1
|
Ortiz C, Hatam F, Quon H, Hamilton KA, Prévost M. Mechanistic modeling of Legionella in building water systems: A critical review on the essential factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179169. [PMID: 40147240 DOI: 10.1016/j.scitotenv.2025.179169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Modeling Legionella exposure from building water systems is valuable to inform water management plans, but accurate risk estimates require accounting for spatiotemporal variations in concentrations. This comprehensive literature review covers existing mathematical approaches for predicting Legionella fate and transport in building water systems and proposes a framework for advanced modeling considering all mechanisms influencing its presence in water and biofilm during different life-stages (e.g., within protozoan hosts). Current models include persistence of culturable cells in a heater, growth and decay throughout simplified hot water systems, concentrations linked to water age using fitted growth rates, and a calibrated model for a highly-monitored system. The challenges of modeling influencing factors are also discussed, including water demand, hydraulics, nutrient availability, pipe materials, temperature, and chemical disinfection. By contrasting laboratory and field observations with existing models, this review highlights knowledge gaps and data needs for integrating Legionella growth and persistence into hydraulics, water quality and, ultimately, exposure models to define minimal-risk design and operational practices.
Collapse
Affiliation(s)
- Catalina Ortiz
- Industrial Chair in Drinking Water, Department of Civil Engineering, Polytechnique Montreal, Montreal H3C3A7, QC, Canada.
| | - Fatemeh Hatam
- Industrial Chair in Drinking Water, Department of Civil Engineering, Polytechnique Montreal, Montreal H3C3A7, QC, Canada
| | - Hunter Quon
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe AZ 85281; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe AZ 85281
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe AZ 85281; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe AZ 85281
| | - Michèle Prévost
- Industrial Chair in Drinking Water, Department of Civil Engineering, Polytechnique Montreal, Montreal H3C3A7, QC, Canada
| |
Collapse
|
2
|
Schmid C, Hilbi H. Rapid Icm/Dot T4SS Inactivation Prevents Resuscitation of Heat-Induced VBNC Legionella pneumophila by Amoebae. Environ Microbiol 2025; 27:e70035. [PMID: 39810465 DOI: 10.1111/1462-2920.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L. pneumophila enters the VBNC state after exposure to heat stress at 50°C for 30 h, at 55°C for 5 h or at 60°C for 30 min, while still retaining metabolic activity and intact cell membranes. Resuscitation of heat-induced VBNC L. pneumophila neither occurred in amoebae nor in macrophages. VBNC L. pneumophila showed impaired uptake by phagocytes, formation of Legionella-containing vacuoles (LCVs), and Icm/Dot-dependent secretion of effector proteins. The T4SS was rapidly inactivated already upon exposure to 50°C for 3-5 h, while the bacteria were still culturable. The Legionella quorum sensing (Lqs)-LvbR network is implicated in VBNC induction, since the ∆lvbR and ∆lqsR mutant strains showed a more pronounced heat sensitivity than the parental strain, and the ∆lqsA mutant was less heat sensitive. Taken together, our results reveal that heat exposure of L. pneumophila rapidly inactivates the Icm/Dot T4SS before the VBNC state is induced, thus impairing resuscitation by amoebae.
Collapse
Affiliation(s)
- Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Nielsen NS, Fojan P, Jensen RL, Wahedi H, Afshari A. Legionella in Primary School Hot Water Systems from Two Municipalities in the Danish Capital Region. Microorganisms 2024; 12:2074. [PMID: 39458383 PMCID: PMC11510371 DOI: 10.3390/microorganisms12102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Legionella contamination in public water systems poses significant health risks, particularly in schools where vulnerable populations, including children, regularly use these facilities. This study investigates the presence of Legionella in the hot water systems from 49 primary schools across two municipalities in the Danish capital region. Water samples were collected from taps in each school, and both first-flush and stabile temperature samples were analysed for Legionella contents. The findings revealed that 97% of schools in Municipality 1 and 100% in Municipality 2 had Legionella in their hot water systems. The content of Legionella colonies was significantly higher in schools in Municipality 1, which was probably because of overall lower water temperatures. At stabile temperatures, 76% and 50% of the schools in the two municipalities exceeded the European Union's recommended limit of 1000 CFU/L. Stabile peripheral water temperatures were achieved after 3 min. Tap water temperatures above 54 °C and central tank temperatures above 59 °C were associated with Legionella contents below 1000 CFU/L. This study highlights the need for more stringent Legionella control procedures in schools, including higher water temperatures and refining Legionella reducing interventions with the addition of regular flow and draining procedures.
Collapse
Affiliation(s)
- Niss Skov Nielsen
- Division of Building Technology, Management and Indoor Environment, Danish Building Research Institute (Build), Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen, Denmark; (R.L.J.); (H.W.); (A.A.)
- Centre for Health Research, Zealand University Hospital, Strandboulevarden 64, 4800 Nykøbing Falster, Denmark
| | - Peter Fojan
- Department of Materials and Production, Aalborg University, Fibigerstræde 14-16, 9220 Aalborg, Denmark;
| | - Rasmus Lund Jensen
- Division of Building Technology, Management and Indoor Environment, Danish Building Research Institute (Build), Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen, Denmark; (R.L.J.); (H.W.); (A.A.)
| | - Haseebullah Wahedi
- Division of Building Technology, Management and Indoor Environment, Danish Building Research Institute (Build), Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen, Denmark; (R.L.J.); (H.W.); (A.A.)
| | - Alireza Afshari
- Division of Building Technology, Management and Indoor Environment, Danish Building Research Institute (Build), Aalborg University, A.C. Meyers Vaenge 15, 2450 Copenhagen, Denmark; (R.L.J.); (H.W.); (A.A.)
| |
Collapse
|
4
|
Singh S, Ahmed AI, Almansoori S, Alameri S, Adlan A, Odivilas G, Chattaway MA, Salem SB, Brudecki G, Elamin W. A narrative review of wastewater surveillance: pathogens of concern, applications, detection methods, and challenges. Front Public Health 2024; 12:1445961. [PMID: 39139672 PMCID: PMC11319304 DOI: 10.3389/fpubh.2024.1445961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The emergence and resurgence of pathogens have led to significant global health challenges. Wastewater surveillance has historically been used to track water-borne or fecal-orally transmitted pathogens, providing a sensitive means of monitoring pathogens within a community. This technique offers a comprehensive, real-time, and cost-effective approach to disease surveillance, especially for diseases that are difficult to monitor through individual clinical screenings. Methods This narrative review examines the current state of knowledge on wastewater surveillance, emphasizing important findings and techniques used to detect potential pathogens from wastewater. It includes a review of literature on the detection methods, the pathogens of concern, and the challenges faced in the surveillance process. Results Wastewater surveillance has proven to be a powerful tool for early warning and timely intervention of infectious diseases. It can detect pathogens shed by asymptomatic and pre-symptomatic individuals, providing an accurate population-level view of disease transmission. The review highlights the applications of wastewater surveillance in tracking key pathogens of concern, such as gastrointestinal pathogens, respiratory pathogens, and viruses like SARS-CoV-2. Discussion The review discusses the benefits of wastewater surveillance in public health, particularly its role in enhancing existing systems for infectious disease surveillance. It also addresses the challenges faced, such as the need for improved detection methods and the management of antimicrobial resistance. The potential for wastewater surveillance to inform public health mitigation strategies and outbreak response protocols is emphasized. Conclusion Wastewater surveillance is a valuable tool in the fight against infectious diseases. It offers a unique perspective on the spread and evolution of pathogens, aiding in the prevention and control of disease epidemics. This review underscores the importance of continued research and development in this field to overcome current challenges and maximize the potential of wastewater surveillance in public health.
Collapse
Affiliation(s)
- Surabhi Singh
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Amina Ismail Ahmed
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Sumayya Almansoori
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Shaikha Alameri
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Ashraf Adlan
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Giovanni Odivilas
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Marie Anne Chattaway
- United Kingdom Health Security Agency, Gastrointestinal Bacteria Reference Laboratory, London, United Kingdom
| | - Samara Bin Salem
- Central Testing Laboratory, Abu Dhabi Quality and Conformity Council, Abu Dhabi, United Arab Emirates
| | - Grzegorz Brudecki
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Wael Elamin
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Song Y, Mena-Aguilar D, Brown CL, Rhoads WJ, Helm RF, Pruden A, Edwards MA. Effects of Copper on Legionella pneumophila Revealed via Viability Assays and Proteomics. Pathogens 2024; 13:563. [PMID: 39057790 PMCID: PMC11279431 DOI: 10.3390/pathogens13070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cu is an antimicrobial that is commonly applied to premise (i.e., building) plumbing systems for Legionella control, but the precise mechanisms of inactivation are not well defined. Here, we applied a suite of viability assays and mass spectrometry-based proteomics to assess the mechanistic effects of Cu on L. pneumophila. Although a five- to six-log reduction in culturability was observed with 5 mg/L Cu2+ exposure, cell membrane integrity only indicated a <50% reduction. Whole-cell proteomic analysis revealed that AhpD, a protein related to oxidative stress, was elevated in Cu-exposed Legionella relative to culturable cells. Other proteins related to cell membrane synthesis and motility were also higher for the Cu-exposed cells relative to controls without Cu. While the proteins related to primary metabolism decreased for the Cu-exposed cells, no significant differences in the abundance of proteins related to virulence or infectivity were found, which was consistent with the ability of VBNC cells to cause infections. Whereas the cell-membrane integrity assay provided an upper-bound measurement of viability, an amoebae co-culture assay provided a lower-bound limit. The findings have important implications for assessing Legionella risk following its exposure to copper in engineered water systems.
