1
|
Foustoukos DI, Houghton JL. High-pressure continuous culturing: life at the extreme. Appl Environ Microbiol 2025:e0201024. [PMID: 39840974 DOI: 10.1128/aem.02010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at in-situ conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases. We present protocols for sterilization, inoculation, agitation, and sampling strategies that minimize cell lysis, applicable to a wide range of chemostat designs.
Collapse
Affiliation(s)
| | - Jennifer L Houghton
- Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Smedile F, Foustoukos DI, Patwardhan S, Mullane K, Schlegel I, Adams MW, Schut GJ, Giovannelli D, Vetriani C. Adaptations to high pressure of Nautilia sp. strain PV-1, a piezophilic Campylobacterium (aka Epsilonproteobacterium) isolated from a deep-sea hydrothermal vent. Environ Microbiol 2022; 24:6164-6183. [PMID: 36271901 PMCID: PMC10092268 DOI: 10.1111/1462-2920.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
Physiological and gene expression studies of deep-sea bacteria under pressure conditions similar to those experienced in their natural habitat are critical for understanding growth kinetics and metabolic adaptations to in situ conditions. The Campylobacterium (aka Epsilonproteobacterium) Nautilia sp. strain PV-1 was isolated from hydrothermal fluids released from an active deep-sea hydrothermal vent at 9° N on the East Pacific Rise. Strain PV-1 is a piezophilic, moderately thermophilic, chemolithoautotrophic anaerobe that conserves energy by coupling the oxidation of hydrogen to the reduction of nitrate or elemental sulfur. Using a high-pressure-high temperature continuous culture system, we established that strain PV-1 has the shortest generation time of all known piezophilic bacteria and we investigated its protein expression pattern in response to different hydrostatic pressure regimes. Proteogenomic analyses of strain PV-1 grown at 20 and 5 MPa showed that pressure adaptation is not restricted to stress response or homeoviscous adaptation but extends to enzymes involved in central metabolic pathways. Protein synthesis, motility, transport, and energy metabolism are all affected by pressure, although to different extents. In strain PV-1, low-pressure conditions induce the synthesis of phage-related proteins and an overexpression of enzymes involved in carbon fixation.
Collapse
Affiliation(s)
- Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Institute of Polar Science (ISP-CNR), Messina, Italy
| | - Dionysis I Foustoukos
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| | - Sushmita Patwardhan
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kelli Mullane
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Ian Schlegel
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Michael W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gerrit J Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Donato Giovannelli
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Ugwuodo CJ, Colosimo F, Adhikari J, Shen Y, Badireddy AR, Mouser PJ. Salinity and hydraulic retention time induce membrane phospholipid acyl chain remodeling in Halanaerobium congolense WG10 and mixed cultures from hydraulically fractured shale wells. Front Microbiol 2022; 13:1023575. [PMID: 36439785 PMCID: PMC9687094 DOI: 10.3389/fmicb.2022.1023575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2023] Open
Abstract
Bacteria remodel their plasma membrane lipidome to maintain key biophysical attributes in response to ecological disturbances. For Halanaerobium and other anaerobic halotolerant taxa that persist in hydraulically fractured deep subsurface shale reservoirs, salinity, and hydraulic retention time (HRT) are important perturbants of cell membrane structure, yet their effects remain poorly understood. Membrane-linked activities underlie in situ microbial growth kinetics and physiologies which drive biogeochemical reactions in engineered subsurface systems. Hence, we used gas chromatography-mass spectrometry (GC-MS) to investigate the effects of salinity and HRT on the phospholipid fatty acid composition of H. congolense WG10 and mixed enrichment cultures from hydraulically fractured shale wells. We also coupled acyl chain remodeling to membrane mechanics by measuring bilayer elasticity using atomic force microscopy (AFM). For these experiments, cultures were grown in a chemostat vessel operated in continuous flow mode under strict anoxia and constant stirring. Our findings show that salinity and HRT induce significant changes in membrane fatty acid chemistry of H. congolense WG10 in distinct and complementary ways. Notably, under nonoptimal salt concentrations (7% and 20% NaCl), H. congolense WG10 elevates the portion of polyunsaturated fatty acids (PUFAs) in its membrane, and this results in an apparent increase in fluidity (homeoviscous adaptation principle) and thickness. Double bond index (DBI) and mean chain length (MCL) were used as proxies for membrane fluidity and thickness, respectively. These results provide new insight into our understanding of how environmental and engineered factors might disrupt the physical and biogeochemical equilibria of fractured shale by inducing physiologically relevant changes in the membrane fatty acid chemistry of persistent microbial taxa. GRAPHICAL ABSTRACTSalinity significantly alters membrane bilayer fluidity and thickness in Halanaerobium congolense WG10.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| | | | - Jishnu Adhikari
- Sanborn, Head and Associates, Inc., Concord, NH, United States
| | - Yuxiang Shen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
4
|
Pérez-Rodríguez I, Sievert SM, Fogel ML, Foustoukos DI. Physiological and metabolic responses of chemolithoautotrophic NO 3 - reducers to high hydrostatic pressure. GEOBIOLOGY 2022; 20:857-869. [PMID: 36081384 DOI: 10.1111/gbi.12522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
