Santos Y. Use of ribosomal proteins as biomarkers for identification of Flavobacterium psychrophilum by MALDI-TOF mass spectrometry. J Proteomics 2018; 170:59-69. [DOI: 10.1016/j.jprot.2017.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
|
12
|
Fernández-Álvarez C, Torres-Corral Y, Saltos-Rosero N, Santos Y. MALDI-TOF mass spectrometry for rapid differentiation of Tenacibaculum species pathogenic for fish. Appl Microbiol Biotechnol 2017; 101:5377-5390. [DOI: 10.1007/s00253-017-8324-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 11/24/2022]
|
13
|
Taneja N, Sethuraman N, Mishra A, Mohan B. The 2002 Chandigarh cholera outbreak revisited: utility of MALDI-TOF as a molecular epidemiology tool. Lett Appl Microbiol 2017; 62:452-8. [PMID: 27198622 DOI: 10.1111/lam.12574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED In July 2002, an outbreak of cholera occurred in north India with two separate geographical foci. Pulsed field gel electrophoresis (PFGE) was previously used in typing a representative sample of these isolates. This study evaluates the usefulness of MALDI-TOF as an epidemiological tool for typing Vibrio cholerae isolates in comparison with PFGE and Amplified fragment length polymorphisms (AFLP). Forty-six isolates of V. cholerae isolated from stool of patients affected in the July 2002 outbreak were typed using MALDI-TOF. To validate its utility, clinical and environmental isolates previously characterized by PFGE and AFLP were included for dendrogram analysis. All 46 isolates were correctly identified by MALDI-TOF to species level. Two distinct clades appeared on dendrogram using MALDI-TOF corresponding to the two geographical foci of the outbreak. For the study of evolution of organisms from environment, AFLP was superior as it clearly demarcated clinical and environmental isolates. The outbreak was not due to a single clone but due to multiple clones circulating simultaneously, as was seen with PFGE also. SIGNIFICANCE AND IMPACT OF THE STUDY MALDI-TOF appears to be a highly discriminatory, cost-effective and rapid epidemiological typing technique that can be used in the investigation of cholera outbreaks.
Collapse
Affiliation(s)
- N Taneja
- Enteric Laboratory, Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - N Sethuraman
- Enteric Laboratory, Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - A Mishra
- Enteric Laboratory, Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - B Mohan
- Enteric Laboratory, Department of Medical Microbiology, PGIMER, Chandigarh, India
| |
Collapse
|
14
|
Santos IC, Hildenbrand ZL, Schug KA. Mass Spectrometry for the Study of Microbial Communities in Environmental Waters. ADVANCES IN CHEMICAL POLLUTION, ENVIRONMENTAL MANAGEMENT AND PROTECTION 2017. [DOI: 10.1016/bs.apmp.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Marcelo SDO, Greiciane FCAB, Lidiane DCS, Ingrid AP, Bruno RP, Marco AONSDS, Shana MDOC, Irene DSC, D aacute lia DPR, Miliane MSDS. Detection of virulence and antibiotic resistance genes in environmental strains of Vibrio spp. from mussels along the coast of Rio de Janeiro State, Brazil. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2015.7636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Niyompanich S, Srisanga K, Jaresitthikunchai J, Roytrakul S, Tungpradabkul S. Utilization of Whole-Cell MALDI-TOF Mass Spectrometry to Differentiate Burkholderia pseudomallei Wild-Type and Constructed Mutants. PLoS One 2015; 10:e0144128. [PMID: 26656930 PMCID: PMC4685992 DOI: 10.1371/journal.pone.0144128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/14/2015] [Indexed: 01/19/2023] Open
Abstract
Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B. pseudomallei mutants, including rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-specific biomarkers of B. pseudomallei were consistently found and conserved across all average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate distribution. A total of twelve potential mass peaks discriminating between wild-type and mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and 2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk, and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings demonstrated that the rapid, accurate, and reproducible mass profiling technology could have new implications in laboratory-based rapid differentiation of extensive libraries of genetically altered bacteria.