Collapse
Affiliation(s)
- Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
- Utilities Department, 316 N. Academy St., Town of Cary, Cary, NC 27513, USA
| | - Didier Mena-Aguilar
- Biochemistry, Virginia Tech, 340 W Campus Dr, Blacksburg, VA 24060, USA
- Department of Biochemistry, University of Nebraska-Lincoln, N106, The Beadle Center, Lincoln, NE 68588, USA
| | - Connor L. Brown
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Steger Hall, Blacksburg, VA 24061, USA
| | - William J. Rhoads
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
- Black & Veatch, 8400 Ward Pkwy, Kansas City, MO 64114, USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, 1015 Life Science Circle, 211B Steger Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA (M.A.E.)
| |
Collapse
|
6
|
Joshi S, Richard R, Hogue D, Brown J, Cahill M, Kotta V, Call K, Butzine N, Marcos-Hernández M, Alja'fari J, Voth-Gaeddert L, Boyer T, Hamilton KA. Water Quality Trade-offs for Risk Management Interventions in a Green Building. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:767-786. [PMID: 39185481 PMCID: PMC11343562 DOI: 10.1039/d3ew00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Premise plumbing water quality degradation has led to negative health impacts from pathogen outbreaks (e.g., Legionella pneumophila and non-tuberculous mycobacteria), as well as chronic effects from exposure to heavy metals or disinfection by-products (DBP). Common water quality management interventions include flushing, heat shock (thermal disinfection), supplemental disinfection (shock or super chlorination), and water heater temperature setpoint change. In this study, a Legionella pneumophila- colonized Leadership in Energy and Environmental Design (LEED) certified building was monitored to study health-relevant water quality changes before and after three controlled management interventions: (1) flushing at several points throughout the building; (2) changing the water heater set point; and (3) a combination of interventions (1) and (2) by flushing during a period of elevated water heater set point (incompletely performed due to operational issues). Microbial (culturable L. pneumophila, the L. pneumophila mip gene, and cATP) and physico-chemical (pH, temperature, conductivity, disinfectant residual, disinfection by-products (DBPs; total trihalomethanes, TTHM), and heavy metals) water quality were monitored alongside building occupancy as approximated using Wi-Fi logins. Flushing alone resulted in a significant decrease in cATP and L. pneumophila concentrations (p = 0.018 and 0.019, respectively) and a significant increase in chlorine concentrations (p = 0.002) as well as iron and DBP levels (p = 0.002). Copper concentrations increased during the water heater temperature setpoint increase alone to 140°F during December 2022 (p = 0.01). During the flushing and elevated temperature in parts of the building in February 2023, there was a significant increase in chlorine concentrations (p = 0.002) and iron (p = 0.002) but no significant decrease in L. pneumophila concentrations in the drinking water samples (p = 0.27). This study demonstrated the potential impacts of short term or incompletely implemented interventions which in this case were not sufficient to holistically improve water quality. As implementing interventions is logistically- and time-intensive, more effective and holistic approaches are needed for informing preventative and corrective actions that are beneficial for multiple water quality and sustainability goals.
Collapse
Affiliation(s)
- Sayalee Joshi
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Rain Richard
- NCS Engineering, 202 E. Earll Drive Suite 110, Phoenix AZ 85012, USA
| | - Derek Hogue
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - James Brown
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - Molly Cahill
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Vishnu Kotta
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Kathryn Call
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - Noah Butzine
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Mariana Marcos-Hernández
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Jumana Alja'fari
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Lee Voth-Gaeddert
- The Biodesign Institute Center for Health Through Microbiomes, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Treavor Boyer
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, PO Box 873005, Tempe, AZ 85287-3005, USA
| | - Kerry A Hamilton
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
7
|
Priyadarsini M, Kushwaha J, Pandey KP, Rani J, Dhoble AS. Application of flow cytometry for rapid, high-throughput, multiparametric analysis of environmental microbiomes. J Microbiol Methods 2023; 214:106841. [PMID: 37832922 DOI: 10.1016/j.mimet.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Quantification of the abundance and understanding of the dynamics of the microbial communities is essential to establish a basis for microbiome characterization. The conventional techniques used for the quantification of microbes are complicated and time-consuming. With scientific advancement, many techniques evolved and came into account. Among them, flow cytometry is a robust, high-throughput technique through which microbial dynamics, morphology, microbial distribution, physiological characteristics, and many more attributes can be studied in a high-throughput manner with comparatively less time and resources. Flow cytometry, when combined with other omics-based methods, offers a rapid and efficient platform to analyze and understand the composition of microbiome at the cellular level. The microbial diversity observed through flow cytometry will not be equivalent to that obtained by sequencing methods, but this integrated approach holds great potential for high throughput characterization of microbiomes. Flow cytometry is regarded as an established characterization tool in haematology, oncology, immunology, and medical microbiology research; however, its application in environmental microbiology is yet to be explored. This comprehensive review aims to delve into the diverse environmental applications of flow cytometry across various domains, including but not limited to bioremediation, landfills, anaerobic digestion, industrial bioprocesses, water quality regulation, and soil quality regulation. By conducting an in-depth analysis, this article seeks to shed light on the potential benefits and challenges associated with the utilization of flow cytometry in addressing environmental concerns.
Collapse
Affiliation(s)
- Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Crespi S, Drašar V, Salvà-Serra F, Jaén-Luchoro D, Piñeiro-Iglesias B, Lindemann PC, Aliaga-Lozano F, Fernández-Juárez V, Coll-García G, Moore ERB, Bennasar-Figueras A. Legionella maioricensis sp. nov., a new species isolated from the hot water distribution systems of a hospital and a shopping center during routine sampling. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748493 DOI: 10.1099/ijsem.0.005686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two Legionella-like strains isolated from hot water distribution systems in 2012 have been characterized phenotypically, biochemically and genomically in terms of DNA relatedness. Both strains, HCPI-6T and EUR-108, exhibited biochemical phenotypic profiles typical of Legionella species. Cells were Gram-negative motile rods which grew on BCYEα agar but not on blood agar and displayed phenotypic characteristics typical of the family Legionellaceae, including a requirement for l-cysteine and testing catalase positive. Both strains were negative for oxidase, urease, nitrate reduction and hippurate negative, and non-fermentative. The major ubiquinone was Q12 (59.4 % HCPI-6T) and the dominant fatty acids were C16 : 1 ω7c (28.4 % HCPI-6T, ≈16 % EUR-108), C16 : 0 iso (≈22.5 % and ≈13 %) and C15 : 0 anteiso (19.5 % and ≈23.5 %, respectively). The percent G+C content of genomic DNA was determined to be 39.3 mol %. The 16S rRNA gene, mip sequence and comparative genome sequence-based analyses (average nucleotide identity, ANI; digital DNA-DNA hybridization, dDDH; and phylogenomic treeing) demonstrated that the strains represent a new species of the genus Legionella. The analysis based on the 16S rRNA gene sequences showed that the sequence similarities for both strains ranged from 98.8-90.1 % to other members of the genus. The core genome-based phylogenomic tree (protein-concatemer tree based on concatenation of 418 proteins present in single copy) revealed that these two strains clearly form a separate cluster within the genus Legionella. ANI and dDDH values confirmed the distinctiveness of the strains. Based on the genomic, genotypic and phenotypic findings from a polyphasic study, the isolates are considered to represent a single novel species, for which the name Legionella maioricensis sp. nov. is proposed. The type strain is HCPI-6T (=CCUG 75071T=CECT 30569T).
Collapse
Affiliation(s)
- Sebastian Crespi
- Biolinea Int.; Calle Sócrates, 4; ES-07007 Palma de Mallorca, Spain
| | - Vladimír Drašar
- Public Health Institute Ostrava - National Legionella Reference Laboratory; Masarykovo nam., 16; 682 01 Vyškov, Czech Republic
| | - Francisco Salvà-Serra
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Microbiology, Sahlgrenska University Hospital; Region Västra Götaland, Gothenburg, Sweden.,Microbiologia - Departament de Biologia, Universitat de les Illes Balears; Campus UIB - Ctra. Valldemossa, Km 7.5; ES-07122 Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatriz Piñeiro-Iglesias
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Francisco Aliaga-Lozano
- Laboratorio Microbiología. Clínica Rotger, Grupo Quirónsalud - Vía Roma, 3, Carrer de Santiago Rusiñol, 9: ES-07012 Palma de Mallorca, Spain
| | - Victor Fernández-Juárez
- Marine Biology Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Guillem Coll-García
- Microbiologia - Departament de Biologia, Universitat de les Illes Balears; Campus UIB - Ctra. Valldemossa, Km 7.5; ES-07122 Palma de Mallorca, Spain
| | - Edward R B Moore
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Microbiology, Sahlgrenska University Hospital; Region Västra Götaland, Gothenburg, Sweden
| | - Antoni Bennasar-Figueras
- Microbiologia - Departament de Biologia, Universitat de les Illes Balears; Campus UIB - Ctra. Valldemossa, Km 7.5; ES-07122 Palma de Mallorca, Spain
| |
Collapse
|
9
|
Nisar MA, Ross KE, Brown MH, Bentham R, Best G, Whiley H. Detection and quantification of viable but non-culturable Legionella pneumophila from water samples using flow cytometry-cell sorting and quantitative PCR. Front Microbiol 2023; 14:1094877. [PMID: 36793878 PMCID: PMC9922708 DOI: 10.3389/fmicb.2023.1094877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Legionella pneumophila is a waterborne pathogen and, as the causative agent of Legionnaires' disease, a significant public health concern. Exposure to environmental stresses, and disinfection treatments, promotes the formation of resistant and potentially infectious viable but non-culturable (VBNC) Legionella. The management of engineered water systems to prevent Legionnaires' disease is hindered by the presence of VBNC Legionella that cannot be detected using the standard culture (ISO11731:2017-05) and quantitative polymerase reaction (ISO/TS12869:2019) methods. This study describes a novel method to quantify VBNC Legionella from environmental water samples using a "viability based flow cytometry-cell sorting and qPCR" (VFC + qPCR) assay. This protocol was then validated by quantifying the VBNC Legionella genomic load from hospital water samples. The VBNC cells were unable to be cultured on Buffered Charcoal Yeast Extract (BCYE) agar; however, their viability was confirmed through their ATP activity and ability to infect amoeba hosts. Subsequently, an assessment of the ISO11731:2017-05 pre-treatment procedure demonstrated that acid or heat treatment cause underestimation of alive Legionella population. Our results showed that these pre-treatment procedures induce culturable cells to enter a VBNC state. This may explain the observed insensitivity and lack of reproducibility often observed with the Legionella culture method. This study represents the first time that flow cytometry-cell sorting in conjunction with a qPCR assay has been used as a rapid and direct method to quantify VBNC Legionella from environmental sources. This will significantly improve future research evaluating Legionella risk management approaches for the control of Legionnaires' disease.