We investigated the impact of pressure on thermophilic, chemolithoautotrophic NO 3 - reducing bacteria of the phyla Campylobacterota and Aquificota isolated from deep-sea hydrothermal vents. Batch incubations at 5 and 20 MPa resulted in decreased NO 3 - consumption, lower cell concentrations, and overall slower growth in Caminibacter mediatlanticus (Campylobacterota) and Thermovibrio ammonificans (Aquificota), relative to batch incubations near standard pressure (0.2 MPa) conditions. Nitrogen isotope fractionation effects from chemolithoautotrophic NO 3 - reduction by both microorganisms were, on the contrary, maintained under all pressure conditions. Comparable chemolithoautotrophic NO 3 - reducing activities between previously reported natural hydrothermal vent fluid microbial communities dominated by Campylobacterota at 25 MPa and Campylobacterota laboratory isolates at 0.2 MPa, suggest robust similarities in cell-specific NO 3 - reduction rates and doubling times between microbial populations and communities growing maximally under similar temperature conditions. Physiological and metabolic comparisons of our results with other studies of pressure effects on anaerobic chemolithoautotrophic processes (i.e., microbial S0 -oxidation coupled to Fe(III) reduction and hydrogenotrophic methanogenesis) suggest that anaerobic chemolithoautotrophs relying on oxidation-reduction (redox) reactions that yield higher Gibbs energies experience larger shifts in cell-specific respiration rates and doubling times at increased pressures. Overall, our results advance understanding of the role of pressure, its relationship with temperature and redox conditions, and their effects on seafloor chemolithoautotrophic NO 3 - reduction and other anaerobic chemolithoautotrophic processes.
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Marilyn L Fogel
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Dionysis I Foustoukos
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Cario A, Oliver GC, Rogers KL. Characterizing the Piezosphere: The Effects of Decompression on Microbial Growth Dynamics. Front Microbiol 2022; 13:867340. [PMID: 35663870 PMCID: PMC9157427 DOI: 10.3389/fmicb.2022.867340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
The extent to which the full diversity of the subsurface microbiome can be captured via cultivation is likely hindered by the inevitable loss of cellular viability from decompression during sampling, enrichment, and isolation. Furthermore, the pressure tolerance of previously isolated strains that span surface and subsurface ecosystems can shed light into microbial activity and pressure adaptation in these transition zones. However, assessments of the effects of elevated pressure on the physiology of piezotolerant and piezosensitive species may be biased by high-pressure enrichment techniques. Here, we compared two high-pressure cultivation techniques-one that requires decompression of the whole cultures during sampling and one that employs the previously described isobaric PUSH devices-to explore the effects of repeated decompression during incubations performed to characterize isolates from deep environments. Two model sulfate-reducing prokaryotes were used to test the effects of decompression/repressurization cycles on growth rates, cell yields, and pressure tolerance. The mesophilic bacterium Desulfovibrio salexigens was cultivated from 0.1 to 50 MPa, and the hyperthermophilic archaeon Archaeoglobus fulgidus was tested from 0.1 to 98 MPa. For both cultivation methods, D. salexigens showed exponential growth up to 20 MPa, but faster growth rates were observed for isobaric cultivation. Furthermore, at 30 MPa minor growth was observed in D. salexigens cultures only for isobaric conditions. Isobaric conditions also extended exponential growth of A. fulgidus to 60 MPa, compared to 50 MPa when cultures were decompressed during subsampling. For both strains, growth rates and cell yields decreased with increasing pressures, and the most pronounced effects of decompression were observed at the higher end of the pressure ranges. These results highlight that repeated decompression can have a significant negative impact on cell viability, suggesting that decompression tolerance may depend on habitat depth. Furthermore, sampling, enrichment, and cultivation in isobaric devices is critical not only to explore the portion of the deep biosphere that is sensitive to decompression, but also to better characterize the pressure limits and growth characteristics of piezotolerant and piezosensitive species that span surface and subsurface ecosystems.
Collapse
Affiliation(s)
- Anaïs Cario
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Gina C. Oliver
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Karyn L. Rogers
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
6
|
Ong JY, Pence JT, Molik DC, Shepherd HAM, Goodson HV. Yeast grown in continuous culture systems can detect mutagens with improved sensitivity relative to the Ames test. PLoS One 2021; 16:e0235303. [PMID: 33730086 PMCID: PMC7968628 DOI: 10.1371/journal.pone.0235303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/18/2021] [Indexed: 11/20/2022] Open
Abstract
Continuous culture systems allow for the controlled growth of microorganisms over a long period of time. Here, we develop a novel test for mutagenicity that involves growing yeast in continuous culture systems exposed to low levels of mutagen for a period of approximately 20 days. In contrast, most microorganism-based tests for mutagenicity expose the potential mutagen to the biological reporter at a high concentration of mutagen for a short period of time. Our test improves upon the sensitivity of the well-established Ames test by at least 20-fold for each of two mutagens that act by different mechanisms (the intercalator ethidium bromide and alkylating agent methyl methanesulfonate). To conduct the tests, cultures were grown in small, inexpensive continuous culture systems in media containing (potential) mutagen, and the resulting mutagenicity of the added compound was assessed via two methods: a canavanine-based plate assay and whole genome sequencing. In the canavanine-based plate assay, we were able to detect a clear relationship between the amount of mutagen and the number of canavanine-resistant mutant colonies over a period of one to three weeks of exposure. Whole genome sequencing of yeast grown in continuous culture systems exposed to methyl methanesulfonate demonstrated that quantification of mutations is possible by identifying the number of unique variants across each strain. However, this method had lower sensitivity than the plate-based assay and failed to distinguish the different concentrations of mutagen. In conclusion, we propose that yeast grown in continuous culture systems can provide an improved and more sensitive test for mutagenicity.