Collapse
Affiliation(s)
- Suthamat Niyompanich
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kitima Srisanga
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Janthima Jaresitthikunchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
17
|
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791. [PMID: 26300860 PMCID: PMC4525378 DOI: 10.3389/fmicb.2015.00791] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi New Delhi, India
| | - Pawan K Kanaujia
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
18
|
Comparison of the detection characteristics of trace species using laser-induced breakdown spectroscopy and laser breakdown time-of-flight mass spectrometry. SENSORS 2015; 15:5982-6008. [PMID: 25769051 PMCID: PMC4435158 DOI: 10.3390/s150305982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/23/2022]
Abstract
The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS) and laser breakdown time-of-flight mass spectrometry (LB-TOFMS). Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application.
Collapse
|
19
|
Erler R, Wichels A, Heinemeyer EA, Hauk G, Hippelein M, Reyes NT, Gerdts G. VibrioBase: A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans. Syst Appl Microbiol 2014; 38:16-25. [PMID: 25466918 DOI: 10.1016/j.syapm.2014.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022]
Abstract
Mesophilic marine bacteria of the family Vibrionaceae, specifically V. cholerae, V. parahaemolyticus and V. vulnificus, are considered to cause severe illness in humans. Due to climate-change-driven temperature increases, higher Vibrio abundances and infections are predicted for Northern Europe, which in turn necessitates environmental surveillance programs to evaluate this risk. We propose that whole-cell matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling is a promising tool for the fast and reliable species classification of environmental isolates. Because the reference database does not contain sufficient Vibrio spectra we generated the VibrioBase database in this study. Mass spectrometric data were generated from 997 largely environmental strains and filed in this new database. MALDI-TOF MS clusters were assigned based on the species classification obtained by analysis of partial rpoB (RNA polymerase beta-subunit) sequences. The affiliation of strains to species-specific clusters was consistent in 97% of all cases using both approaches, and the extended VibrioBase generated more specific species identifications with higher matching scores compared to the commercially available database. Therefore, we have made the VibrioBase database freely accessible, which paves the way for detailed risk assessment studies of potentially pathogenic Vibrio spp. from marine environments.
Collapse
Affiliation(s)
- René Erler
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany.
| | - Antje Wichels
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Ernst-August Heinemeyer
- Governmental Institute of Public Health of Lower Saxony, Lüchtenburger Weg 24, 26603 Aurich, Germany
| | - Gerhard Hauk
- Regional Office for Health and Social Affairs of Mecklenburg-Western Pomerania, Gertrudenstraße 11, 18057 Rostock, Germany
| | - Martin Hippelein
- University Medical Center Schleswig-Holstein, Central Facility: Medical Investigation Office and Hygiene, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Nadja Torres Reyes
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| |
Collapse
|
20
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2014; 26:547-603. [PMID: 23824373 DOI: 10.1128/cmr.00072-12] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.
Collapse
|
21
|
La Scola B. Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev Mol Diagn 2014; 11:287-98. [DOI: 10.1586/erm.11.12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bernard La Scola
- URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| |
Collapse
|
22
|
Pavlovic M, Huber I, Konrad R, Busch U. Application of MALDI-TOF MS for the Identification of Food Borne Bacteria. Open Microbiol J 2013; 7:135-41. [PMID: 24358065 PMCID: PMC3866695 DOI: 10.2174/1874285801307010135] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 12/03/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful tool for the routine identification of clinical isolates. MALDI-TOF MS based identification of bacteria has been shown to be more rapid, accurate and cost-efficient than conventional phenotypic techniques or molecular methods. Rapid and reliable identification of food-associated bacteria is also of crucial importance for food processing and product quality.
This review is concerned with the applicability of MALDI-TOF MS for routine identification of foodborne bacteria taking the specific requirements of food microbiological laboratories and the food industry into account. The current state of knowledge including recent findings and new approaches are discussed.