Collapse
Affiliation(s)
- Muhammad Atif Nisar
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kirstin E. Ross
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Melissa H. Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Richard Bentham
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Giles Best
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia,Flow Cytometry Facility, Flinders University, Bedford Park, SA, Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia,*Correspondence: Harriet Whiley, ✉
| |
Collapse
|
10
|
Campbell JA, Cianciotto NP. Legionella pneumophila Cas2 Promotes the Expression of Small Heat Shock Protein C2 That Is Required for Thermal Tolerance and Optimal Intracellular Infection. Infect Immun 2022; 90:e0036922. [PMID: 36073935 PMCID: PMC9584283 DOI: 10.1128/iai.00369-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Previously, we demonstrated that Cas2 encoded within the CRISPR-Cas locus of Legionella pneumophila strain 130b promotes the ability of the Legionella pathogen to infect amoebal hosts. Given that L. pneumophila Cas2 has RNase activity, we posited that the cytoplasmic protein is regulating the expression of another Legionella gene(s) that fosters intracellular infection. Proteomics revealed 10 proteins at diminished levels in the cas2 mutant, and reverse transcription-quantitative (qRT-PCR) confirmed the reduced expression of a gene encoding putative small heat shock protein C2 (HspC2), among several others. As predicted, the gene was expressed more highly at 37°C to 50°C than that at 30°C, and an hspC2 mutant, but not its complemented derivative, displayed ~100-fold reduced CFU following heat shock at 55°C. Compatible with the effect of Cas2 on hspC2 expression, strains lacking Cas2 also had impaired thermal tolerance. The hspC2 mutant, like the cas2 mutant before it, was greatly impaired for infection of Acanthamoeba castellanii, a frequent host for legionellae in waters. HspC2 and Cas2 were not required for entry into these host cells but promoted the replicative phase of intracellular infection. Finally, the hspC2 mutant exhibited an additional defect during the infection of macrophages, which are the primary host for legionellae during lung infection. In summary, hspC2 is upregulated by the presence of Cas2, and HspC2 uniquely promotes both L. pneumophila extracellular survival at high temperatures and infection of amoebal and human host cells. To our knowledge, these findings also represent the first genetic proof linking Cas2 to thermotolerance, expanding the repertoire of noncanonical functions associated with CRISPR-Cas proteins.
Collapse
Affiliation(s)
- Jackson A. Campbell
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
11
|
Ortí-Lucas RM, Luciano E. New immunomagnetic separation method to analyze risk factors for Legionella colonization in health care centres. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:744-750. [PMID: 35264765 PMCID: PMC8906530 DOI: 10.1038/s41370-022-00421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND It's pivotal to control the presence of legionella in sanitary structures. So, it's important to determine the risk factors associated with Legionella colonization in health care centres. In recent years that is why new diagnostic techniques have been developed. OBJECTIVE To evaluate risks factors for Legionella colonization using a novel and more sensitive Legionella positivity index. METHODS A total of 204 one-litre water samples (102 cold water samples and 102 hot water samples), were collected from 68 different sampling sites of the hospital water system and tested for Legionella spp. by two laboratories using culture, polymerase chain reaction and a method based on immunomagnetic separation (IMS). A Legionella positivity index was defined to evaluate Legionella colonization and associated risk factors in the 68 water samples sites. We performed bivariate analyses and then logistic regression analysis with adjustment of potentially confounding variables. We compared the performance of culture and IMS methods using this index as a new gold standard to determine if rapid IMS method is an acceptable alternative to the use of slower culture method. RESULTS Based on the new Legionella positivity index, no statistically significant differences were found neither between laboratories nor between methods (culture, IMS). Positivity was significantly correlated with ambulatory health assistance (p = 0.05) and frequency of use of the terminal points. The logistic regression model revealed that chlorine (p = 0.009) and the frequency of use of the terminal points (p = 0.001) are predictors of Legionella colonization. Regarding this index, the IMS method proved more sensitive (69%) than culture method (65.4%) in hot water samples. SIGNIFICANCE We showed that the frequency of use of terminal points should be considered when examining environmental Legionella colonization, which can be better evaluated using the provided Legionella positivity index. This study has implications for the prevention of Legionnaires' disease in hospital settings.
Collapse
Affiliation(s)
- Rafael Manuel Ortí-Lucas
- Research group on Public Health and Patient Safety, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Eugenio Luciano
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
12
|
Niculita-Hirzel H, Vanhove AS, Leclerc L, Girardot F, Pourchez J, Allegra S. Risk Exposure to Legionella pneumophila during Showering: The Difference between a Classical and a Water Saving Shower System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063285. [PMID: 35328980 PMCID: PMC8955837 DOI: 10.3390/ijerph19063285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
The increase in legionellosis incidence in the general population in recent years calls for a better characterization of the sources of infection, such as showering. Water-efficient shower systems that use water-atomizing technology have been shown to emit slightly more inhalable particles in the range of bacterial sizes than the traditional systems; however, the actual rate of bacterial emission remains poorly documented. The aim of this study was to assess the aerosolisation rate of the opportunistic water pathogen Legionella pneumophila during showering with one shower system representative of each technology. To achieve this objective, we performed controlled experiments inside a glove box and determined the emitted dose and viability of airborne Legionella. The bioaerosols were sampled with a Coriolis® Delta air sampler and the total number of viable (cultivable and noncultivable) Legionella was determined by flow cytometry and culture. We found that the rate of viable and cultivable Legionella aerosolized from the water jet was similar between the two showerheads: the viable fraction represents 0.02% of the overall bacteria present in water, while the cultivable fraction corresponds to only 0.0005%. The two showerhead models emitted a similar ratio of airborne Legionella viable and cultivable per volume of water used. Therefore, the risk of exposure to Legionella is not expected to increase significantly with the new generation of water-efficient showerheads.
Collapse
Affiliation(s)
- Hélène Niculita-Hirzel
- Department Work, Heath & Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland
- Correspondence:
| | - Audrey S. Vanhove
- EVS-ISTHME UMR 5600, CNRS, University Jean Monnet of Saint-Etienne, F-42023 Saint-Etienne, France; (A.S.V.); (F.G.); (S.A.)
| | - Lara Leclerc
- Mines Saint-Etienne, University of Lyon, University Jean Monnet of Saint-Etienne, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France; (L.L.); (J.P.)
| | - Françoise Girardot
- EVS-ISTHME UMR 5600, CNRS, University Jean Monnet of Saint-Etienne, F-42023 Saint-Etienne, France; (A.S.V.); (F.G.); (S.A.)
| | - Jérémie Pourchez
- Mines Saint-Etienne, University of Lyon, University Jean Monnet of Saint-Etienne, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France; (L.L.); (J.P.)
| | - Séverine Allegra
- EVS-ISTHME UMR 5600, CNRS, University Jean Monnet of Saint-Etienne, F-42023 Saint-Etienne, France; (A.S.V.); (F.G.); (S.A.)
| |
Collapse
|
13
|
Proctor C, Garner E, Hamilton KA, Ashbolt NJ, Caverly LJ, Falkinham JO, Haas CN, Prevost M, Prevots DR, Pruden A, Raskin L, Stout J, Haig SJ. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. WATER RESEARCH 2022; 211:117997. [PMID: 34999316 PMCID: PMC8821414 DOI: 10.1016/j.watres.2021.117997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/10/2023]
Abstract
In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
Collapse
Affiliation(s)
- Caitlin Proctor
- Department of Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Centre for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Gold Coast. Queensland, Australia
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Prevost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janet Stout
- Department of Civil & Environmental Engineering, University of Pittsburgh, and Special Pathogens Laboratory, Pittsburgh, PA, USA
| | - Sarah-Jane Haig
- Department of Civil & Environmental Engineering, and Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Cazals M, Bédard E, Doberva M, Faucher S, Prévost M. Compromised Effectiveness of Thermal Inactivation of Legionella pneumophila in Water Heater Sediments and Water, and Influence of the Presence of Vermamoeba vermiformis. Microorganisms 2022; 10:microorganisms10020443. [PMID: 35208896 PMCID: PMC8874534 DOI: 10.3390/microorganisms10020443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Intermittent reduction of temperature set-points and periodic shutdowns of water heaters have been proposed to reduce energy consumption in buildings. However, the consequences of such measures on the occurrence and proliferation of Legionella pneumophila (Lp) in hot water systems have not been documented. The impact of single and repeated heat shocks was investigated using an environmental strain of L. pneumophila and a reference strain of V. vermiformis. Heat shocks at temperatures ranging from 50 °C to 70 °C were applied for 1 h and 4 h in water and water heaters loose deposits (sludge). The regrowth potential of heat-treated culturable L. pneumophila in presence of V. vermiformis in water heaters sludges was evaluated. A 2.5-log loss of culturability of L. pneumophila was observed in simulated drinking water at 60 °C while a 4-log reduction was reached in water heaters loose deposits. Persistence of Lp after 4 h at 55 °C was shown and the presence of V. vermiformis in water heater’s loose deposits resulted in a drastic amplification (5-log). Results show that thermal inactivation by heat shock is only efficient at elevated temperatures (50 °C) in both water and loose deposits. The few remaining organisms can rapidly proliferate during storage at lower temperature in the presence of hosts.