Collapse
Affiliation(s)
- Joseph Y. Ong
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Julia T. Pence
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David C. Molik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Heather A. M. Shepherd
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Holly V. Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
7
|
Olsson-Francis K, Ramkissoon NK, Macey MC, Pearson VK, Schwenzer SP, Johnson DN. Simulating microbial processes in extraterrestrial, aqueous environments. J Microbiol Methods 2020; 172:105883. [PMID: 32119957 DOI: 10.1016/j.mimet.2020.105883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Finding evidence of life elsewhere in the Solar System is dependent on understanding biotic processes that could occur within potentially habitable environments. Here, we describe a suite of high-pressure flow-through reactors that have been developed to investigate biotic and abiotic processes within simulated sub-surface martian and icy moon environments.
Collapse
Affiliation(s)
- K Olsson-Francis
- STEM Faculty, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - N K Ramkissoon
- STEM Faculty, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - M C Macey
- STEM Faculty, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - V K Pearson
- STEM Faculty, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - S P Schwenzer
- STEM Faculty, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - D N Johnson
- STEM Faculty, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
8
|
Houghton JL, Foustoukos DI, Fike DA. The effect of O 2 and pressure on thiosulfate oxidation by Thiomicrospira thermophila. GEOBIOLOGY 2019; 17:564-576. [PMID: 31180189 DOI: 10.1111/gbi.12352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Microbial sulfur cycling in marine sediments often occurs in environments characterized by transient chemical gradients that affect both the availability of nutrients and the activity of microbes. High turnover rates of intermediate valence sulfur compounds and the intermittent availability of oxygen in these systems greatly impact the activity of sulfur-oxidizing micro-organisms in particular. In this study, the thiosulfate-oxidizing hydrothermal vent bacterium Thiomicrospira thermophila strain EPR85 was grown in continuous culture at a range of dissolved oxygen concentrations (0.04-1.9 mM) and high pressure (5-10 MPa) in medium buffered at pH 8. Thiosulfate oxidation under these conditions produced tetrathionate, sulfate, and elemental sulfur, in contrast to previous closed-system experiments at ambient pressure during which thiosulfate was quantitatively oxidized to sulfate. The maximum observed specific growth rate at 5 MPa pressure under unlimited O2 was 0.25 hr-1 . This is comparable to the μmax (0.28 hr-1 ) observed at low pH (<6) at ambient pressure when T. thermophila produces the same mix of sulfur species. The half-saturation constant for O2 ( KO2 ) estimated from this study was 0.2 mM (at a cell density of 105 cells/ml) and was robust at all pressures tested (0.4-10 MPa), consistent with piezotolerant behavior of this strain. The cell-specific KO2 was determined to be 1.5 pmol O2 /cell. The concentrations of products formed were correlated with oxygen availability, with tetrathionate production in excess of sulfate production at all pressure conditions tested. This study provides evidence for transient sulfur storage during times when substrate concentration exceeds cell-specific KO2 and subsequent consumption when oxygen dropped below that threshold. These results may be common among sulfur oxidizers in a variety of environments (e.g., deep marine sediments to photosynthetic microbial mats).
Collapse
Affiliation(s)
- Jennifer L Houghton
- Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri
| | - Dionysis I Foustoukos
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri
| |
Collapse
|
9
|
Wu S, Wang S, Yang C. Note: An isobaric sample transfer apparatus for deep-sea pressurized fluid sample. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:086110. [PMID: 30184665 DOI: 10.1063/1.5034239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
This paper presents a novel isobaric sample transfer apparatus developed to facilitate the continuous culture of microorganisms while also providing the capacity for maintaining the sample at in situ pressure during the whole transfer and culture process. This apparatus is fitted to the isobaric fluid sampler which is used for collecting the isobaric fluid sample. This apparatus can not only avoid decompression in traditional sample transfer but also realize the integrated function of sample transfer and culture under isobaric conditions. The subsampling cylinder can automatically work as a flow culture reactor after completing the subsampling of the pressurized sample. Several transfer experiments were carried out to demonstrate this design which can make the period of transfer automatically.
Collapse
Affiliation(s)
- Shijun Wu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Shuo Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Canjun Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|