1
|
Derollez E, Lesterlin C, Bigot S. Design, potential and limitations of conjugation-based antibacterial strategies. Microb Biotechnol 2024; 17:e70050. [PMID: 39548711 PMCID: PMC11568246 DOI: 10.1111/1751-7915.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Over the past few decades, the global spread of antimicrobial resistance has underscored the urgent need to develop innovative non-antibiotic antibacterial strategies and to reduce antibiotic use worldwide. In response to this challenge, several methods have been developed that rely on gene transfer by conjugation to deliver toxic compounds or CRISPR systems specifically designed to kill or resensitize target bacterial strains to antibiotics. This review explores the design, potential, and limitations of these conjugation-based antibacterial strategies, focusing on the recent advances in the delivery of CRISPR systems as antibacterial effectors.
Collapse
Affiliation(s)
- Elisabeth Derollez
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| | - Sarah Bigot
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| |
Collapse
|
2
|
Nowak KP, Sobolewska-Ruta A, Jagiełło A, Bierczyńska-Krzysik A, Kierył P, Wawrzyniak P. Molecular and Functional Characterization of MobK Protein-A Novel-Type Relaxase Involved in Mobilization for Conjugational Transfer of Klebsiella pneumoniae Plasmid pIGRK. Int J Mol Sci 2021; 22:5152. [PMID: 34068033 PMCID: PMC8152469 DOI: 10.3390/ijms22105152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/01/2023] Open
Abstract
Conjugation, besides transformation and transduction, is one of the main mechanisms of horizontal transmission of genetic information among bacteria. Conjugational transfer, due to its essential role in shaping bacterial genomes and spreading of antibiotics resistance genes, has been widely studied for more than 70 years. However, new and intriguing facts concerning the molecular basis of this process are still being revealed. Most recently, a novel family of conjugative relaxases (Mob proteins) was distinguished. The characteristic feature of these proteins is that they are not related to any of Mobs described so far. Instead of this, they share significant similarity to tyrosine recombinases. In this study MobK-a tyrosine recombinase-like Mob protein, encoded by pIGRK cryptic plasmid from the Klebsiella pneumoniae clinical strain, was characterized. This study revealed that MobK is a site-specific nuclease and its relaxase activity is dependent on both a conserved catalytic tyrosine residue (Y179) that is characteristic of tyrosine recombinases and the presence of Mg2+ divalent cations. The pIGRK minimal origin of transfer sequence (oriT) was also characterized. This is one of the first reports presenting tyrosine recombinase-like conjugative relaxase protein. It also demonstrates that MobK is a convenient model for studying this new protein family.
Collapse
Affiliation(s)
- Katarzyna Paulina Nowak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
| | - Agnieszka Sobolewska-Ruta
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
| | - Agata Jagiełło
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
- Central Forensic Laboratory of the Police, Biology Department, Iwicka 14, 00-735 Warsaw, Poland
| | - Anna Bierczyńska-Krzysik
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
- Curiosity Diagnostics Sp. z o.o., Duchnicka 3, Building 16, Entrance A, 01-796 Warsaw, Poland
| | - Piotr Kierył
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
| | - Paweł Wawrzyniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Department of Biomedical Technology, Cosmetics Chemicals and Electrochemistry, Łukasiewicz Research Network—Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland; (A.S.-R.); (A.J.); (A.B.-K.); (P.K.)
| |
Collapse
|
3
|
pCTX-M3-Structure, Function, and Evolution of a Multi-Resistance Conjugative Plasmid of a Broad Recipient Range. Int J Mol Sci 2021; 22:ijms22094606. [PMID: 33925677 PMCID: PMC8125031 DOI: 10.3390/ijms22094606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
pCTX-M3 is the archetypic member of the IncM incompatibility group of conjugative plasmids (recently referred to as IncM2). It is responsible for the worldwide dissemination of numerous antibiotic resistance genes, including those coding for extended-spectrum β-lactamases and conferring resistance to aminoglycosides. The IncM plasmids acquired during evolution diverse mobile genetic elements found in one or two multiple resistance regions, MRR(s), grouping antibiotic resistance genes as well as mobile genetic elements or their remnants. The IncM plasmids can be found in bacteria inhabiting various environments. The information on the structure and biology of pCTX-M3 is integrated in this review. It focuses on the functional modules of pCTX-M3 responsible for its replication, stable maintenance, and conjugative transfer, indicating that the host range of the pCTX-M3 replicon is limited to representatives of the family Enterobacteriaceae (Enterobacterales ord. nov.), while the range of recipients of its conjugation system is wide, comprising Alpha-, Beta-, and Gammaproteobacteria, and also Firmicutes.
Collapse
|