Collapse
Affiliation(s)
- Margot Cazals
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (E.B.); (M.D.); (M.P.)
- Correspondence:
| | - Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (E.B.); (M.D.); (M.P.)
| | - Margot Doberva
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (E.B.); (M.D.); (M.P.)
| | - Sébastien Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (E.B.); (M.D.); (M.P.)
| |
Collapse
|
15
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|
16
|
M A, Sebastian D. Evaluation of Sensitivity and Cost-Effectiveness of Molecular Methods for the Co-detection of Waterborne Pathogens in India. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:955-963. [PMID: 34714447 DOI: 10.1007/s10126-021-10078-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Waterborne microbial diseases are regarded as a major public health concern, particularly in nations with poor sanitation, a lack of social awareness, and problems linked with low socioeconomic status. Waterborne pathogen identification using traditional culture methods is time-consuming and labor-intensive. As a result, there is a growing demand for quick pathogen detection technologies. High sensitivity, specificity, and rapidity are all advantages of using molecular techniques like polymerase chain reaction (PCR) in such instances. In this study, we designed multiplex PCR and quantitative real-time PCR (qPCR) assays for the co-detection and enumeration of waterborne pathogens such as Aeromonas hydrophila, Pseudomonas aeruginosa, Salmonella enterica, Yersinia enterocolitica, Escherichia coli, Vibrio cholerae, and Shigella spp. Specific primers were selected against the virulence and species-specific genes of the seven target pathogens. For all seven target organisms, the detection limits for conventional culture methods were in the range of 103-104 cells/ml. While employing multiplex PCR method in this study, Pseudomonas aeruginosa and Shigella spp. have a detection sensitivity of 101 cells/ml, Vibrio cholerae and Aeromonas hydrophila have a detection sensitivity of 102 cells/ml, whereas Salmonella enterica, E. coli, and Yersinia enterocolitica have a detection sensitivity of only 103 cells/ml. According to our cost-benefit analysis, these molecular technologies are less expensive, with unit analysis costs of ₹52 and ₹173 for qPCR and multiplex PCR, respectively. Furthermore, all of the target genes had a detection limit of 1 cell/ml in qPCR. Because of their speed, sensitivity, specificity, and cost-effectiveness, these multiplex and qPCR assays could be employed for successful co-detection of aquatic pathogens.
Collapse
Affiliation(s)
- Ambili M
- Department of Life Sciences, University of Calicut, Malappuram, Kerala-673635, India
| | - Denoj Sebastian
- Department of Life Sciences, University of Calicut, Malappuram, Kerala-673635, India.
| |
Collapse
|
17
|
Mossallam SF, El- Mansoury SA, Tolba MM, Kohla AA, Khedr SI. In vitro susceptibility of human Blastocystis subtypes to simeprevir. Saudi J Biol Sci 2021; 28:2491-2501. [PMID: 33935570 PMCID: PMC8071969 DOI: 10.1016/j.sjbs.2021.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction and aim Blastocystis is a common enteric parasite, having a worldwide distribution. Many antimicrobial agents are effective against it, yet side effects and drug resistance have been reported. Thus, ongoing trials are being conducted for exploring anti-Blastocystis alternatives. Proteases are attractive anti-protozoal drug targets, having documented roles in Blastocystis. Serine proteases are present in both hepatitis C virus and Blastocystis. Since drug repositioning is quite trendy, the in vitro efficacy of simeprevir (SMV), an anti-hepatitis serine protease inhibitor, against Blastocystis was investigated in the current study. Methods Stool samples were collected from patients, Alexandria, Egypt. Concentrated stools were screened using direct smears, trichrome, and modified Ziehl-Neelsen stains to exclude parasitic co-infections. Positive stool isolates were cultivated, molecularly subtyped for assessing the efficacy of three SMV doses (100,150, and 200 μg/ml) along 72 hours (h), on the most common subtype, through monitoring parasite growth, viability, re-culture, and also via ultrastructure verification. The most efficient dose and duration were later tested on other subtypes. Results Results revealed that Blastocystis was detected in 54.17% of examined samples. Molecularly, ST3 predominated (62%), followed by ST1 (8.6%) and ST2 (3.4%). Ascending concentrations of SMV progressively inhibited growth, viability, and re-culture of treated Blastocystis, with a non-statistically significant difference when compared to the therapeutic control metronidazole (MTZ). The most efficient dose and duration against ST3 was 150 µg/ml for 72 h. This dose inhibited the growth of ST3, ST1, and ST2 with percentages of 95.19%, 94.83%, and 94.74%, successively and viability with percentages of 98.30%, 98.09%, and 97.96%, successively. This dose abolished Blastocystis upon re-culturing. Ultra-structurally, SMV induced rupture of Blastocystis cell membrane leading to necrotic death, versus the reported apoptotic death caused by MTZ. In conclusion, 150 µg/ml SMV for 72 h proved its efficacy against ST1, ST2, and ST3 Blastocystis, thus sparing the need for pre-treatment molecular subtyping in developing countries.
Collapse
Key Words
- Blastocystis subtypes
- CV, central vacuole
- DMSO, Dimethyl Sulfoxide
- IBS, irritable bowel syndrome
- In vitro
- MLO, Mitochondrion-like organelle
- MTZ, Metronidazole
- PCR, Polymerase chain reaction
- Re-culture
- SEM, Scanning electron microscopy
- SMV, Simeprevir
- ST, subtypes
- Simeprevir
- TEM, Transmission electron microscopy
- Ultrastructure
- Viability
Collapse
Affiliation(s)
- Shereen F. Mossallam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Corresponding author at: Medical Parasitology Department, El Mowasah Medical and Educational Complex, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Salwa A.T. El- Mansoury
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mona M. Tolba
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Asmaa A. Kohla
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Safaa I. Khedr
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Detection and Potential Virulence of Viable but Non-Culturable (VBNC) Listeria monocytogenes: A Review. Microorganisms 2021; 9:microorganisms9010194. [PMID: 33477778 PMCID: PMC7832328 DOI: 10.3390/microorganisms9010194] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/04/2023] Open
Abstract
The detection, enumeration, and virulence potential of viable but non-culturable (VBNC) pathogens continues to be a topic of discussion. While there is a lack of definitive evidence that VBNC Listeria monocytogenes (Lm) pose a public health risk, recent studies suggest that Lm in its VBNC state remains virulent. VBNC bacteria cannot be enumerated by traditional plating methods, so the results from routine Lm testing may not demonstrate a sample's true hazard to public health. We suggest that supplementing routine Lm testing methods with methods designed to enumerate VBNC cells may more accurately represent the true level of risk. This review summarizes five methods for enumerating VNBC Lm: Live/Dead BacLightTM staining, ethidium monoazide and propidium monoazide-stained real-time polymerase chain reaction (EMA- and PMA-PCR), direct viable count (DVC), 5-cyano-2,3-ditolyl tetrazolium chloride-4',6-diamidino-2-phenylindole (CTC-DAPI) double staining, and carboxy-fluorescein diacetate (CDFA) staining. Of these five supplementary methods, the Live/Dead BacLightTM staining and CFDA-DVC staining currently appear to be the most accurate for VBNC Lm enumeration. In addition, the impact of the VBNC state on the virulence of Lm is reviewed. Widespread use of these supplemental methods would provide supporting data to identify the conditions under which Lm can revert from its VBNC state into an actively multiplying state and help identify the environmental triggers that can cause Lm to become virulent. Highlights: Rationale for testing for all viable Listeria (Lm) is presented. Routine environmental sampling and plating methods may miss viable Lm cells. An overview and comparison of available VBNC testing methods is given. There is a need for resuscitation techniques to recover Lm from VBNC. A review of testing results for post VBNC virulence is compared.
Collapse
|
19
|
Zhou J, Wang T, Xie X. Locally Enhanced Electric Field Treatment (LEEFT) Promotes the Performance of Ozonation for Bacteria Inactivation by Disrupting the Cell Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14017-14025. [PMID: 32940462 DOI: 10.1021/acs.est.0c03968] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The adoption of ozonation for water disinfection is hindered by its high ozone demand and the resulting high cost. Electric field treatment inactivates bacteria by physically disrupting the integrity of the cell membrane. Assisted by nanowire-modified electrodes, locally enhanced electric field treatment (LEEFT) reduces the required voltage to several volts to induce sufficient electric field strength for efficient bacteria inactivation. In this study, the LEEFT is applied as a pretreatment of ozonation for bacteria inactivation. Our results show that a low-voltage (<0.4 V) LEEFT has no obvious effect on the following ozonation, but a higher-voltage (0.6-1.2 V) LEEFT significantly enhances the ozone inactivation. After the LEEFT, a large number of viable cells with impaired cell membranes are observed, shown by both selective plate count and staining methods. The mechanism inducing the enhancement is explained by the initially reparable pores generated by LEEFT that cannot recover in the subsequent ozonation and the greater intracellular diffusion of ozone after the membrane disruption induced by LEEFT. The application of LEEFT as a pretreatment process is beneficial to reduce the ozone dosage and disinfection by-product formation with a broader inactivation spectrum, which facilitates the application of ozonation in primary water disinfection.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
Laribi A, Allegra S, Souiri M, Mzoughi R, Othmane A, Girardot F. Legionella pneumophila sg1-sensing signal enhancement using a novel electrochemical immunosensor in dynamic detection mode. Talanta 2020; 215:120904. [PMID: 32312449 DOI: 10.1016/j.talanta.2020.120904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/20/2023]
Abstract
This work presents a comparison between static and dynamic modes of biosensing using a novel microfluidic assay for continuous and quantitative detection of Legionella pneumophila sg1 in artificial water samples. A self-assembled monolayer of 16-amino-1-hexadecanethiol (16-AHT) was covalently linked to a gold substrate, and the resulting modified surface was used to immobilize an anti-Legionella pneumophila monoclonal antibody (mAb). The modified surfaces formed during the biosensor functionalization steps were characterized using electrochemical measurements and microscopic imaging techniques. Under static conditions, the biosensor exhibited a wide linear response range from 10 to 108 CFU/mL and a detection limit of 10 CFU/mL. Using a microfluidic system, the biosensor responses exhibited a linear relationship for low bacterial concentrations ranging from 10 to 103 CFU/mL under dynamic conditions and an enhancement of sensing signals by a factor of 4.5 compared to the sensing signals obtained under static conditions with the same biosensor for the detection of Legionella cells in artificially contaminated samples.