Collapse
Affiliation(s)
- Melanie Pavlovic
- Bavarian Health and Food Safety Authority, 85354 Oberschleißheim, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority, 85354 Oberschleißheim, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority, 85354 Oberschleißheim, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, 85354 Oberschleißheim, Germany
| |
Collapse
|
23
|
Manji R, Bythrow M, Branda JA, Burnham CAD, Ferraro MJ, Garner OB, Jennemann R, Lewinski MA, Mochon AB, Procop GW, Richter SS, Rychert JA, Sercia L, Westblade LF, Ginocchio CC. Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin Microbiol Infect Dis 2013; 33:337-46. [PMID: 24019163 DOI: 10.1007/s10096-013-1961-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Studies have demonstrated that matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, accurate method for the identification of clinically relevant bacteria. The purpose of this study was to evaluate the performance of the VITEK MS v2.0 system (bioMérieux) for the identification of the non-Enterobacteriaceae Gram-negative bacilli (NEGNB). This multi-center study tested 558 unique NEGNB clinical isolates, representing 18 genera and 33 species. Results obtained with the VITEK MS v2.0 were compared with reference 16S rRNA gene sequencing and when indicated recA sequencing and phenotypic analysis. VITEK MS v2.0 provided an identification for 92.5 % of the NEGNB isolates (516 out of 558). VITEK MS v2.0 correctly identified 90.9 % of NEGNB (507 out of 558), 77.8 % to species level and 13.1 % to genus level with multiple species. There were four isolates (0.7 %) incorrectly identified to genus level and five isolates (0.9 %), with one incorrect identification to species level. The remaining 42 isolates (7.5 %) were either reported as no identification (5.0 %) or called "mixed genera" (2.5 %) since two or more different genera were identified as possible identifications for the test organism. These findings demonstrate that the VITEK MS v2.0 system provides accurate results for the identification of a challenging and diverse group of Gram-negative bacteria.
Collapse
Affiliation(s)
- R Manji
- Department of Pathology and Laboratory Medicine, North Shore-LIJ Health System Laboratories, 10 Nevada Drive, Lake Success, NY, 11042, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mino S, Makita H, Toki T, Miyazaki J, Kato S, Watanabe H, Imachi H, Watsuji TO, Nunoura T, Kojima S, Sawabe T, Takai K, Nakagawa S. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific. Front Microbiol 2013; 4:107. [PMID: 23630523 PMCID: PMC3635849 DOI: 10.3389/fmicb.2013.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/13/2013] [Indexed: 11/30/2022] Open
Abstract
Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA) scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 Persephonella hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough (SNT). Although the strains share >98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types (ST), indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.
Collapse
Affiliation(s)
- Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University Hakodate, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Malainine SM, Moussaoui W, Prévost G, Scheftel JM, Mimouni R. Rapid identification of Vibrio parahaemolyticus isolated from shellfish, sea water and sediments of the Khnifiss lagoon, Morocco, by MALDI-TOF mass spectrometry. Lett Appl Microbiol 2013; 56:379-86. [PMID: 23464928 DOI: 10.1111/lam.12060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 11/30/2022]
Abstract
We establish the presence of Vibrio parahaemolyticus and deepen the comparison of isolates using MALDI-TOF MS for the typing of isolates originating from the Khnifiss lagoon (Morocco). Amongst 48 samples from sea water, sediment and shellfish isolated from different sites of Khnifiss lagoon, Morocco, we obtained 22 isolates of V. parahaemolyticus identified by Vitek 2™ System (bioMérieux) and MALDI Biotyper™ (Bruker Daltonics). All isolates were highly resistant to ampicillin and ticarcillin, moderately resistant to cefalotin, but sensitive to 16 other antimicrobials tested. MALDI-TOF MS was used to discriminate between closely related environmental strains of V. parahaemolyticus. A clustering and distribution based on MALDI-TOF spectra were generated using the BioTyper 1.1™ software. Despite low diversity in regard to the biochemical characteristics and antimicrobial resistance, the isolates evoke a larger biodiversity when analysed through mass spectra of abundant proteins. Different evaluations of a cut-off value showed that, when placed at a 10% threshold of the whole diversity, isolates differed by at least three mass peaks.