Collapse
Affiliation(s)
- Ahlem Laribi
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France; Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia.
| | - Séverine Allegra
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| | - Mina Souiri
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Ridha Mzoughi
- Regional Laboratory of Hygiene, University Hospital Farhat Hached, 4000 Sousse, Tunisia and Laboratory of Analysis Treatment and Valorization of Pollutants and Products, Faculty of Pharmacy, 5000, Monastir, Tunisia
| | - Ali Othmane
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Françoise Girardot
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| |
Collapse
|
21
|
Allegra S, Riffard S, Leclerc L, Girardot F, Stauffert M, Forest V, Pourchez J. A valuable experimental setup to model exposure to Legionella's aerosols generated by shower-like systems. WATER RESEARCH 2020; 172:115496. [PMID: 31972415 DOI: 10.1016/j.watres.2020.115496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The mechanism underlying Legionella aerosolization and entry into the respiratory tract remains poorly documented. In previous studies, we characterized the aerodynamic behaviour of Legionella aerosols and assessed their regional deposition within the respiratory tract using a human-like anatomical model. The aim of this study was to assess whether this experimental setup could mimic the exposure to bioaerosols generated by showers. To achieve this objective we performed experiments to measure the mass median aerodynamic diameter (MMAD) as well as the emitted dose and the physiological state of the airborne bacteria generated by a shower and two nebulizers (vibrating-mesh and jet nebulizers). The MMADs of the dispersed bioaerosols were characterized using a 12-stage cascade low-pressure impactor. The amount of dispersed airborne bacteria from a shower was quantified using a Coriolis® Delta air sampler and compared to the airborne bacteria reaching the thoracic region in the experimental setup. The physiological state and concentration of airborne Legionella were assessed by qPCR for total cells, culture for viable and cultivable Legionella (VC), and flow cytometry for viable but non-cultivable Legionella (VBNC). In summary, the experimental setup developed appears to mimic the bioaerosol emission of a shower in terms of aerodynamic size distribution. Compared to the specific case of a shower used as a reference in this study, the experimental setup developed underestimates by 2 times (when the jet nebulizer is used) or overestimates by 43 times (when the vibrating-mesh nebulizer is used) the total emitted dose of airborne bacteria. To our knowledge, this report is the first showing that an experimental model mimics so closely an exposure to Legionella aerosols produced by showers to assess human lung deposition and infection in well-controlled and safe conditions.
Collapse
Affiliation(s)
- Séverine Allegra
- University of Lyon, University Jean Monnet of Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023, Saint-Etienne, France.
| | - Serge Riffard
- University of Lyon, University Jean Monnet of Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, University of Lyon, University Jean Monnet of Saint-Etienne, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France
| | - Françoise Girardot
- University of Lyon, University Jean Monnet of Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023, Saint-Etienne, France
| | - Magalie Stauffert
- University of Lyon, University Jean Monnet of Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023, Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, University of Lyon, University Jean Monnet of Saint-Etienne, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, University of Lyon, University Jean Monnet of Saint-Etienne, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France
| |
Collapse
|
22
|
Moreno Y, Moreno-Mesonero L, García-Hernández J. DVC-FISH to identify potentially pathogenic Legionella inside free-living amoebae from water sources. ENVIRONMENTAL RESEARCH 2019; 176:108521. [PMID: 31195295 DOI: 10.1016/j.envres.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/11/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Despite all safety efforts, drinking and wastewater can still be contaminated by Legionella and free-living amoebae (FLA) since these microorganisms are capable of resisting disinfection treatments. An amoebae cyst harboring pathogenic Legionella spp. can be a transporter of this organism, protecting it and enhancing its infection abilities. Therefore, the aim of this work is to identify by DVC-FISH viable Legionella spp and Legionella pneumophila cells inside FLA from water sources in a specific and rapid way with the aim of assessing the real risk of these waters. A total of 55 water samples were processed, 30 reclaimed wastewater and 25 drinking water. FLA presence was detected in 52.7% of the total processed water samples. When DVC-FISH technique was applied, the presence of viable internalized Legionella spp. cells was identified in 69.0% of the total FLA-positive samples, concretely in 70.0% and 66.7% of wastewater and drinking water samples, respectively. L. pneumophila was simultaneously identified in 48.3% of the total FLA-positive samples, specifically in 50.0% and 44.4% of wastewater and drinking water samples, respectively. By culture, potentially pathogenic Legionella cells were recovered in 27.6% of the total FLA-positive bacteria, particularly in 35.0% and 11.1% of wastewater and drinking water samples, respectively. These findings demonstrate that FLA may promote resistance of bacteria to the performed disinfection treatments for drinking as well as for wastewater. So, in addition to the risk for the presence of pathogenic FLA in water it is necessary to take into account that these can be transporters of the pathogenic bacteria Legionella, which are able to survive inside them. The DVC-FISH method described here has been proved to be a rapid and specific tool to identify pathogenic Legionella spp. and L. penumophila viable cells harboured by FLA in these water sources, posing particular public health concern.
Collapse
Affiliation(s)
- Y Moreno
- Research Institute of Water and Environmental Ingeneering (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain.
| | - L Moreno-Mesonero
- Research Institute of Water and Environmental Ingeneering (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - J García-Hernández
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
23
|
Cervero-Aragó S, Schrammel B, Dietersdorfer E, Sommer R, Lück C, Walochnik J, Kirschner A. Viability and infectivity of viable but nonculturable Legionella pneumophila strains induced at high temperatures. WATER RESEARCH 2019; 158:268-279. [PMID: 31048196 PMCID: PMC6520252 DOI: 10.1016/j.watres.2019.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Thermal disinfection is commonly used to prevent the proliferation of culturable Legionella in engineered water systems (EWS). In response to such stress, culturable Legionella populations can switch into a viable but nonculturable (VBNC) state. The importance of such VBNC Legionella cells is currently hotly debated. Here, we investigated the stress response patterns and transitions of the bacteria to the VBNC state at 55 °C, 60 °C and 70 °C on two L. pneumophila strains for >80 days using a combination of cell-based viability indicators. Complete loss of culturability at 55 °C, 60 °C and 70 °C occurred after 3-8 h, 60 min and <2 min, respectively. In contrast, L. pneumophila strains required 9 days at 55 °C, 8 h at 60 °C and 20 min at 70 °C to achieve a 2 log reduction in cells with intact membranes and high esterase activity; a 4 log reduction was achieved only after 150, 8-15 and 1-4 days, respectively. In parallel, the presence of diagnostic outer-membrane epitopes (OMEs) and changes in the infectivity patterns of the two strains towards amoebae and THP-1 cells were assessed. OMEs were more persistent than viability indicators, showing their potential as targets for VBNC Legionella detection. L. pneumophila strains infected amoebae and THP-1 cells for at least 85 days at 55 °C and 60 °C and for up to 8 days at 70 °C. However, they did so with reduced efficiency, requiring prolonged co-incubation times with the hosts and higher Legionella cell numbers in comparison to culturable cells. Consequently, infection of amoebae by thermally induced VBNC L. pneumophila with lowered virulence can be expected in EWS. Although the gold standard method cannot detect VBNC Legionella, it provides important information about the most virulent bacterial subpopulations. Our results indicate that a prolonged thermal regime ≥60 °C at the central parts of warm water systems is not only effective against culturable L. pneumophila but in the long run even against VBNC cells.
Collapse
Affiliation(s)
- Sílvia Cervero-Aragó
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.
| | - Barbara Schrammel
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Elisabeth Dietersdorfer
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Regina Sommer
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - Christian Lück
- Technical University Dresden, Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Helmholtzstr. 10, D 01069, Dresden, Germany
| | - Julia Walochnik
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria; Karl Landsteiner University of Health Sciences, Division Water Quality and Health, Dr. Karl Dorrekstraße 30, A-3400, Krems, Austria
| |
Collapse
|
24
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
25
|
The utility of flow cytometry for potable reuse. Curr Opin Biotechnol 2019; 57:42-49. [PMID: 30684865 DOI: 10.1016/j.copbio.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 11/22/2022]
Abstract
Protecting public health from pathogens is critical when treating wastewater to drinking water standards (i.e., planned water reuse). Viruses are a principal concern, yet real-time monitoring strategies do not currently measure virus removal through reuse processes. Flow cytometry (FCM) has enabled rapid and sensitive bacteria monitoring in water treatment applications, but methods for virus and protozoa monitoring remain immature. We discuss recent advances in the FCM field and FCM applications for quantifying microorganisms in water. We focus on flow virometry (FVM) developments, as virus enumeration methods show promise for water reuse applications. Ultimately, we propose FVM for near real-time monitoring across treatment to more accurately validate virus particle removal and for pilot studies to characterize removal through understudied unit processes.