Collapse
Affiliation(s)
- S M Malainine
- Faculty of Sciences, Laboratory of Biotechnology & Valorisation of Natural Resources, University Ibn Zohr, Agadir, Morocco.
| | | | | | | | | |
Collapse
|
26
|
Böhme K, Fernández-No IC, Pazos M, Gallardo JM, Barros-Velázquez J, Cañas B, Calo-Mata P. Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting. Electrophoresis 2013; 34:877-87. [DOI: 10.1002/elps.201200532] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/08/2012] [Accepted: 11/23/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Karola Böhme
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Inmaculada C. Fernández-No
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Manuel Pazos
- Department of Food Technology; Institute for Marine Research (IIM-CSIC); Vigo; Spain
| | - José M. Gallardo
- Department of Food Technology; Institute for Marine Research (IIM-CSIC); Vigo; Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Benito Cañas
- Department of Analytical Chemistry; University Complutense of Madrid; Madrid; Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| |
Collapse
|
27
|
Rapid Detection of Trace Heavy Metals using Laser Breakdown Time-of-Flight Mass Spectrometry. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proenv.2013.04.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Emami K, Askari V, Ullrich M, Mohinudeen K, Anil AC, Khandeparker L, Burgess JG, Mesbahi E. Characterization of bacteria in ballast water using MALDI-TOF mass spectrometry. PLoS One 2012; 7:e38515. [PMID: 22685576 PMCID: PMC3369924 DOI: 10.1371/journal.pone.0038515] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/07/2012] [Indexed: 11/29/2022] Open
Abstract
To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time.
Collapse
Affiliation(s)
- Kaveh Emami
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012; 36:380-407. [DOI: 10.1111/j.1574-6976.2011.00298.x] [Citation(s) in RCA: 581] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022] Open
|
30
|
Production and characterization of a novel monoclonal antibody against Vibrio parahaemolyticus F0F1 ATP synthase's delta subunit and its application for rapid identification of the pathogen. J Microbiol Methods 2012; 88:77-82. [DOI: 10.1016/j.mimet.2011.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 11/22/2022]
|
31
|
Zhu S, Ratering S, Schnell S, Wacker R. Matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry, 16S rRNA gene sequencing, and API 32E for identification of Cronobacter spp.: a comparative study. J Food Prot 2011; 74:2182-7. [PMID: 22186062 DOI: 10.4315/0362-028x.jfp-11-205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Twenty-two isolates of the family Enterobacteriaceae, with focus on Cronobacter isolated from infant formula and the environment of milk powder plants, were comparatively identified using API 32E (bioMérieux, Marcy l'Etoile, France), 16S rRNA gene sequencing (Accugenix, Newark, USA), and matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS; Mabritec, Riehen, Switzerland and AnagnosTec, Potsdam, Germany). With API 32E, 22% of the isolates were assigned to species, 64% were assigned to a genus, and 14% could not be discriminated at any taxonomic level. Both 16S rRNA gene sequencing and MALDI-TOF MS assigned 100% of the isolates to species, but the identifications based on MALDI-TOF MS results were more discriminating and unequivocal. Our data indicate that MALDI-TOF MS provides the most rapid and unambiguous identification of Cronobacter and closely related Enterobacteriaceae isolates.
Collapse
Affiliation(s)
- Sha Zhu
- Central Laboratories Friedrichsdorf, Bahnstr. 14-30, 61381 Friedrichsdorf, Germany
| | | | | | | |
Collapse
|
32
|
Stephan R, Cernela N, Ziegler D, Pflüger V, Tonolla M, Ravasi D, Fredriksson-Ahomaa M, Hächler H. Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF Mass spectrometry. J Microbiol Methods 2011; 87:150-3. [DOI: 10.1016/j.mimet.2011.08.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 11/16/2022]
|
33
|
Rapid discrimination of environmental Vibrio by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Microbiol Res 2011; 167:226-30. [PMID: 22015259 DOI: 10.1016/j.micres.2011.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/10/2011] [Accepted: 09/14/2011] [Indexed: 11/21/2022]
Abstract
The aim of this study was to discriminate 30 Vibrio strains isolated from two wastewater treatment plants from Agadir, Morocco by two molecular typing methods, pulsed-field gel electrophoresis (PFGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Out of the 30 strains of Vibrio examined in this study, 5 isolates could not be typed by PFGE and consistently appeared as a smear on the gel. In general, high genetic biodiversity among the Vibrio strains was found regardless to the isolation source. The results of MALDI TOF analysis show a high congruence of strain grouping demonstrating the accuracy and reliability of MALDI-TOF MS.