Collapse
|
26
|
Optimization of viability qPCR for selective detection of membrane-intact Legionella pneumophila. J Microbiol Methods 2018; 156:68-76. [PMID: 30529241 DOI: 10.1016/j.mimet.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022]
Abstract
Although a number of viability qPCR assays have been reported to selectively detect signals from membrane-intact Legionella pneumophila, the efficient suppression of amplification of DNA from dead membrane-compromised bacteria remains an ongoing challenge. This research aimed at establishing a new oligonucleotide combination that allows for a better exclusion of dead Legionella pneumophila on basis of the mip gene. Propidium monoazide (PMA) was chosen as viability dye. An oligonucleotide combination for the amplification of a 633 bp sequence was established with 100% specificity for different Legionella pneumophila strains compared with 17 other Legionella species tested. Apart from increasing amplicon length, the study aimed at optimizing dye incubation time and temperature. An incubation temperature of 45 °C for 10 min was found optimal. Dye treatment of heat-killed bacteria in the presence of EDTA improved signal suppression, whereas deoxycholate also affected signals from live intact bacteria. Suppression of signals from heat-treated bacteria was found to be approx. twice as efficient compared to a commercial kit, although the detection sensitivity is superior when targeting short amplicons. With a limit of detection of 10 genome copies per PCR well and a 6-log signal reduction of bacteria killed at 80 °C, the assay appears useful for applications where pathogen numbers are not limiting and where the priority is on the distinction between intact and damaged Legionella pneumophila for the evaluation of hygienic risk and of disinfection efficiency.
Collapse
|
27
|
Dietersdorfer E, Kirschner A, Schrammel B, Ohradanova-Repic A, Stockinger H, Sommer R, Walochnik J, Cervero-Aragó S. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages. WATER RESEARCH 2018; 141:428-438. [PMID: 29409685 DOI: 10.1016/j.watres.2018.01.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 05/22/2023]
Abstract
Legionella infections are among the most important waterborne infections with constantly increasing numbers of cases in industrialized countries, as a result of aging populations, rising numbers of immunocompromised individuals and increased need for conditioned water due to climate change. Surveillance of water systems is based on microbiological culture-based techniques; however, it has been shown that high percentages of the Legionella populations in water systems are not culturable. In the past two decades, the relevance of such viable but non-culturable (VBNC) legionellae has been controversially discussed, and whether VBNC legionellae can directly infect human macrophages, the primary targets of Legionella infections, remains unclear. In this study, it was demonstrated for the first time that several starved VBNC Legionella strains (four L. pneumophila serogroup 1 strains, a serogroup 6 strain and a L. micdadei strain) can directly infect different types of human macrophages and amoebae even after one year of starvation in ultrapure water. However, under these conditions, the strains caused infection with reduced efficacy, as represented by the lower percentages of infected cells, prolonged time in co-culture and higher multiplicities of infection required. Interestingly, the VBNC cells remained mostly non-culturable even after multiplication within the host cells. Amoebal infection by starved VBNC Legionella, which likely occurs in oligotrophic biofilms, would result in an increase in the bacterial concentration in drinking-water systems. If cells remain in the VBNC state, the real number of active legionellae will be underestimated by the use of culture-based standard techniques. Thus, further quantitative research is needed in order to determine, whether and how many starved VBNC Legionella cells are able to cause disease in humans.
Collapse
Affiliation(s)
- Elisabeth Dietersdorfer
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Department of Medical Parasitology, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.
| | - Barbara Schrammel
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Lazarettgasse 19, A-1090 Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Lazarettgasse 19, A-1090 Vienna, Austria
| | - Regina Sommer
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - Julia Walochnik
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Department of Medical Parasitology, Kinderspitalgasse 15, A-1090, Vienna, Austria.
| | - Sílvia Cervero-Aragó
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| |
Collapse
|
28
|
Helmi K, David F, Di Martino P, Jaffrezic MP, Ingrand V. Assessment of flow cytometry for microbial water quality monitoring in cooling tower water and oxidizing biocide treatment efficiency. J Microbiol Methods 2018; 152:201-209. [PMID: 29958908 DOI: 10.1016/j.mimet.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The control of Legionella proliferation in cooling tower water circuits requires regular monitoring of water contamination and effective disinfection procedures. In this study, flow cytometry was assessed to monitor water contamination and disinfection treatment efficiency on bacterial cells regarding nucleic acid injury (SYBR® Green II), cell integrity (SYBR® Green II and propidium iodide) and metabolism activity (ChemChrome V6). A total of 27 cooling tower water samples were analyzed in order to assess water contamination levels regarding viable populations: standard culture, ATP measurement and flow cytometry methods were compared. Flow cytometry and plate counts methods showed a significant correlation for changes in concentrations despite a 1 to 2-log difference regarding absolute quantification. Concerning intracellular activity, the use of two different flow cytometers (FACSCanto™ II and Accuri™ C6) showed no statistical difference while a difference was observed between flow cytometry and usual methods (culture and ATP measurement). The standard culture and flow cytometry methods were also compared for in vitro bacteria inactivation measurements in the presence of 3 different types of oxidizing biocides commonly used for cooling tower disinfection. Reductions observed ranged between 1 and 2 log depending on (1) the detection method, (2) the bacterial population origin and/or (3) the active biocide molecule used. In conclusion, flow cytometry represents an efficient, accurate and fast approach to monitor water contamination and biocide treatment efficiency in cooling towers.
Collapse
Affiliation(s)
- Karim Helmi
- Veolia Recherche et Innovation, Chemin de la Digue, 78600 Maisons-Laffitte, France.
| | - Fabienne David
- Veolia Recherche et Innovation, Chemin de la Digue, 78600 Maisons-Laffitte, France
| | - Patrick Di Martino
- Université de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise cedex, France
| | | | - Valérie Ingrand
- Veolia Recherche et Innovation, Chemin de la Digue, 78600 Maisons-Laffitte, France
| |
Collapse
|
29
|
Perinel S, Forest V, Landraud M, Pourchez J, Girardot F, Riffard S, Stauffert M, Vergnon JM, Allegra S. Deposition pattern of aerosolized Legionella using an ex vivo human-porcine respiratory model. Int J Hyg Environ Health 2018; 221:252-259. [DOI: 10.1016/j.ijheh.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 01/27/2023]
|
30
|
Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells. WATER 2018. [DOI: 10.3390/w10020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Experimental human-like model to assess the part of viable Legionella reaching the thoracic region after nebulization. PLoS One 2017; 12:e0186042. [PMID: 28982141 PMCID: PMC5628919 DOI: 10.1371/journal.pone.0186042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022] Open
Abstract
The incidence of Legionnaires’ disease (LD) in European countries and the USA has been constantly increasing since 1998. Infection of humans occurs through aerosol inhalation. To bridge the existing gap between the concentration of Legionella in a water network and the deposition of bacteria within the thoracic region (assessment of the number of viable Legionella), we validated a model mimicking realistic exposure through the use of (i) recent technology for aerosol generation and (ii) a 3D replicate of the human upper respiratory tract. The model’s sensitivity was determined by monitoring the deposition of (i) aerosolized water and Tc99m radio-aerosol as controls, and (ii) bioaerosols generated from both Escherichia coli and Legionella pneumophila sg 1 suspensions. The numbers of viable Legionella prior to and after nebulization were provided by culture, flow cytometry and qPCR. This study was designed to obtain more realistic data on aerosol inhalation (vs. animal experimentation) and deposition at the thoracic region in the context of LD. Upon nebulization, 40% and 48% of the initial Legionella inoculum was made of cultivable and non-cultivable cells, respectively; 0.7% of both populations reached the filter holder mimicking the thoracic region in this setup. These results are in agreement with experimental data based on quantitative microbial risk assessment methods and bring new methods that may be useful for preventing LD.
Collapse
|
32
|
Advanced microbial analysis for wastewater quality monitoring: metagenomics trend. Appl Microbiol Biotechnol 2017; 101:7445-7458. [DOI: 10.1007/s00253-017-8490-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022]
|
33
|
Whiley H, Bentham R, Brown MH. Legionella Persistence in Manufactured Water Systems: Pasteurization Potentially Selecting for Thermal Tolerance. Front Microbiol 2017; 8:1330. [PMID: 28769899 PMCID: PMC5515819 DOI: 10.3389/fmicb.2017.01330] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/30/2017] [Indexed: 01/13/2023] Open
Abstract
Legionella is an opportunistic waterborne pathogen of increasing public health significance. Pasteurization, otherwise known as super-heat and flush (increasing water temperature to above 70°C and flushing all outlets), has been identified as an important mechanism for the disinfection of Legionella in manufactured water systems. However, several studies have reported that this procedure was ineffective at remediating water distribution systems as Legionella was able to maintain long term persistent contamination. Up to 25% of L. pneumophila cells survived heat treatment of 70°C, but all of these were in a viable but non-culturable state. This demonstrates the limitations of the culture method of Legionella detection currently used to evaluate disinfection protocols. In addition, it has been demonstrated that pasteurization and nutrient starvation can select for thermal tolerant strains, where L. pneumophila was consistently identified as having greater thermal tolerance compared to other Legionella species. This review demonstrates that further research is needed to investigate the effectiveness of pasteurization as a disinfection method. In particular, it focuses on the potential for pasteurization to select for thermal tolerant L. pneumophila strains which, as the primary causative agent of Legionnaires disease, have greater public health significance compared to other Legionella species.
Collapse
Affiliation(s)
- Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| | - Richard Bentham
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford ParkSA, Australia
| |
Collapse
|
34
|
Nocker A, Cheswick R, Dutheil de la Rochere PM, Denis M, Léziart T, Jarvis P. When are bacteria dead? A step towards interpreting flow cytometry profiles after chlorine disinfection and membrane integrity staining. ENVIRONMENTAL TECHNOLOGY 2017; 38:891-900. [PMID: 27852151 DOI: 10.1080/09593330.2016.1262463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Flow cytometry is increasingly employed by drinking water providers. Its use with appropriate fluorescent stains allows the distinction between intact and membrane-damaged bacteria, which makes it ideally suited for assessment of disinfection efficiency. In contrast to plate counting, the technology allows the visualization of the gradual loss of membrane integrity. Although this sensitivity per se is very positive, it creates the problem of how this detailed viability information compares with binary plate counts where a colony is either formed or not. Guidelines are therefore needed to facilitate interpretation of flow cytometry results and to determine a degree of membrane damage where bacteria can be considered 'dead'. In this study we subjected Escherichia coli and environmental microorganisms in real water to increasing chlorine concentrations. Resulting flow cytometric patterns after membrane integrity staining were compared with culturability and in part with redox activity. For laboratory-grown bacteria, culturability was lost at lower disinfectant concentrations than membrane integrity making the latter a conservative viability parameter. No recovery from chlorine was observed for four days. For real water, loss of membrane integrity had to be much more substantial to completely suppress colony formation, probably due to the heterogenic composition of the natural microbial community with different members having different susceptibilities to the disinfectant.
Collapse
Affiliation(s)
- Andreas Nocker
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
- b IWW Water Centre ; Mülheim an der Ruhr , Germany
| | - Ryan Cheswick
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
- c Scottish Water, Castle House , Dunfermline , UK
| | | | - Matthieu Denis
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
| | - Tangui Léziart
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
| | - Peter Jarvis
- a Cranfield Water Science Institute, School of Water, Environment and Energy , Cranfield University , Cranfield , Bedfordshire , UK
| |
Collapse
|
35
|
Massicotte R, Mafu AA, Ahmad D, Deshaies F, Pichette G, Belhumeur P. Comparison between Flow Cytometry and Traditional Culture Methods for Efficacy Assessment of Six Disinfectant Agents against Nosocomial Bacterial Species. Front Microbiol 2017; 8:112. [PMID: 28217115 PMCID: PMC5289957 DOI: 10.3389/fmicb.2017.00112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
The present study was undertaken to compare the use of flow cytometry (FCM) and traditional culture methods for efficacy assessment of six disinfectants used in Quebec hospitals including: two quaternary ammonium-based, two activated hydrogen peroxide-based, one phenol-based, and one sodium hypochlorite-based. Four nosocomial bacterial species, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Vancomycin-resistant Enterococci faecalis, were exposed to minimum lethal concentrations (MLCs) and sublethal concentrations (1/2 MLCs) of disinfectants under study. The results showed a strong correlation between the two techniques for the presence of dead and live cell populations, as well as, evidence of injured populations with the FCM. The only exception was observed with sodium hypochlorite at higher concentrations where fluorescence was diminished and underestimating dead cell population. The results also showed that FCM can replace traditional microbiological methods to study disinfectant efficacy on bacteria. Furthermore, FCM profiles for E. coli and E. faecalis cells exposed to sublethal concentrations exhibited distinct populations of injured cells, opening a new aspect for future research and investigation to elucidate the role of injured, cultural/noncuturable/resuscitable cell populations in infection control.
Collapse
Affiliation(s)
- Richard Massicotte
- Centre Intégré de Santé et de Services Sociaux de Lanaudière Québec, QC, Canada
| | - Akier A Mafu
- Food Research and Development Centre, Agriculture and Agri-Food Canada St-Hyacinthe, QC, Canada
| | | | - Francis Deshaies
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Edouard-Montpetit Montreal, QC, Canada
| | | | - Pierre Belhumeur
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Edouard-Montpetit Montreal, QC, Canada
| |
Collapse
|
36
|
Lu J, Buse H, Struewing I, Zhao A, Lytle D, Ashbolt N. Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2326-2336. [PMID: 27815848 PMCID: PMC6155451 DOI: 10.1007/s11356-016-7921-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/16/2016] [Indexed: 05/22/2023]
Abstract
Opportunistic pathogens (OPs) in drinking water, like Legionella spp., mycobacteria, Pseudomonas aeruginosa, and free-living amobae (FLA) are a risk to human health, due to their post-treatment growth in water systems. To assess and manage these risks, it is necessary to understand their variations and environmental conditions for the water routinely used. We sampled premise tap (N cold = 26, N hot = 26) and shower (N shower = 26) waters in a bathroom and compared water temperatures to levels of OPs via qPCR and identified Legionella spp. by 16S ribosomal RNA (rRNA) gene sequencing. The overall occurrence and cell equivalent quantities (CE L-1) of Mycobacterium spp. were highest (100 %, 1.4 × 105), followed by Vermamoeba vermiformis (91 %, 493), Legionella spp. (59 %, 146), P. aeruginosa (14 %, 10), and Acanthamoeba spp. (5 %, 6). There were significant variations of OP's occurrence and quantities, and water temperatures were associated with their variations, especially for Mycobacterium spp., Legionella spp., and V. vermiformis. The peaks observed for Legionella, mainly consisted of Legionella pneumophila sg1 or Legionella anisa, occurred in the temperature ranged from 19 to 49 °C, while Mycobacterium spp. and V. vermiformis not only co-occurred with Legionella spp. but also trended to increase with increasing temperatures. There were higher densities of Mycobacterium in first than second draw water samples, indicating their release from faucet/showerhead biofilm. Legionella spp. were mostly at detectable levels and mainly consisted of L. pneumophila, L. anisa, Legionella donaldsonii, Legionella tunisiensis, and an unknown drinking water isolate based on sequence analysis. Results from this study suggested potential health risks caused by opportunistic pathogens when exposed to warm shower water with low chlorine residue and the use of Mycobacterium spp. as an indicator of premise pipe biofilm and the control management of those potential pathogens.
Collapse
Affiliation(s)
- Jingrang Lu
- US EPA, Office of Research and Development, 26W Martin Luther King Dr., Cincinnati, OH, 45268, USA.
| | - Helen Buse
- Pegasus Technical Services, Inc., Cincinnati, OH,, USA
| | - Ian Struewing
- Pegasus Technical Services, Inc., Cincinnati, OH,, USA
| | - Amy Zhao
- US EPA, Office of Research and Development, 26W Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Darren Lytle
- US EPA, Office of Research and Development, 26W Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Nicholas Ashbolt
- School of Public Health, University of Alberta, Edmonton, Canada
| |
Collapse
|
37
|
Characterization of aerosols containing Legionella generated upon nebulization. Sci Rep 2016; 6:33998. [PMID: 27671446 PMCID: PMC5037422 DOI: 10.1038/srep33998] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023] Open
Abstract
Legionella pneumophila is, by far, the species most frequently associated with Legionnaires' disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26-2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.
Collapse
|
38
|
Energy Conservation and the Promotion of Legionella pneumophila Growth: The Probable Role of Heat Exchangers in a Nosocomial Outbreak. Infect Control Hosp Epidemiol 2016; 37:1475-1480. [PMID: 27640674 PMCID: PMC5197645 DOI: 10.1017/ice.2016.205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the source of a Legionella pneumophila serogroup 5 nosocomial outbreak and the role of the heat exchanger installed on the hot water system within the previous year. SETTING A 400-bed tertiary care university hospital in Sherbrooke, Canada. METHODS Hot water samples were collected and cultured for L. pneumophila from 25 taps (baths and sinks) within wing A and 9 taps in wing B. Biofilm (5) and 2 L water samples (3) were collected within the heat exchangers for L. pneumophila culture and detection of protists. Sequence-based typing was performed on strain DNA extracts and pulsed-field gel electrophoresis patterns were analyzed. RESULTS Following 2 cases of hospital-acquired legionellosis, the hot water system investigation revealed a large proportion of L. pneumophila serogroup 5 positive taps (22/25 in wing A and 5/9 in wing B). High positivity was also detected in the heat exchanger of wing A in water samples (3/3) and swabs from the heat exchanger (4/5). The outbreak genotyping investigation identified the hot water system as the source of infections. Genotyping results revealed that all isolated environmental strains harbored the same related pulsed-field gel electrophoresis pattern and sequence-based type. CONCLUSIONS Two cases of hospital-acquired legionellosis occurred in the year following the installation of a heat exchanger to preheat hospital hot water. No cases were reported previously, although the same L. pneumophila strain was isolated from the hot water system in 1995. The heat exchanger promoted L. pneumophila growth and may have contributed to confirmed clinical cases. Infect. Control Hosp. Epidemiol. 2016;1475–1480
Collapse
|
39
|
Kirschner AK. Determination of viable legionellae in engineered water systems: Do we find what we are looking for? WATER RESEARCH 2016; 93:276-288. [PMID: 26928563 PMCID: PMC4913838 DOI: 10.1016/j.watres.2016.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health.
Collapse
Affiliation(s)
- Alexander K.T. Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water & Health, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene Kinderspitalgasse 16, A-1090 Vienna, Austria . URL: http://www.waterandhealth.at
| |
Collapse
|
40
|
Rhoads WJ, Pruden A, Edwards MA. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing. Pathogens 2016; 5:E29. [PMID: 26985908 PMCID: PMC4810150 DOI: 10.3390/pathogens5010029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23-24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular.
Collapse
Affiliation(s)
- William J Rhoads
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 401 Durham Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
41
|
Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL. Waterborne pathogens: detection methods and challenges. Pathogens 2015; 4:307-34. [PMID: 26011827 PMCID: PMC4493476 DOI: 10.3390/pathogens4020307] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.