Collapse
|
34
|
Mansson M, Gram L, Larsen TO. Production of bioactive secondary metabolites by marine vibrionaceae. Mar Drugs 2011; 9:1440-1468. [PMID: 22131950 PMCID: PMC3225927 DOI: 10.3390/md9091440] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022] Open
Abstract
Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.
Collapse
Affiliation(s)
- Maria Mansson
- Center from Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| | - Lone Gram
- National Food Institute, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| | - Thomas O. Larsen
- Center from Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark; E-Mail:
| |
Collapse
|
35
|
Oberbeckmann S, Wichels A, Maier T, Kostrzewa M, Raffelberg S, Gerdts G. A polyphasic approach for the differentiation of environmental Vibrio isolates from temperate waters. FEMS Microbiol Ecol 2010; 75:145-62. [DOI: 10.1111/j.1574-6941.2010.00998.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010; 5:1733-54. [DOI: 10.2217/fmb.10.127] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost–effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
Collapse
Affiliation(s)
- Piseth Seng
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Marc Rolain
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre Edouard Fournier
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Bernard La Scola
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Michel Drancourt
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | |
Collapse
|
37
|
Mass spectrometry biotyper system identifies enteric bacterial pathogens directly from colonies grown on selective stool culture media. J Clin Microbiol 2010; 48:3888-92. [PMID: 20844226 DOI: 10.1128/jcm.01290-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We evaluated the performance and cost-effectiveness of a matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based Biotyper system for the routine identification of common enteric bacterial pathogens seen in middle Tennessee from suspicious colonies grown on selective stool culture media. A total of 304 suspicious colonies were selected and further identified from 605 stool specimens. The suspicious colonies were analyzed by the Biotyper system, and the results were compared to those from routine phenotypic methods, which identified 22 Salmonella species, 39 Shigella species, 3 enterohemorrhagic Escherichia coli (EHEC) isolates, 2 Yersinia enterocolitica isolates, 2 Campylobacter species, and 236 gastrointestinal normal flora isolates. The Biotyper system correctly identified the Salmonella species, Yersinia enterocolitica, and Campylobacter species but failed to distinguish the Shigella species and EHEC isolates from E. coli. Among the 236 normal flora isolates, 233 (98.7%) and 228 (96.6%) agreed at the genus and species levels, respectively, between the phenotypic and Biotyper methods. Organism identification scores were insignificantly different between colonies directly from selective media and subsequently from pure subculture. The entire Biotyper identification procedure, from smear preparation to final result reporting, can be completed within 30 min. The Biotyper system provides a rapid and simple screening tool for identifying many, but not all, suspicious colonies grown on selective media within 24 h after inoculation, which shortens test turnaround time by 2 to 3 days.
Collapse
|
38
|
Eddabra R, Moussaoui W, Prévost G, Delalande F, Van Dorsselaer A, Meunier O, Scheftel JM, Mimouni R. Occurrence of Vibrio cholerae non-O1 in three wastewater treatment plants in Agadir (Morocco). World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0556-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Rapid genus- and species-specific identification of Cronobacter spp. by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2010; 48:2846-51. [PMID: 20554814 DOI: 10.1128/jcm.00156-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cronobacter spp. are Gram-negative opportunistic food-borne pathogens and are known as rare but important causes of life-threatening neonatal infections. Rapid and reliable identification of Cronobacter species and their differentiation from phenotypically similar, nonpathogenic Enterobacter turicensis, Enterobacter helveticus, and Enterobacter pulveris have become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid genus and species identification of the six Cronobacter species recognized so far. To this end, we developed a reference MS database library that includes 54 Cronobacter target strains as well as 17 nontarget strains. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2,000 to 30,000 Da). Genus- and species-specific biomarker protein mass patterns were determined. The defined biomarker mass patterns (Spectral Archive and Microbial Identification System [SARAMIS] SuperSpectrum) were validated using 36 strains from various Cronobacter species as well as eight nontarget strains. For all strains the mass spectrometry-based identification scheme yielded identical results as with a PCR-based identification system. All strains were correctly identified, and no nontarget strain was misidentified as Cronobacter. Our study demonstrates that MALDI-TOF MS is a reliable and powerful tool for the rapid identification of Cronobacter strains to the genus and species level.
Collapse
|