Collapse
Affiliation(s)
- Flor Yazmín Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
- Laboratorio de Ciencias Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Abraham Loera-Muro
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Mario Jacques
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Philippe Garneau
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Francisco Javier Avelar-González
- Laboratorio de Ciencias Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| | - Josée Harel
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.
| | - Alma Lilián Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes 20131, Mexico.
| |
Collapse
|
42
|
Mustapha P, Epalle T, Allegra S, Girardot F, Garraud O, Riffard S. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry. Res Microbiol 2015; 166:215-9. [DOI: 10.1016/j.resmic.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/20/2015] [Accepted: 01/25/2015] [Indexed: 01/01/2023]
|
43
|
Bédard E, Fey S, Charron D, Lalancette C, Cantin P, Dolcé P, Laferrière C, Déziel E, Prévost M. Temperature diagnostic to identify high risk areas and optimize Legionella pneumophila surveillance in hot water distribution systems. WATER RESEARCH 2015; 71:244-56. [PMID: 25622002 DOI: 10.1016/j.watres.2015.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 05/08/2023]
Abstract
Legionella pneumophila is frequently detected in hot water distribution systems and thermal control is a common measure implemented by health care facilities. A risk assessment based on water temperature profiling and temperature distribution within the network is proposed, to guide effective monitoring strategies and allow the identification of high risk areas. Temperature and heat loss at control points (water heater, recirculation, representative points-of-use) were monitored in various sections of five health care facilities hot water distribution systems and results used to develop a temperature-based risk assessment tool. Detailed investigations show that defective return valves in faucets can cause widespread temperature losses because of hot and cold water mixing. Systems in which water temperature coming out of the water heaters was kept consistently above 60 °C and maintained above 55 °C across the network were negative for Legionella by culture or qPCR. For systems not meeting these temperature criteria, risk areas for L. pneumophila were identified using temperature profiling and system's characterization; higher risk was confirmed by more frequent microbiological detection by culture and qPCR. Results confirmed that maintaining sufficiently high temperatures within hot water distribution systems suppressed L. pneumophila culturability. However, the risk remains as shown by the persistence of L. pneumophila by qPCR.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada; INRS-Institut Armand-Frappier, Laval, QC, Canada.
| | - Stéphanie Fey
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Dominique Charron
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | | | - Philippe Cantin
- Centre d'expertise en analyse environnementale du Québec, Québec, QC, Canada
| | - Patrick Dolcé
- Department of Medical Microbiology and Infectious Diseases, Centre Hospitalier Régional de Rimouski, Rimouski, QC, Canada
| | - Céline Laferrière
- Department of Microbiology and Immunology (Infection Control), CHU Ste-Justine, Université de Montréal, Montréal, QC, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| |
Collapse
|
44
|
Characterisation of electrochemical immunosensor for detection of viable not-culturable forms of Legionellla pneumophila in water samples. CHEMICAL PAPERS 2015. [DOI: 10.1515/chempap-2015-0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractLegionella pneumophila may cause a fatal pneumonia in humans known as Legionnaires’ disease (LD). The strategies of L. pneumophila to adapt to and resist stressful environmental conditions include the ability to enter into a VBNC (viable but not culturable) state. The detection of L. pneumophila in environmental samples benefits from the use of standardised methods: for detection and enumeration following membrane filtration (AFNOR T90-431, ISO 11731) and detection and quantification by polymerase chain reaction PCR (AFNOR T90-471, ISO 12869). Culture is hampered by its inability to detect VBNC forms and PCR is unable to discriminate between live and dead bacteria. The present immunosensor was obtained by the immobilisation of a monoclonal anti-L. pneumophila antibody (MAb) on an indium-tin oxide (ITO) electrode by the self-assembled monolayers (SAMs) method using an aminosilane. The immunosensor was characterised by wettability (contact angle measurement), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), and electrochemical impedance spectroscopy (EIS). A limit of detection of 10 bacteria per mL was observed on artificial samples.
Collapse
|
45
|
Buse HY, Lu J, Ashbolt NJ. Exposure to synthetic gray water inhibits amoeba encystation and alters expression of Legionella pneumophila virulence genes. Appl Environ Microbiol 2015; 81:630-9. [PMID: 25381242 PMCID: PMC4277573 DOI: 10.1128/aem.03394-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022] Open
Abstract
Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems.
Collapse
Affiliation(s)
| | - Jingrang Lu
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| | - Nicholas J Ashbolt
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, Ohio, USA
| |
Collapse
|
46
|
Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 2015; 28:95-133. [PMID: 25567224 PMCID: PMC4284297 DOI: 10.1128/cmr.00029-14] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Legionnaires' disease (LD) is an often severe and potentially fatal form of bacterial pneumonia caused by an extensive list of Legionella species. These ubiquitous freshwater and soil inhabitants cause human respiratory disease when amplified in man-made water or cooling systems and their aerosols expose a susceptible population. Treatment of sporadic cases and rapid control of LD outbreaks benefit from swift diagnosis in concert with discriminatory bacterial typing for immediate epidemiological responses. Traditional culture and serology were instrumental in describing disease incidence early in its history; currently, diagnosis of LD relies almost solely on the urinary antigen test, which captures only the dominant species and serogroup, Legionella pneumophila serogroup 1 (Lp1). This has created a diagnostic "blind spot" for LD caused by non-Lp1 strains. This review focuses on historic, current, and emerging technologies that hold promise for increasing LD diagnostic efficiency and detection rates as part of a coherent testing regimen. The importance of cooperation between epidemiologists and laboratorians for a rapid outbreak response is also illustrated in field investigations conducted by the CDC with state and local authorities. Finally, challenges facing health care professionals, building managers, and the public health community in combating LD are highlighted, and potential solutions are discussed.
Collapse
Affiliation(s)
- Jeffrey W Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Epalle T, Girardot F, Allegra S, Maurice-Blanc C, Garraud O, Riffard S. Viable but not culturable forms of Legionella pneumophila generated after heat shock treatment are infectious for macrophage-like and alveolar epithelial cells after resuscitation on Acanthamoeba polyphaga. MICROBIAL ECOLOGY 2015; 69:215-224. [PMID: 25074793 DOI: 10.1007/s00248-014-0470-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
Legionella pneumophila, the causative agent of legionellosis is transmitted to human through aerosols from environmental sources and invades lung's macrophages. It also can invade and replicate within various protozoan species in environmental reservoirs. Following exposures to various stresses, L. pneumophila enters a non-replicative viable but non-culturable (VBNC) state. Here, we evaluated whether VBNC forms of three L. pneumophila serogroup 1 strains (Philadelphia GFP 008, clinical 044 and environmental RNN) infect differentiated macrophage-like cell lines (U937 and HL-60), A549 alveolar cells and Acanthamoeba polyphaga. VBNC forms obtained following shocks at temperatures ranging from 50 to 70 °C for 5 to 60 min were quantified using a flow cytometric assay (FCA). Their loss of culturability was checked on BCYE agar medium. VBNC forms were systematically detected upon a 70 °C heat shock for 30 min. When testing their potential to resuscitate upon amoebal infection, VBNC forms obtained after 30 min at 70 °C were re-cultivated except for the clinical strain. No resuscitation or cell lysis was evidenced when using U937, HL-60, or A549 cells despite the use of various contact times and culture media. None of the strains tested could infect A. polyphaga, macrophage-like or alveolar epithelial cells after a 60-min treatment at 70 °C. However, heat-treated VBNC forms were able to infect macrophage-like or alveolar epithelial cells following their resuscitation on A. polyphaga. These results suggest that heat-generated VBNC forms of L. pneumophila (i) are not infectious for macrophage-like or alveolar epithelial cells in vitro although resuscitation is still possible using amoeba, and (ii) may become infectious for human cell lines following a previous interaction with A. polyphaga.
Collapse
Affiliation(s)
- Thibaut Epalle
- Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), EA 3064, SFR 143, University of Lyon, 42023, Saint-Etienne, France
| | | | | | | | | | | |
Collapse
|
48
|
Necessity and effect of combating Legionella pneumophila in municipal shower systems. PLoS One 2014; 9:e114331. [PMID: 25490721 PMCID: PMC4260836 DOI: 10.1371/journal.pone.0114331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
The objective was to obtain research-based, holistic knowledge about necessity and effect of practiced measures against L. pneumophila in municipal shower systems in Stavanger, Norway. The effects of hot water treatment and membrane-filtering were investigated and compared to no intervention at all. The studies were done under real-world conditions. Additionally, a surveillance pilot study of municipal showers in Stavanger was performed. The validity of high total plate count (TPC) as an indication of L. pneumophila was evaluated. A simplified method, named "dripping method", for detection and quantification of L. pneumophila was developed. The sensitivity of the dripping method is 5 colony-forming units of L. pneumophila/ml. The transference of L. pneumophila from shower water to aerosols was studied. Interviews and observational studies among the stakeholders were done in order to identify patterns of communication and behavior in a Legionella risk perspective. No substantial effects of the measures against L. pneumophila were demonstrated, except for a distally placed membrane filter. No significant positive correlation between TPC and L. pneumophila concentrations were found. L. pneumophila serogroup 2-14 was demonstrated in 21% of the 29 buildings tested in the surveillance pilot. Relatively few cells of L. pneumophila were transferred from shower water to aerosols. Anxiety appeared as the major driving force in the risk governance of Legionella. In conclusion, the risk of acquiring Legionnaires' disease from municipal shower systems is evaluated as low and uncertain. By eliminating ineffective approaches, targeted Legionella risk governance can be practiced. Risk management by surveillance is evaluated as appropriate.
Collapse
|
49
|
Abstract
Nucleic acid-based analytical methods, ranging from species-targeted PCRs to metagenomics, have greatly expanded our understanding of microbiological diversity in natural samples. However, these methods provide only limited information on the activities and physiological states of microorganisms in samples. Even the most fundamental physiological state, viability, cannot be assessed cross-sectionally by standard DNA-targeted methods such as PCR. New PCR-based strategies, collectively called molecular viability analyses, have been developed that differentiate nucleic acids associated with viable cells from those associated with inactivated cells. In order to maximize the utility of these methods and to correctly interpret results, it is necessary to consider the physiological diversity of life and death in the microbial world. This article reviews molecular viability analysis in that context and discusses future opportunities for these strategies in genetic, metagenomic, and single-cell microbiology.
Collapse
|
50
|
Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014; 5:258. [PMID: 24917854 PMCID: PMC4040921 DOI: 10.3389/fmicb.2014.00258] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - James D Oliver
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|